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Collective dynamics of self-propelled sphere-dimer motors
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The collective dynamics of ensembles of chemically powered sphere dimer motors is investigated. Sphere
dimers are self-propelled nanomotors built from linked catalytic and noncatalytic spheres. They consume fuel in
the environment and utilize the resulting self-generated concentration gradients to produce directed motion along
their internuclear axes. In collections of such motors, the individual motors interact through forces that arise
from concentration gradients, hydrodynamic coupling, and direct intermolecular forces. Under nonequilibrium
conditions it is found that the sphere dimer motors self-assemble into transient aggregates with distinctive
structural correlations and exhibit swarming where the aggregates propagate through the system. The mean
square displacement of a dimer motor in the ensemble displays short-time ballistic and long-time diffusive regimes
and, for ensembles containing many motors, an increasingly prominent intermediate regime. The self-diffusion
coefficient of a motor in a many-motor system behaves differently from that of an isolated motor, and the decay
of orientational correlations is a nonmonotonic function of the number of motors. The results presented here
illustrate the phenomena to be expected in applications, such as cargo transport, where many motors may act in
consort.
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I. INTRODUCTION

Active particles that utilize energy sources to effect motion
arise in many contexts and endow the systems in which they
operate with special properties. Biological examples include
molecular motors such as kinesin and myosin that are propelled
by mechanical forces derived from the chemical energy
released during the hydrolysis of adenosine triphosphate [1–3],
and bacteria that swim by executing nonreciprocal motions
[4,5]. Synthetic molecular motors that use various types of
energy for propulsion and move in viscous media as a result
of conformational changes or chemical gradients have been
constructed and studied both experimentally and theoretically
[6–17].

Active particles can communicate with each other through a
number of different mechanisms, including direct intermolec-
ular potential interactions among neighbors, hydrodynamic
interactions, chemical gradients, etc. The collective dynamics
of systems containing many such interacting active particles
have properties that differ from those of systems of comprising
inactive particles. This behavior is manifested in the familiar
examples of the flocking of birds and the schooling of fish
[18,19]. There have been extensive studies that have modeled
and characterized the generic features that give rise to such
dynamics [20–25]. Suspensions of active particles have been
shown to exhibit features such as swarming, giant number
fluctuations, and various types of pattern formation [24,26,27].
The dynamics of suspensions of swimming particles in
confined geometries have also been investigated [28,29]. In the
biological realm, the collective behavior of molecular motors
plays an important role in phenomena including intracellular,
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intraflagellar, and axonal transport [30]. The collective mo-
tion of bacteria leads to rippling patterns [31–33], induced
flow patterns, swarming, and anomalous density fluctuations
[34–38]. There have also been experimental studies of the
collective dynamics of synthetic chemically powered motors.
Self-assembly of chemically active Janus colloidal particles
[39] and schooling of light-powered micromotors [40] have
been observed and studied. Studies of the interactions of pairs
[41] of three-bead swimmers [42] and interactions between
spherical and ellipsoidal swimmers [43] whose motions are
coupled by hydrodynamic interactions have been carried out.
The dynamics of pairs of sphere dimer motors have been
studied [16].

The collective dynamics of chemically powered sphere
dimer motors is investigated in this paper. These self-propelled
nanomotors comprise catalytic and noncatalytic spheres (Pt
and Silica spheres, respectively, in the laboratory realizations
of such motors [13]) that consume fuel in the environment and
make use of the self-generated concentration gradients to effect
directed motion. The collective motions of these namomotors
described below arise from a combination of interactions due
to chemical gradients, hydrodynamic coupling, and repulsive
short-range intermolecular interactions. In Sec. III we give
an overview of the collective phenomena observed in simu-
lations of ensembles of sphere dimer motors. A quantitative
characterization of the dynamics is presented in Sec. IV where
the mean squared displacement, dimer diffusion coefficient,
and orientational correlation functions are discussed. The
conclusions of the investigation are given in Sec. V.

