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a b s t r a c t

Reaction and diffusion dynamics in systems crowded by catalytic obstacles are investigated using a
particle-based mesoscopic simulation method. The focus of the work is on effects of correlations induced
by the presence of the catalytic obstacles and solvent collective modes. As an example, a system is
considered where the reaction A + C → B + C takes place on the surfaces of the C catalytic obstacles,
while the autocatalytic reaction A+B→ 2A occurs in the bulk of the solution. It is shown thatmean-field,
mass-action rate laws break down and fail to describe the reaction dynamics for large volume fractions
of obstacles. The influence of hydrodynamics on the reaction and diffusion dynamics is also studied.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Reaction anddiffusion dynamics in crowded systems is very dif-
ferent from that in simple solutions. Biological cells are prime ex-
amples of systems with crowded environments and the effects of
crowding on processes such as protein conformational dynamics,
aggregation and diffusion are topics of considerable interest [1–3].
Crowding also affects the dynamics of small molecules, although
the effects are not as large as that for macromolecules [4]. In
biological systems the crowding agents are microtubules and fil-
aments, various organelles and other macromolecular species.
Often the crowding agents aremodeled by randomarrays of spher-
ical obstacles. The problem is then similar to the study of the dy-
namics in dense suspensions of colloidal particles. If reactions can
occur on the surfaces of crowding agents then the problem is anal-
ogous to that of reaction dynamics for a random suspension of cat-
alytic particles.
Smoluchowski’s solution [5,6] of the diffusion equation for a

single spherical catalytic particle1 has provided the basis for much
subsequent work on diffusion-influenced reaction dynamics. The
generalization of this problem to reaction dynamics on dense ar-
rays of reactive particles introduces new features to the reac-
tion–diffusion kinetics. In particular, both the rate constant and
diffusion coefficient depend on the volume fraction of the reac-
tive particles in nontrivial ways. The theoretical treatments of

∗ Corresponding author. Tel.: +1 416 978 6106.
E-mail address: rkapral@gatto.chem.utoronto.ca (R. Kapral).

1 A radiation boundary conditionwhich allows for partial reflection and accounts
for the presence of a diffusive boundary layer in the vicinity of the catalyst has also
been used in such studies [7,8].

this problem require that the long range nature of the diffusive
coupling among the reactive obstacles be properly taken into ac-
count [9–11].
Most of the theoretical and simulation studies of reaction

dynamics among a random distribution of catalytic obstacles have
dealt with the simple situation where chemical species diffuse in
solution and only react on contact with the catalytic particles. Here
we study the situation where nonlinear autocatalytic reactions
occur in the bulk of the solution, aswell as reactions on the surfaces
of the catalytic particles. Because of the discrete nature of the
distribution of the catalytic particles and the perturbation of the
species density fields that occur in their vicinity, the applicability
of mean-field descriptions of the system is subject to question.
In Section 2 we present a general mesoscopic framework for

simulating the dynamics of such systems. The method combines
reactive multiparticle collision dynamics [12,13] for reactions
occurring in the bulk of the solution with an event-driven reactive
and nonreactive dynamics for the collisions between the catalytic
obstacles and solution species [14,15]. As an example of the
implementation of themethod, Section 3 considers a systemwhere
the reaction A+C → B+C occurs on the surfaces of the obstacles
and the autocatalytic reaction A+B→ 2A occurs in the bulk of the
solution. The nature of the reaction dynamics is studied as function
of the obstacle density and size for various reaction rate regimes.
The conclusions of the study are given in Section 4.

2. Reactive multiparticle collision dynamics

We consider a system comprising a large number of particles
undergoing reactive dynamics. Specifically, we consider a three-
dimensional system with volume V containing N` point particles

0167-2789/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
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of species ` with mass m, where the total number of particles is
N =

∑
` N`. The system may also contain NC stationary catalytic

obstacles C .
Multiparticle collision (MPC) dynamics [16–19], adapted to

include chemical reactions [12,13], is used to simulate the time
evolution of the system. In this mesoscopic description, particles
with continuous positions and velocities free stream between
multiparticle collision events that occur at discrete times τ . To
carry out collisions, the volumeV is divided into Ncell cubic cells of
volume Vcell, where V = NcellVcell. Each cell is labelled by an index
ξ . Suppose that there are Nξ` particles of species ` in cell ξ , giving
a total number of Nξ =

