
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 142.150.190.39

This content was downloaded on 20/05/2014 at 18:26

Please note that terms and conditions apply.

Ångström-scale chemically powered motors

View the table of contents for this issue, or go to the journal homepage for more

2014 EPL 106 30004

(http://iopscience.iop.org/0295-5075/106/3/30004)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/0295-5075/106/3
http://iopscience.iop.org/0295-5075
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


May 2014

EPL, 106 (2014) 30004 www.epljournal.org

doi: 10.1209/0295-5075/106/30004
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Abstract – Like their larger micron-scale counterparts, Ångström-scale chemically self-propelled
motors use asymmetric catalytic activity to produce self-generated concentration gradients that
lead to directed motion. Unlike their micron-scale counterparts, the sizes of Ångström-scale motors
are comparable to the solvent molecules in which they move, they are dominated by fluctuations,
and they operate on very different time scales. These new features are studied using molecular
dynamics simulations of small sphere dimer motors. We show that the ballistic regime is dominated
by the thermal speed but the diffusion coefficients of these motors are orders of magnitude larger
than inactive dimers. Such small motors may find applications in nano-confined systems or perhaps
eventually in the cell.

Copyright c© EPLA, 2014

Biological molecular motors operate under non-
equilibrium conditions and consume fuel in their environ-
ment to drive conformational changes that enable them
to carry out specific tasks. Motor proteins such as adeno-
sine triphosphate synthase pump ions across the cell mem-
brane, kinesin walks along microtubules to effect active
transport in the cell, to name just two of the thousands
of motors that contribute to the biological function of the
cell [1]. These small molecular motors are able to per-
form their tasks in complex environments in spite of strong
thermal fluctuations. Synthetic mimics of such molecular
machines have been constructed [2–4]. On much larger mi-
cron scales, bacteria swim by using chemical fuel to drive
various types of non-reciprocal conformational changes to
produce directed motion [5].

Chemically powered synthetic motors that operate
by phoretic mechanisms and do not rely on conforma-
tional changes for directed motion have been the sub-
ject of recent studies [6–9]. Metallic rod [10,11], Janus
particle [12,13] and sphere dimer [14] motors with lin-
ear dimensions in the hundreds of nanometres and mi-
cron ranges have been extensively investigated and hold
the promise of future applications, which include tar-
geted cargo transport, controlled motion and stirring
in microfluidic arrays, active self-assembly and directed
chemical synthesis. Although such small motors are influ-
enced by thermal fluctuations, continuum descriptions of

phoretic motion [15–17] adequately describe the dynamics
of such motors [12,18–21].

In this article, we consider the dynamics of even smaller
Ångström-scale chemically powered motors with sizes of
a few nanometres where new factors come into play.
The motors are no longer much larger than the sol-
vent molecules that comprise their environments. Con-
sequently, solvent structure in the vicinity of the motor
must be taken into account. Motors are subject to ori-
entational fluctuations that tend to destroy ballistic mo-
tion. Since most potential applications utilize ballistic
motion, the long reorientational times of mesoscale mo-
tors make directed motion easy to observe. For small
Ångström-scale motors the reorientational times are very
short. Straightforward application of macroscopic and hy-
drodynamic models to the dynamics is questionable or, at
the very least, must be examined carefully. Nevertheless,
it is well known that collective hydrodynamic modes play
a crucial part in molecular-level dynamics, an example be-
ing the long-time tail in the velocity autocorrelation func-
tion [22]. Finally, fluctuations play an even more dominant
role for these small motors than for larger mesoscale mo-
tors. Thus, the investigation of the dynamics of molecular-
scale motors is both interesting and presents fundamental
challenges.

Additional stimulus for such research is provided by po-
tential applications of synthetic motors inside the cell or in
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Fig. 1: (Colour on-line) Sphere dimer motor (σN = 10),
comprising C sphere (orange) and N sphere (blue), in sol-
vent consisting of species A (sky blue) and B (vermilion).
The solvent is shown with reduced density 0.04σ−3 instead of
0.8σ−3.

very small nanoscale environments. Recently, experiments
have shown that single enzymes and small organometallic
molecules undergoing catalytic activity exhibit enhanced
diffusion in comparison to their inactive forms, and this
enhancement has been attributed to propulsion on the
molecular level [23–25]. Given this context, studies of
the dynamics of small molecular-scale motors will con-
tribute to the origins, characterization and consequences
of directed motion in this regime.