II. MESOSCOPIC DYNAMICAL MODEL

We consider the dynamics of ensembles of ND sphere dimer
motors. Each nanodimer consists of linked catalytic C and
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noncatalytic N spherical monomers with a fixed internuclear
separation [14,15,44]. Rather than using an intermolecular
potential to bind the spheres in the dimer, the dimer inter-
nuclear distance is fixed at R by a holonomic constraint in
the dynamics. The dimers are confined in a three-dimensional
slab geometry between two parallel walls at a distance Lz

apart, perpendicular to the z direction of the system. The dimer
motors interact with the walls through dimer-monomer-wall,
9-3-Lennard-Jones (LJ) interactions,

V 93
LJ (r) = 4εw

[(
σw

r

)9

−
(

σw

r

)3]
. (1)

Here εw and σw are the wall energy and distance parameters.
We take σw = Lz/2. The existence of these monomer wall
interactions leads to dimer motion that deviates little from
the xy plane in the center of the slab [45]. As a result, the
orientational and translational motion of the nanodimers along
z is suppressed and the collective motion easier to visualize
and analyze. The simulation box has dimensions Lx = Ly in
the x and y directions, and periodic boundary conditions were
employed in these directions.

The system also contains Ns = NA + NB pointlike A and
B solvent molecules with identical masses m. These solvent
molecules interact with walls through bounce-back collisions
that reverse their velocity on collision with the walls. The
solvent molecules interact with the dimer monomers through
repulsive LJ interactions of the form

VαS(r) = 4ε
[
(σ/r)12 − (σ/r)6 + 1

4

]
θ (rc − r), (2)

where θ (x) is the Heaviside function and rc = 21/6σ is the
cutoff distance. We use the notation VαS , where S = C,N and
α = A,B to denote various interactions between solvent and
dimer monomers. In particular, we take VAC = VBC = VAN ,
which are characterized by the energy and distance parame-
ters ε = εA and σ = σS , respectively; however, interactions
between the N sphere and B molecules, VBN , have energy
parameter ε = εB . Hence the B molecules produced in the
reaction on the catalytic sphere react differently with the C
and N monomers [14,15].

In the multidimer simulations, the monomers in different
dimers also interact through repulsive LJ potentials, so that
there are no cohesive intermolecular forces between dimers.
The repulsive LJ potentials between monomers in different
dimers have energy parameter εD and distance parameter σD =
σSν

+ σS ′
ν
+ δD . We let Sν,S

′
ν = Cν,Nν and ν = 1, . . . ,ND

denote the dimers in the system. The symbols Cν and Nν

denote the catalytic and noncatalytic monomers of dimer ν.
Nonreactive collisions of A and B molecules take place

with the noncatalytic sphere. An irreversible chemical reaction
[46] A + C → B + C occurs at the catalytic monomer C. To
maintain the system in a nonequilibrium steady state, product
B molecules are removed in the vicinity of the confining
walls and reactant A molecules are inserted in a manner
that satisfies mass, momentum, and energy conservation. The
slab geometry provides a convenient way to implement the
nonequilibrium steady state. The sphere dimers require a
supply of fuel for their motion. Often experimental realiza-
tions of far-from-equilibrium conditions in reaction-diffusion
systems using continuously fed unstirred reactors allow for

fluxes of reagents in slab geometries to effectively introduce
and remove chemical species under conditions with small
chemical gradients normal to the walls. Likewise, in the slab
geometry employed here fuel can easily reach the motors. In
other three-dimensional geometries the interior of the system
may be quickly depleted of fuel and remain screened by other
motors; thus some motors will cease to move giving rise to
other types of collective behavior.

The time evolution of the system is carried out using a
mesoscopic hybrid molecular dynamics–multiparticle colli-
sion dynamics (MD-MPC) scheme. The solvent molecules
interact among themselves by multiparticle collision (MPC)
dynamics [47–51], which consists of a streaming step and
a collision step. In the steaming step, the dynamics of both
solvent and monomer particles are governed by Newton’s
equations of motion. In the collision steps, which occur at
time intervals τ , the pointlike solvent particles are sorted
into cubic cells with lattice size a0. Multiparticle collisions
among the solvent molecules are performed independently in
each cell, and the postcollision velocity of solvent particle
i in cell ξ is given by v′