∑
` N

ξ

` particles in the cell. Nonreactive
collisions are carried out as follows: At every time τ each cell is
assigned at randoma rotation operator ω̂ξ , chosen from some set of
rotation operators. IfNξ is the instantaneous number of all particles
in cell ξ , the center of mass velocity in the cell is Vξ = N−1ξ

∑Nξ
i=1 vi

where vi is the velocity of particle i. In MPC dynamics the post-
collision velocity is given by v′i = Vξ + ω̂ξ (vi − Vξ ). This collision
rule can be generalized to multi-component systems [14]. If `i ∈
{1, 2, . . . , s} denotes the species label of particle i, then we may
write the collision rule as

v′i = Vξ + ω̂ξ (V
`i
ξ − Vξ )+ ω̂

`i
ξ ω̂ξ (vi − V`iξ ) (1)

where V`iξ is the center of mass velocity of particles of species `i in
cell ξ and ω̂ξ and ω̂

`i
ξ are again randomly chosen rotation operators.

At each collision update ω̂ξ acts on all particles in cell ξ and then
ω̂
`i
ξ acts on the subsets of particles of species `i in ξ . This collision
rule conserves mass, momentum and energy and preserves phase
space volumes.
We suppose that molecules in the bulk of the solution may also

undergo chemical reactions of the form,

Rµ :
s∑
`=1

ν
µ

` X`
kµ
−→

s∑
`=1

ν
µ

` X`, (2)

where X`, (` = 1, . . . , s) are the s chemical species and ν
µ

` and
ν
µ

` are the stoichiometric coefficients for reaction Rµ. Reactive
collisions occur in the MPC cells by stochastic rules as follows: The
probability that a reaction Rµ will occur in a cell ξ with volume
Vcell in (t, t + dt) is kµ(Vcell)hξµdt ≡ a

ξ
µdt [12]. The factor a

ξ
µ for a

randomly chosen reaction Rµ in cell ξ is given by

aξµ = kµ(Vcell)
s∏
`=1

Nξ` !

(Nξ` − ν
µ

` )!
≡ kµ(Vcell)hξµ, (3)

where the notation kµ(Vcell) indicates that the rate constants
have been scaled to account for the cell volume Vcell, and hξµ is
a combinatorial factor that accounts for the number of different
ways the reaction can occur in the cell. In reactive multiparticle
collision (RMPC) dynamics, reactive collisions occur at discrete
time intervals τ , and the probability that in the time interval τ
the reaction Rµ will occur first, followed by any other events, is of
interest and is given by

pξµ(N
ξ , τ ) =

aξµ
aξ0
(1− e−a

ξ
0τ ), (4)

where Nξ is the vector of species populations in the cell.
If catalytic obstacles are present, then chemical reactions that

convert species X` to X`′ for specific ` and `′,

Rµ : X` + C
kµ
−→ X`′ + C, (5)

take place on the surfaces of the obstacles. The volume fraction of
obstacles is φC = NCVC/V , where VC is the volume of an obstacle.
In such reactions, particles of species X` encounter the catalytic
particle and on encounter react to form product with probability
pµ [14].

3. Reaction dynamics with catalytic obstacles

The presence of a large number of catalytic sites can lead to
cooperative effects that modify mass-action chemical rate laws
and rate constants. There is a large literature that deals with such
effects for simple catalytic reactions, using both theoretical and
simulation treatments of the problem [20]. Most studies focus
on the catalytic reactive event, with particles simply diffusing
among the obstacles between reactive events. Here we study a
situation where, in addition to reactive events on the surfaces of
the catalysts, an autocatalytic reaction occurs in the bulk of the
solution.
More specifically, we consider a system comprising a solution

of reactive species ` = {A, B} and stationary, nearly randomly-
distributed, cylindrical catalytic obstacles C with radius σC and
height h. The following chemical reactions take place:

R1 : A+ C
k1
−→ B+ C (6)

R2 : A+ B
k2
−→ 2A. (7)

Reaction R1 occurs on the surfaces of the catalytic obstacles, while
reaction R2 occurs in the bulk of the solution.

3.1. Single catalytic obstacle

The presence of catalytic obstacles in the systems leads to
concentration gradients in the obstacle vicinities which influence
the reaction dynamics. We consider first a single catalytic particle
with radius σC = 10 in the center of the system. The particle
density fields in the vicinity of the catalyst are shown in Fig. 1 for
two values of the k2 reaction rate constant. Collisions of A with
catalyst yield species B. Subsequently, B freely diffuses for a time
that depends on the value of k2, since this rate constant determines
the rate at which B molecules will be transformed back to A by
the reaction A + B → 2A in the solution. As the value of k2
decreases, the B molecules will diffuse farther from the catalytic
obstacle before they react in the bulk to formA. Thus, the interfacial
zone around the catalyst increaseswith decreasing k2 as seen in the
figure.
The quantitative nature of the B density field in the vicinity of

the catalytic obstacle can be determined from the radial function
distribution of Bwith respect to center of the cylinder, gBc (r), where
r = |rB − rC |. This distribution function is seen in Fig. 2 which
plots gBc (r) for the same two values of k2 as in Fig. 1. As expected,
the B density field penetrates farther into the bulk of the solution
as k2 decreases since the reaction A + B → 2A that consumes
B occurs at a slower rate. The existence of these nonequilibrium
density profiles in the vicinity of the catalytic cylinder can lead to
correlations among catalytic obstacles and play an important role
in the reaction dynamics.

3.2. Random distribution of catalytic obstacles

When systems with random distributions of catalytic obstacles
with high volume fraction are considered, cooperative effects
arising from the diffusion fields perturbed by the presence of
obstacles canmodify diffusion and reaction rates. In particular, the
concentration gradient in the vicinity of a single catalytic obstacle,
which was discussed above, will interact with those from other
obstacles in the system, and lead to correlated effects on the
reaction–diffusion dynamics. In order to assess the importance of
such correlations it is instructive to first consider a simple mean-
field description of the system.

3.2.1. Mean-field description
If the catalytic obstacleswere homogeneously distributed in the

system and treated on the same footing as the A and B species, the
mean-field, mass-action rate law for the system would be
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Fig. 1. Snapshots of the steady state B particle density field in the vicinity of the
catalytic obstacle for a system with V = 100 × 100 × 1, T = 1/3, p1 = 0.1,
k2 = 0.005 (top) and k2 = 0.0005 (bottom). The total density is n = 10. The top
view of the catalytic cylinder is shown as an open circle.

Fig. 2. B particle (filled symbols) and A particle (open symbols) radial distribution
functions for the same conditions as in Fig. 1. Circles, k2 = 0.005; squares, k2 =
0.0005.

dnB(t)
dt
= (n− nB(t))(k1nC − k2nB(t)), (8)

where the sum of the A and B particle densities is constant, nA(t)+
nB(t) = n = const and nC is the constant number density of
catalytic particles.We see that this system of equations admits two
steady state solutions, n∗B = n and n

∗

B = k1nC/k2. If k1nC < k2n,
n∗B = n is unstable and n

∗

B = k1nC/k2 is stable. For the opposite
inequality the stability is reversed. We focus on situations where
k1nC < k2n and the relevant stable solution is n∗B = k1nC/k2. In

Fig. 3. The concentration nB(t) versus t . Parameter values: p1 = 0.1, k2 = 0.001
and σC = 1 for several values of the volume fraction: φC = 0.02 (circles),
0.1 (squares) and 0.2 (triangles). The dashed lines are plots of Eq. (9) using k1
determined from small volume fraction data. The lowest dashed curve coincides
with the simulation data for φC = 0.02 (circles), while the middle and top dashed
curves should be compared with the data represented by squares and triangles,
respectively. The solid lines are plots of Eq. (9) using k1 using n∗B(φC ). The lowest
solid line for φC = 0.02 coincides with both the simulation data (circles) and the
corresponding dashed line. Themiddle and top solid lines should be comparedwith
data represented by squares and triangles, respectively. Fortuitously, the dashed
line for φC = 0.1 and the solid line for φC = 0.2 are identical for the given
parameter values.

this case the time evolution of nB(t) is given by

nB(t) = n
(1− eλt)
(γ − eλt)

, (9)

for nB(0) = 0, where λ = k1nC − k2n and γ = k2n/(k1nC ). The
mean-field description assumes that species are completelymixed
and cannot capture effects due to concentration inhomogeneities
or correlations arising from the interactions among catalytic
obstacles.