i = Vξ + ω̂ξ (vi − Vξ ), where ω̂ξ

is a rotation matrix and Vξ is the center-of-mass velocity
of that cell. The dynamics is microcanonical, satisfies mass,
momentum, and energy conservation, and also preserves phase
space volumes. As a result, hydrodynamic interactions both
among dimer monomers [52] and with the walls [53] are
automatically taken into account. In some cases, in order
to assess the importance of hydrodynamic interactions on
the collective dynamics, the dynamical simulation algorithm
was modified [51] by replacing the multiparticle collision
step with choosing the solvent particle postcollision velocities
in a cell from a Maxwell-Boltzmann distribution. In this
case solvent hydrodynamical correlations are destroyed and
momentum and energy are no longer locally conserved. Hence
hydrodynamic interactions are absent for such dynamics,
although the intermolecular potential functions are unchanged.

In the simulations described below, all quantities are
reported in dimensionless LJ units based on energy εA, mass
mA, and distance σA parameters. The masses of both A and B

species are m = 1 and the masses of the C and N spheres
were adjusted according to their diameters, dC = 2σC and
dN = 2σN , to ensure density matching between monomers
and solvent. The internuclear separation between C and N

spheres in each dimer was fixed at R = (dC + dN )/2 + δ, with
δ = 0.8, by a holonomic constraint. The system temperature
was T = 1/6. The MD step, which was used to integrate New-
ton’s equations of motion with the velocity Verlet algorithm
was �t = 0.01, while the MPC time was τ = 0.5. The LJ
parameters for solvent-nanodimer interactions were chosen
to be εA = 1.0 and εB = 0.1. The interaction energy between
monomers in different dimers was taken to be εD = 5.0 and δD

in the expression for the distance parameter σD was δD = 0.2.1

The wall interaction parameters were taken to be σw = Lz/2
and εw = 1.0.

1For these energy parameters, when two dimers collide they do not
form bound pairs as a result of solvent depletion forces and separate
after collision [16]. This choice of energy parameter allows us to
focus on structures arising from many-body collective effects.
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The simulation box dimensions were Lx = 65, Ly = 65,
and Lz = 20. The cell size for MPC solvent dynamics was
a0 = 1 and the MPC rotation angle was fixed at α = 90◦. The
total number of solvent molecules in the box was 760 500
giving an average density of n0 ≈ 9 solvent particles/cell.

III. SPHERE DIMER COLLECTIVE DYNAMICS

Previously we investigated the dynamics of pairs of sphere
dimer motors which were initially targeted toward each other
[16]. Depending on the interaction strength and ratio of cat-
alytic to noncatalytic sphere diameters, either bound pairs with
various characteristics that arose as a result of solvent depletion
forces or scattering events that did not give rise to long-lived
bound-pair formation were observed. The dynamical behavior
of ensembles of sphere dimer motors considered in this
paper was studied in parameter regimes where isolated binary
collisions do not lead to long-lived bound-pair formation
(see Fig. 1 of Ref. [16]). In particular, the energy parameter
in the repulsive LJ potential that characterizes interactions
between monomer on different dimers was chosen to be large
(εD = 5) so that, in the absence of any other effects due to
concentration gradients or hydrodynamic interactions, sphere
dimers strongly repel one another and cannot approach closely
for depletion forces to play a role. Thus we are able to focus
on structures that arise as a result of collective behavior among
the dimers in the ensemble.

A. Overview of structure and dynamics

We begin with a study of the dynamics of motors with
catalytic and noncatalytic monomer diameters of dC = 4 and
dN = 8, respectively. Potential energy parameters are chosen
so that an isolated sphere dimer motor moves in a direction
with the catalytic sphere at the motor head. Figure 1 shows
instantaneous configurations that arise in the course of the
evolution of a small ensemble of ND = 5 dimers. (A video
of the dynamics can be found in the Supplemental Material,
Movie 1 [54].) Transient but long-lived clusters of dimer
motors self-assemble and propagate as a unit. Collisions of
such clusters with other clusters or single motors lead to
either self assembly or fragmentation of the clusters. Thermal
fluctuations can also lead to cluster fragmentation. The figure
also shows the B particle density field, which is produced by
chemical reactions at the surfaces of the catalytic spheres. One
can see how the concentration fields arising from individual
dimers combine to produce much more complex concentration
patterns, which then influence the collective dimer motion.