3.2.2. Simulation results
The full reaction–diffusion dynamics in the presence of

an arbitrary number of catalytic obstacles can be simulated
using reactive multiparticle collision dynamics. As described
elsewhere [12], on long time scales for a well mixed system,
this mesoscopic dynamics reduces to the mean-field, mass-action
equations of chemical kinetics.
The simulations presented in this paper were carried out on

systems with multiparticle collision cells of unit volume, Vcell = 1.
The ω̂ξ operators in the MPC dynamics were taken to describe
rotations by α = ±π/2 about randomly chosen axes. The catalytic
cylinder radius σC and volume fraction φC = NCVC/V , with VC =
π σ 2C h, were varied. In systems with many obstacles, the obstacles
were randomly placed in the volume, ensuring that there were no
overlaps among the obstacles.When A or B particles collidewith an
obstacle MPC dynamics is not used, instead they undergo bounce-
back collisions where their velocities change sign. The A particles
additionally change to B with probability p1 in such collisions.
The total mean density of species A and B, nA + nB = n was
taken to be n = 10. The temperature in reduced units (m =
1, Vcell = 1, τ = 1) was T = 1/3. Thus, a particle moving with a
velocity corresponding to the mean thermal velocity will travel on
average a distance of one cell between multiparticle collisions. For
parameter regimes where the particles travel on average a small
fraction of a cell, random multiparticle collision grid shifting can
be introduced to restore Galilean invariance [21].
In our mesoscopic model, A particles impinge on the catalyst

and react with probability p1 to form B. Thus, the full rate for
the reaction of A particles with the catalytic cylinder, k1, contains
contributions from the collision rate constant k(0)1 = p1Z , where Z
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Fig. 4. The effective concentration-dependent k1(φC ) versus φC for several values
of σC . Parameter values: p1 = 0.1 and k2 = 0.001. From bottom to top, the obstacle
radius σC increases from σC = 1 to σC = 8 in units of 1. The fits are simply guides
to the eye.

is the collision frequency, and the diffusion rate constant kD1 that
accounts for the diffusion of A particles to the reactive boundary
layer around the catalytic particle [8,14]. The rate constant k1 can
be extracted from the simulation data for small volume fractions
where each cylinder acts independently.
The validity of the mean-field description was tested by

comparison of the time evolution of the B density given by Eq. (9)
with the simulation results. The value of k1 used in this comparison
was determined from simulations at very small volume fractions

of the B steady state density using the mean-field relation k1 =
n∗Bk2/nC . If simplemass-action kinetics were valid, this value of the
rate constant would describe the time evolution at other higher
values of the catalyst density.
Comparisons of the mesoscopic simulations with mass-action

kinetics are presented in Fig. 3 for a system containing catalytic
obstacles of radiusσC = 1 for several values of the volume fraction.
The system initially contains only A particles so that nB(0) = 0.
As anticipated, at small volume fractions where correlations

are very small and the value of k1 was determined from n∗B , the
mass-action rate law is in agreement with the simulation data,
except at the shortest times where it is expected to break down.
Note the agreement between the simulation data (circles) and
the dashed line that passes through these data points. However,
significant deviations are seen for higher volume fractions. For the
value of k2 = 0.001 used in these simulations the characteristic
widthwB of the B density profile around a catalytic obstacle can be
determined from the B radial distribution function and is wB ≈ 5.
This width is comparable to or larger than the average distance
between obstacles at the higher volume fractions. For the other
volume fractions, φC = 0.1 and φC = 0.2, the mean-field curves
(dashed lines) deviate significantly from the simulation data and
correlations among the catalytic particles manifest themselves as
a breakdown of the mean-field mass-action rate law.
An effective volume fraction dependent rate constant can be

extracted from the simulation data using k1(φ) = n∗B(φC )k2/nC ,
where n∗B(φC ) is the simulation value at volume fraction φC . This
effective rate constant is plotted in Fig. 4 versus φC for several

Fig. 5. Density fields of A and B particles and obstacle configurations for a systemwithV = 200×200×1, T = 1/3, k1 = 0.1, k2 = 0.001, φC = 0.2 (left column), φC = 0.3
(right column), σC = 2 (top) and σC = 4 (bottom). Color code: B particles, blue, A particles, yellow and A+ B particles, green. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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values of the catalyst radius σC . While the dependence on the
volume fraction is not strong, there is an observable variation of
k1 with φC .
One may attempt to modify the mass-action rate law by using

the φC -dependent rate constant k1(φC ) in place of the constant
k1. This comparison is also shown in Fig. 3 as the solid lines.
Of course, now the asymptotic value n∗B is given correctly but,
except for the smallest volume fraction, this modification fails
to describe the data for large volume fractions. Consequently, no
simple modification of the mean-field equations can capture the
effects of correlations induced by the presence of many catalytic
obstacles.
Not only does the effective rate constant vary with φC but