Our mesoscopic particle-based description of the dynamics
accounts for both hydrodynamic coupling among the motors
which exists in the slab geometry, as well as motion induced
by gradients of chemical species arising from the reactions at
the catalytic monomers. Both of these effects play effective
roles in determining the character of the collective motion.
Chemical gradients play an especially important role in the
self-assembly process and in the resulting cluster dynamics.
The self-generated concentration gradient arising from reac-
tion at the C surface is an essential element in the dimer
propulsion mechanism [14]. The long-range inhomogeneous
concentration field produced by motors in the vicinity of a

given motor will influence its propulsion properties, since the
motor will respond its local concentration gradient as well as
that of neighboring motors. The dimer motors will move up the
gradient and tend to be propelled toward neighboring motors.
Once two or more motors approach closely, they typically
tend to align, since motor configurations with the N end
toward the C end of a neighboring motor will result in a small
concentration gradient across the N monomer. Configurations
with the majority of motors aligned in a given direction will
undergo self-propelled motion in that direction, as seen in
Fig. 1, until the aggregate fragments as a result of fluctuations
or collisions with other motors or aggregates.

Configurations extracted from the dynamics of an ensemble
of ND = 10 dimers are shown in Fig. 2. (See Movie 2 in
the Supplemental Material [54].) The nature of the collective
behavior is more evident in this larger ensemble. One can see
chains of oriented, propagating motors and larger propagating
clusters that exhibit swarminglike behavior. One can also see
configurations where the smaller catalytic spheres tend to be
surrounded by the larger noncatalytic spheres, consistent with
the structure dictated by the motion induced by the chemical
gradients and packing of the dimers. For systems with ND = 5
and 10 the dimer area fractions are quite small, φ = 0.07 and
0.14, respectively, so the assembly into clusters cannot be
attributed to simple packing in the volume. As can be seen in
Movie 3 in the Supplemental Material [54], when chemical
reactions do not take place at the catalytic spheres, clustering
does not occur.

Investigations of ensembles of simple dumbbell swimmers
composed of two beads have been carried out in confined
slab geometries where the beads in the swimmer act as point
sources to determine the fluid velocity from the solution
of Stokes’ equation. The role of hydrodynamic interactions
on the collective dynamics has been investigated and the
results of simulations have shown that such interactions can
lead to complex behavior [28,29]. Confinement also leads to
migration of particles, which gives rise to density profiles
that depend on the swimmer volume fraction. The walls also
modify the hydrodynamic interactions among particles and
between the wall and the particles since the finite distance to
the walls provides a cutoff for the long range hydrodynamic
fields. Our particle-based simulations, where finite-size dimers

FIG. 1. (Color online) Two instantaneous configurations of a
small ensemble of five sphere dimers showing the formation of
transient propagating clusters. The concentration field of the pointlike
B particles is also shown. The dimer monomers have diameters of
dC = 4 and dN = 8.
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FIG. 2. (Color online) Instantaneous configurations observed in
the dynamical evolution of an ensemble of ND = 10 dimer motors
with monomer diameters of dC = 4 and dN = 8.

interact with a solvent described at a coarse-grained molecular
level, account for any modifications of the hydrodynamic
interactions due to the presence of the walls since all
conservation laws are preserved. The dimer-wall interactions
[Eq. (1)] introduced in our simulations serve to restrict the
dynamics close to the midplane in the slab. Even in this
situation, given the finite sizes of the monomers in the dimers
and the separation between the walls, hydrodynamic effects
are expected to be modified from their infinite system size
analogs. The main feature that distinguishes our studies of
self-propelled particles in slab geometries from these other
investigations is the presence of chemical gradients that
occur as a result of reactions on the catalytic spheres. As
argued above, the existence of such gradients can explain

FIG. 3. (Color online) (a) Instantaneous configurations of an
ensemble of five sphere dimers showing the formation of transient
clusters even in the absence of hydrodynamic interactions. The
concentration field of the pointlike B particles is also shown. (b)
Ensemble of ten dimers showing the cluster formation in absence of
hydrodynamic interactions. The dimer monomers have diameters of
dC = 4 and dN = 8.
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FIG. 4. (Color online) (a) CC radial distribution function for
a system with dC = 4.0 and dN = 8.0. The insets show cluster
configurations that contribute to the peaks in the distribution function.
Distances corresponding to various peaks are shown as dashed lines
in the corresponding configurations. (b) Average angle (in degrees)
between unit vectors ẑν of dimers whose centers of mass are a distance
r apart for a system having ND = 10 dimers with dC = 4.0 and
dN = 8.0.

the clustering phenomena observed in the simulations. To
confirm this point, using the simulation scheme described in
Sec. II, we carried out simulations of the dynamics where
hydrodynamic interactions were absent. Even in the absence
of hydrodynamic interactions propagating long-lived clusters
of dimers are formed (see Fig. 3); thus while hydrodynamic
interactions are certainly important and on their own can lead
to complex collective effects, the chemical gradients in our
system likely play a dominant role in determining the nature
of the observed collective dynamics since the phenomena we
observe occur in absence of hydrodynamic coupling.

The characteristic structural features that occur in the course
of the dynamics of the ensemble can be identified in the steady-
state radial distribution functions in the plane of the motion.
Figure 4(a) shows a plot of the catalytic-catalytic (CC) radial
distribution function,

gCC(r) = 1

2πrnC

〈
NC∑

j<i=1

δ(|rCi − rCj | − r)

〉
, (3)

where rCi is the position of catalytic monomer i, NC is the
number of catalytic monomers, nc is the number density of
catalytic monomers and the angle brackets denote an average
over time and realizations. There are well defined peaks in this
function that can be identified with the configurations seen
in the instantaneous configurations in the previous figures,
indicating that these structures persist throughout the course
of the steady-state evolution. Similar correlations are observed
in the other monomer-monomer radial distribution functions.

The orientational ordering in the system can be gauged by
the average angle �(r) between dimers separated by a center
of mass distance of r:

�(r) =
〈

ND∑
ν ′<ν=1

arccos [ẑν(Rν) · ẑν ′ (Rν ′)] δ(Rνν ′ − r)

〉
, (4)

where the angular brackets again signify an average over time
and over realizations. Here, ẑν is the unit vector along the dimer
bond (directed from N to C), Rν is the center of mass of dimer
ν, and Rνν ′ = |Rν − Rν ′ |. From this definition it follows that
parallel and antiparallel alignments of dimers are characterized
by � = 0 and π , respectively, while perpendicular orientations
correspond to π/2. If the dimer orientations are uncorrelated,
the average angle will also be � = π/2. This function is
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FIG. 5. (Color online) Instantaneous configurations for a system
of ND = 10 dimers with monomers of equal size dC = dN = 8. The
last panel plots the noncatalytic-noncatalytic (NN) radial distribution
function, gNN (r) versus r . The area fraction of dimers is φ = 0.23.

plotted in Fig. 4(b) for a system with ND = 10. At small
separations, r < 10.0, one can see evidence for nearly parallel
and antiparallel alignments of nearest neighbor dimers. The
dip in �(r) at r ≈ 15.0 is due to parallel alignment of
next nearest neighbor dimers. At intermediate values of r ,
10.0 < r < 15.0, �(r) ≈ π/2, signaling the appearance of
perpendicular configurations that can be seen in Fig. 2. For
large separation distances � ≈ π/2 again, consistent with a
lack of angular correlation between widely separated dimers.

Thus far we have considered sphere dimers where the
C sphere is smaller than the N sphere. Dimer geometry is
also an important factor in determining the nature of the
self-assembled structures. Instantaneous cluster configurations
for dimers comprising monomers of equal size (dC = dN = 8)
are shown in Fig. 5. Hexagonal-like ordering is seen in the
interior of the larger clusters and such structure is confirmed
in the radial distribution function plot also shown in this figure.
Here the monomer-monomer radial distribution function gNN

is for the noncatalytic monomers.