it also exhibits a nontrivial dependence on the obstacle radius.
The increase of k1 with increasing σC is expected in view of the
larger collision frequency with the obstacles. However, we see
that for small obstacle radii k1(φC ) decreases with φC , while for
large σC it increases. These trends likely arise from competing
effects of diffusion and reaction in the presence of obstacles. In
our simulations the reaction probability on collision p1 = 0.1 is
small so that the majority of collisions with obstacles are simply
bounce-back collisions as if the obstacles were inert. It is known
that the effective rate constant for a single catalytic sphere in
medium containing a dense suspension of noncatalytic obstacles
leads to an effective rate constant that decreases with volume
fraction, primarily as a result of a decrease in the effective diffusion
coefficient [15]. It has also been shown by both theory [9,10]
and simulation [14] that if random arrays of catalytic particles
where the reaction probability is high are considered, then the
effective reaction rate increases with volume fraction. For catalytic
particles with large radii, even if the reaction probability is small,
the production rate of B particles is large. One might then expect
a cross-over to a k1(φC ) that increases with φC as observed
in the simulations. To obtain a full quantitative description of
these trends requires that one take into account the effects of
the autocatalytic reaction in the bulk and the resulting complex
correlations that arise from the catalytic obstacles in the presence
of such bulk reactions.
In order to gain insight into the nature of the correlations

arising from the presence of many obstacles, Fig. 5 shows the
instantaneous particle density fields in the steady state regime
along with the obstacle configurations for two different obstacle
radii: σC = 2 (top) and σC = 4 (bottom). Results for two volume
fractions are shown: φC = 0.2 (left column) and φC = 0.3 (right
column). One can see that for φC = 0.2 and σC = 4 large regions
exist where there are predominantly A particles; these large A-rich
regions are no longer present for φC = 0.3, or for the smaller
σC = 2 obstacle radius at either volume fraction. The rate of
production of B particles on the surfaces of the catalytic obstacles
depends on the total obstacle surface area, ST . Given that surface
area and volume of an obstacle are SC = 2πσCh and VC = πσ 2C h,
we have ST/V = 2φC/σC . The smallest value of this surface area
and smallest B particle production rate, occur when σC is large and
φC is small, in accord with the results in Fig. 5.
The average structure of the B density field among the obstacles

is seenmore clearly by computing the B particle radial distribution
function. This function is shown in Fig. 6 for the sameparameters as
in Fig. 5. For both large (σC = 4) and small (σC = 2) there is a build-
up of B density around an obstacle as expected; however, for the
smaller radius the asymptotic value is higher due to the larger total
obstacle surface area. The density fields from different obstacles
interact strongly, especially for the higher volume fraction, lower
obstacle size case.
The insets in this figure show the obstacle radial distribution

function. One can see that this distribution is not completely
random; there are correlations at short distances that arise from

Fig. 6. The B particle radial distribution function for the same conditions as in Fig. 5.
Open circles, φc = 0.3; full circles, φC = 0.2. Top, σC = 2; bottom, σC = 4. The
insets in these figures show the obstacle radial distribution function.

obstacle clustering. The interplay among obstacle and solvent
species density correlations give rise to domains where there are
predominantly B particles (see especially the configuration for
φC = 0.3 and σC = 2 in the top right panel of Fig. 5). These
strong correlations again lead to a breakdown of the mean-field
description. σC

3.2.3. Effects of hydrodynamics
The last issue we address is the role of hydrodynamics on the

reaction–diffusion dynamics of this autocatalytic system. Our
mesoscopic RMPC dynamics simulations conserve mass, momen-
tum and energy, as does full molecular dynamics. Therefore, all hy-
drodynamic effects are automatically incorporated in the simula-
tions.While there are no bulk fluid flows present and our reactions
are thermoneutral, hydrodynamics can still influence the transport
properties of the system and thus affect the dynamics and corre-
lations that exist in the system. It is an easy matter to modify the
dynamics in order to remove the correlations induced by hydro-
dynamic coupling to the conserved fluid modes [18,19]. One may
simply replace theMPC dynamics by random sampling of the post-
collision velocity from a Boltzmann distribution.
The effects of these hydrodynamic correlations are seen in Fig. 7

which plots n∗B as function of the volume fraction φC , from full
RMPC dynamics and dynamics without hydrodynamic coupling.
Results are shown for k2 = 0.001 and several values of σC .
Other parameters are the same as those in Fig. 3. There are large
differences in the values of n∗B determined from dynamics with
or without hydrodynamic effects. The discrepancies are especially
great for the smallest obstacle radius where the larger number of
obstacles give rise to perturbations of the solvent concentration
fields. These results point to the importance of properly accounting
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Fig. 7. Comparison of dynamics with (filled symbols) and without (symbols with
central dot) hydrodynamics. The plot shows n∗B versus φC . Parameter values: p1 =
0.1, k2 = 0.001 for several values of σC : σC = 1 (downward triangles), 2 (circles)
and 8 (triangles).

for solvent dynamical modes in the reaction–diffusion dynamics of
this system.