IV. DYNAMICAL PROPERTIES

An isolated sphere dimer undergoes self-propelled motion
in the direction of its internuclear axis with average velocity
〈Vz〉; however, such nanomotors are also subject to strong
thermal fluctuations that lead to a distribution of propagation
velocities. This distribution has been shown [14,15,44] to be
closely approximated by a Boltzmann distribution with mean
〈Vz〉. If an ensemble of interacting motors is considered, the
peak of the distribution shifts to smaller velocities and exhibits
a long tail toward smaller or even negative velocities. As the
number of motors in the ensemble increases further, the peak
in the distribution continues to shift to smaller velocities and
closely approaches zero, but now the distribution possesses a
long tail toward higher velocities. The structure of the high-
velocity shoulder of this distribution suggests that there may be
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FIG. 6. (Color online) Plots of p(Vz), the unnormalized probabil-
ity density of Vz, for ND = 1, 5, and 10 dimers. The monomers in
the dimers have diameters dC = 4 and dN = 8. Inset shows the same
data in lin-log scale.

underlying bimodal structure, possibly arising from different
cluster configurations that contribute to the ensemble. These
trends are seen in Fig. 6, which displays the (unnormalized)
velocity distributions, p(Vz), for systems with ND = 1, 5, and
10 dimers. The average velocities are given in Table I. While
the average and peak dimer velocities are the same for ND = 1
and 3, they differ considerably for larger ensembles. These
results are consistent with the existence of the transient self-
assembled structures discussed previously. Clusters of dimers
move with varying velocities. Dimers within such clusters
move with the speed of the cluster and may have orientations
at angles different from their directed motion. Such effects are
responsible for the wide dispersion of Vz velocities.

In addition to directed motion, isolated dimers undergo ori-
entational Brownian motion characterized by the orientational
relaxation time τR , which can be obtained from the decay of the
orientational autocorrelation function. Similarly, for a system
of ND dimers we can define the orientational autocorrelation
function as

Cθ (t ; ND) = N−1
D

ND∑
ν=1

〈ẑν(t) · ẑν(0)〉 ∼ et/τR (ND), (5)

where again ẑν is the unit vector along the bond of dimer ν.
The relaxation time extracted from the decay of this correlation
function, τR(ND), is not a monotonic function of ND . We find
τR(1) > τR(10) > τR(5) (see Table I and Fig. 7). For small
ND , dimer-dimer collisions provide an additional reorientation

TABLE I. Various dynamical properties for several ensemble
sizes ND . The area fractions φ for the systems are also listed.

ND φ 〈Vz〉 Vp τR D tc

1 0.014 0.0367 0.0367 3550 2.25 6451
3 0.042 0.0346 0.0365 1350 0.72 2400
5 0.070 0.0286 0.0350 1000 0.45 2150
8 0.112 0.0198 0.0160 1250 0.28 2000
10 0.140 0.0190 0.0075 1440 0.17 1710
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FIG. 7. (Color online) The orientational autocorrelation function
for ND = 1 (solid line), ND = 5 (dashed line), ND = 8 (dotted-
dashed line) and ND = 10 (dotted line) dimers. The catalytic
and noncatalytic monomers have dimeters dC = 4 and dN = 8,
respectively.

mechanism that gives rise to reorientation times that are
shorter than those due to Brownian motion of single dimer.
As the number of dimers in the ensemble increases, cluster
configurations exist with dimers locked for long times in
specific orientations within the clusters, leading to an increase
in the reorientation time.

New dynamical features due to correlations among dimers
in the ensemble are also reflected in the nature of the dimer
mean square displacement (MSD),

�L2(t) = N−1
D

ND∑
ν=1

〈|Rν(t) − Rν(0)|2〉, (6)

and the dimer diffusion coefficient defined by D =
limt→∞ �L2(t)/4t . (We use the two-dimensional form since
the motion is largely confined to the xy plane lying at the
midpoint between the walls.) The form of the MSD and the
diffusion coefficient have been analyzed in some detail for a
single chemically powered particle by Golestanian [55].

A number of time scales are relevant for the analysis. For
our purposes important characteristic times are τD = R2

d/Ds ,
the time that gauges how long it takes solvent molecules to
diffuse a distance equal to the dimer size Rd , where Ds is
the diffusion coefficient of solvent molecules, and τR , which
was discussed earlier and is the time it takes for the dimer
orientational autocorrelation, 〈ẑ(t) · ẑ(0)〉 ∼ e−t/τR , to decay.
The solvent transport coefficients can be computed analytically
for MPC dynamics. The expression for the solvent diffusion
coefficient is

Ds = kBT τ

2m

[
3γ

(γ − 1 + e−γ )(1 − cos α)
− 1

]
, (7)

where γ is the average number of solvent particles per cell and
τ is the MPC collision time. Considering sphere dimers with
dC = 4 and dN = 8 and evaluating the transport coefficient
expression for the parameters given in Sec. II, we have
τD ≈ 180 and τR = 3550, taking the effective dimer size to be
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FIG. 8. (Color online) Mean square displacement �L2(t) for a
nanodimer showing ballistic motion ∼t2 at short times and diffusive
motion ∼t at long times. Left: MSD for a system containing a single
dimer. Right: MSD for a system containing ten dimers.

Rd = 4.2 obtained from the total volume of the C and N

spheres. Thus τD 
 τR .
For short times (t 
 τD) there is a ballistic regime where

�L2(t) ∼ 〈Vz〉2t2. (The correction term proportional to the
prefactor of t2, which is proportional to τD/τR , is negligible.)
For very short times there is an inertial regime where �L2(t) ∼
δV 2t2, with δV 2 = 3kBT /M the mean thermal squared speed
of the dimer with δV = V − ẑVz. Since 3kBT /M 
 〈Vz〉2,
this contribution to the t2 coefficient is masked by the 〈Vz〉2

component. For long times, t � τR , the MSD is a linear
function of time, �L2(t) ∼ 4(D0 + 〈Vz〉2τR/2)t , which can
be used to find the diffusion coefficient of the self-propelled
sphere dimer: D = D0 + 〈Vz〉2τR/2. Here D0 is the diffusion
coefficient of the dimer when there is no chemically powered
self-propulsion, which in our case is 0.003.

The MSD for a single motor plotted in Fig. 8 (left) shows
the ballistic and diffusive regimes. The straight lines in this
graph are plots of the theoretical short and long time MSD
expressions given above, with coefficients determined from the
independently measured average dimer propagation velocity
〈Vz〉 and reorientation time τR . These asymptotic expressions
are consistent with the MSD simulation data. The time that
characterizes the crossover from the ballistic to diffusive
regimes, tc, may be determined from the intersection of the
straight line segments that correspond to the ballistic and
diffusive regimes in the log-log plot. We find tc(1) = 6451
for a system containing a single dimer.

At intermediate times, τD 
 t 
 τR , the MSD is pre-

dicted [55] to behave as �L2(t) ∼ 〈Vn〉2(t2 + 8τ
3/2
D

3
√

πτR
t3/2). The

coefficient of t3/2 is small and this behavior is difficult to detect
in the figure.

Given this description of MSD for a single self-propelled
dimer, we now study this quantity for an ensemble of sphere
dimers. Figure 8 (right) shows the MSD for a system with 10
dimers. The graph clearly exhibits the ballistic and diffusive
regimes. The crossover time is tc(10) = 1710, much shorter
than that for a single dimer. Comparison of the left and right
panels of Fig. 8 shows that a regime, intermediate between the
ballistic and diffusive regimes, grows in size as ND increases.
Similar behavior of the MSD has been observed for ensembles
of simple dumbbell swimmers in slab geometry whose
collective behavior is controlled by hydrodynamic interactions
[28]. In particular, short time ballistic and long time diffusive
regimes were found and, as the number of swimmers increased,
an intermediate regime of anomalous diffusion was seen that
extended over more than a decade in time.
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The data presented in Table I summarize how important
dynamical properties vary with ND . As evident in the table,
both D and τR vary strongly with ND . The dimer diffusion
coefficient, determined from the linear behavior of the MSD,
is found to decrease with increasing ND as might be expected;
however, as discussed earlier, τR is a nonmonotonic function
of ND . Hence the relation between D and τR , D = D0 +
〈Vz〉2τR/2, which applies for a single dimer, is no longer valid
in a multidimer system.