4. Conclusion

Theoretical descriptions of reaction–diffusion dynamics in
heterogeneous media present technical challenges because of the
need to account for dynamical correlations. Many systems of this
type that are encountered in nature are complicated, both because
of the nature and distribution of crowding obstacles and the
complex chemistry that takes place in the system.
Molecular simulation provides a means to study these more

complex situations. The hybrid reactive multiparticle collision
dynamics scheme implemented in this paper provides one such
route to the simulation of the dynamics of these systems. While
the model reaction network studied in this paper is very simple, it
does capture features which are expected to be generic for class
systems of this type. In particular, it shows how autocatalytic
reactions in the bulk of the solution can be combined with
reactions on dense configurations of catalytic obstacles to yield
kinetics that cannot be described by simple mean-field theory.

Since the simulation method preserves many features of full
molecular dynamics, hydrodynamic interactions and their effects
on transport properties are accounted for in the simulations. These
effects can play important roles in the dynamics. This is evident
in Fig. 3 where strong deviations from mean-field mass-action
kinetic are observed, and in Fig. 7 where the effects of coupling to
conserved solvent modes are shown to influence the steady state
B density.
The simulation scheme is easily adapted to describe more com-

plex reaction networks and to obstacles with arbitrary geometries.
Therefore, it may be used to investigate a variety of systems of
chemical and biochemical interest where molecular crowding
plays an important role.

Acknowledgments

This work was supported in part by a grant from the Natu-
ral Sciences and Engineering Research Council of Canada. One of
the authors (C.E.) acknowledges support from Decanato de In-
vestigación, Universidad Nacional Experimental del Táchira, San
Cristóbal, Venezuela.

References

[1] T.C. Laurent, Biophys. Chem. 57 (1995) 7.
[2] S.P. Zimmerman, A.P. Minton, Annu. Rev. Biophys. Struct. 22 (1993) 27.
[3] A.P. Minton, J. Biol. Chem. 276 (2001) 10577.
[4] A.S. Verkman, TRENDS in Biochem. Sci. 27 (2002) 27.
[5] M. von Smoluchowski, Ann. Phys. 48 (1915) 1003; Phys. Z. 17 (1916) 557.
[6] M. von Smoluchowski, Z. Phys. Chem. 92 (1917) 129.
[7] F.C. Collins, G.E. Kimball, J. Colloid Sci. 4 (1949) 425.
[8] R. Kapral, Adv. Chem. Phys. 48 (1981) 71.
[9] B.U. Felderhof, J.M. Deutch, J. Chem. Phys. 64 (1976) 4551.
[10] J. Lebenhaft, R. Kapral, J. Stat. Phys. 20 (1979) 25.
[11] I.V. Gopich, A.M. Berezhkovskii, A. Szabo, J. Chem. Phys. 117 (2002) 2987.
[12] K. Rohlf, S. Fraser, R. Kapral, Comp. Phys. Comm. 179 (2008) 132.
[13] K. Tucci, R. Kapral, J. Phys. Chem. B 109 (2005) 21300.
[14] K. Tucci, R. Kapral, J. Chem. Phys. 120 (2004) 8262.
[15] C. Echeverria, K. Tucci, R. Kapral, J. Phys.: Condens. Matter 19 (2007) 065146.
[16] A. Malevanets, R. Kapral, J. Chem. Phys. 110 (1999) 8605.
[17] A. Malevanets, R. Kapral, J. Chem. Phys. 112 (2000) 7260.
[18] R. Kapral, Adv. Chem. Phys. 140 (2008) 89.
[19] G. Gompper, T. Ihle, D.M. Kroll, R.G. Winkler, Adv. Polym. Sci. 221 (2008) 1.
[20] D.F. Calif, J.M. Deutch, Annu. Rev. Phys. Chem. 34 (1983) 493.
[21] T. Ihle, D.M. Kroll, Phys. Rev. E 63 (2001) 020201.