The collective dynamics of the sphere dimer motors should
exhibit many of the features that have been found to exist in
collections of active particles. Although the intermolecular po-
tentials through which the sphere dimers interact are repulsive
so that there are no direct cohesive forces, the motions of the
dimers are also coupled through forces arising from chemical
gradients and hydrodynamic coupling through solvent viscous
modes. Consequently, the dynamical model that underlies
the behavior described above is more complicated than that
in some simple models that have been used to investigate
the properties of the collective dynamics of active particles
[20–22]. Nevertheless, certain features, such as clustering
and swarming, have analogs in our sphere dimer system.
A complete quantitative investigation of properties such as
the possible existence of superdiffusion and the exponents
that characterize it [56,57], the existence of giant number
fluctuations [58], and the possibility of nonequilibrium phase
transitions [21,22] will require much larger ensembles and
more extensive simulations than those considered here and
are topics of future research. However, it is worth noting that
our simulations of small ensembles of sphere dimers point
to the existence of some other phenomena. For example,
the transient formation and breakup of clusters leads to
large density fluctuations in the system. In addition, as the
number of dimers increases, the MSD exhibits a transition
region between the ballistic and diffusive regimes that grows
in size and, from the limited length of this intermediate
regime in small-ensemble systems, appears to scale as a
power law, MSD(t) ∼ tν , with ν ≈ 3/2. Such superdiffusive
power-law behavior has been observed in active systems in
a number of different contexts. Experimental studies [59] of
the MSD of beads in a medium containing active bacteria has
a superdiffusive power law behavior for short times with an
exponent 3/2 < ν < 2. Investigations of Vicsek-style models
have shown the existence of a phase transition to a regime
where there are propagating high density regions with complex
internal structure in the system [21,22]. The MSD transverse
to the propagation direction behaves as a power law with
ν = 4/3 [56]. In the isotropic transition regime where there
is no global order, the MSD exhibits a power law scaling with
ν = 5/3 [57]. The origin of this behavior has been attributed
to the fact that particles have ballistic trajectory segments
when they lie within a coherently moving cluster and normal
diffusive segments when they are outside a cluster. Similar

phenomena are observed in sphere dimer simulations and
are likely to be responsible for the behavior observed in the
intermediate regime.

V. SUMMARY AND CONCLUSION

As in many other active particle suspensions, systems
containing many chemically powered self-propelled sphere
dimer motors display collective motion including swarming
of transient self-assembled clusters of motors. The transport
properties differ from those of systems with a single dimer
motor and the self-diffusion coefficient and orientational
relaxation time depend in nontrivial ways on the number of
dimers. The structural correlations that exist in the transient
clusters depend on the dimer shape determined by the relative
sizes of the catalytic and noncatalytic monomers in the sphere
dimer motors.

A number of factors are responsible for the nature of the
collective dynamics. The dimer motors considered in this
investigation do not interact through cohesive intermolecular
forces. The observed self-assembly can be understood in terms
of the motions of the individual motors induced by their
self-generated concentration gradients and that due to other
motors in their neighborhoods. Hydrodynamic interactions are
included in our investigations but interactions due to chemical
gradients appear to play a more significant role in the dynamics
than hydrodynamic coupling. For example, if hydrodynamic
coupling is turned off, self-assembly of motors into transient
clusters still occurs.

Applications may employ ensembles of motors to perform
tasks such as targeted delivery of cargo to a given location.
When many motors are launched to perform a task the interac-
tions among the motors must be taken into account. The results
presented in this paper indicate how such interactions influence
the behavior and lead to active self-assembly, swarming, and
distinctive correlations that depend on motor geometry. The
active self-assembly process leading to coherent motion of
collections of motors may provide an effective way to deliver
large amounts of cargo to a specific location. Thus this work
should aid in the design of protocols for applications involving
the dynamics of many chemically powered nanomotors.
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