We employ full molecular dynamics to study a simple
model system made of a small sphere dimer motor [26],
comprising linked catalytic and non-catalytic spheres, in
a structureless solvent (see fig. 1). Chemical reactions at
the catalytic sphere convert reactants to products. Due
to the spatially asymmetric catalytic activity of the mo-
tor, an inhomogeneous distribution of these species is pro-
duced. This self-generated concentration gradient is an
essential element that leads to propulsion in solution [9].
Micron-size sphere dimer motors comprising silica non-
catalytic and Pt catalytic spheres have been studied ex-
perimentally [14]. While motor dynamics often takes place
in aqueous solution, our structureless solvent model is suf-
ficient to capture the important dynamical and structural
effects that occur at the Ångström scale. Applications
to specific systems should address effects related to the
unique structural properties of water.

The system is contained in a cube of volume V = (50σ)3

with periodic boundary conditions. The solvent con-
sists of Ns = 105 particles with number density
�s = Ns/V = 0.8σ−3 and two species, reactant (A) and
product (B), both with diameter σ and mass m. The
motor consists of rigidly linked catalytic (C) and non-
catalytic (N) spheres with diameters σC = 2σ, . . . , 5σ
and σN = 4σ, . . . , 10σ, respectively, and neutrally buoyant
mass Mm = π

6 �sm(σ3
C+σ3

N). The separation of the spheres
is chosen as1 R = 6

√
2 ((σC + σN) /2 + σ). The C sphere

1The choice of R conserves energy for the chemical reaction A →
B in light of the differing εNA and εNB, by ensuring that a solvent

catalyses the chemical reaction2 A → B, which occurs
with unit probability when A comes within interaction
range of C. All particles interact via the shifted, trun-
cated Lennard-Jones potential, Vij(r) = εij(4((σij/r)12 −
(σij/r)6) + 1) for r < 6

√
2σij and zero otherwise. Here

r is the minimum image distance between the centres
of a pair of particles, σCA = σCB = 1

2 (σC + σ) and
σNA = σNB = 1

2 (σN + σ) for pairs of dimer sphere and
solvent particle, and σAA = σAB = σBB = σ for pairs of
solvent particles. The interaction energy is ε for all pairs
apart from NB pairs, where εNB = 0.1ε, . . . , 10ε. The
temperature of the system is kBT/ε = 1. The system
is maintained in a non-equilibrium steady state by con-
verting B particles back to A far from the dimer. New-
ton’s equations of motion were solved3 iteratively using
the velocity-Verlet algorithm with δt = 0.001τ .

Simulation results are reported in dimensionless units
where distance is given in units of σ, mass in units of m,
energy in units of ε, and time in units of τ = σ

√
mε−1. Our

parameters are chosen to model a dense fluid argon-like
solvent and, using argon [27] values of σ = 0.34 nm, ε =
120K kB, and m = 39.95 u and τ = 2.15 ps, we can assign
physical values to our Ångström-scale motor simulations.

The non-equilibrium steady-state average velocity of
the sphere dimer motor projected along its internuclear
axis, 〈Vz〉, can be used to characterize the dynamics of
the motor. Here Vz = ẑ · vcm, with vcm the velocity
of the centre of mass of the dimer and ẑ a unit vec-
tor along the bond (z-axis) directed from the N sphere
to the C sphere. The average 〈Vz〉 and its fluctuations
can be determined from the probability density, f(Vz),
which is shown in fig. 2 for two dimers with different
sizes, σN = 10 and σN = 4, for several values of εNB.
The figure plots the scaled velocity V ′

z = Vz

√
Mm/kBT

so that in scaled units the widths of the distributions are
the same. These probability densities have a Maxwell-
Boltzmann form, f(V ′

z ) = (2π)−1/2e−(V ′
z−〈V ′

z 〉)2/2. The
figure shows that the sphere dimer moves in the direction
of the catalytic sphere (positive 〈V ′

z 〉) when εNB < 1 and
in the opposite direction (negative 〈V ′

z 〉) when εNB > 1;
when εNB = 1, 〈Vz〉 = 0. The values of 〈V ′

z 〉 are given in
table 1 for a variety of dimer sizes and potential parame-
ters. As the dimer size decreases the propulsion speed is a
smaller fraction of the mean thermal speed and the effects
of fluctuations are felt more strongly.

The propulsion of the sphere dimer has its origin in
the force on the dimer that arises from the different in-
termolecular potentials of the A and B particles with
the dimer spheres and the self-generated non-equilibrium

particle A or B is within interaction range of at most a single dimer
sphere, either C or N, at any given time.

2The reaction is diffusion-limited since k = kDk0/(kD + k0) �
kD, where the reaction rate constant k0 = R2

0

p

8πkBT/m is 8–16
times larger than the Smoluchowski rate constant kD = 4πDsR0 for
R0 = 21/6(σC + σ)/2 and Ds = 0.086.

3The simulations were performed on GPUs and CPUs using a
self-written code in the programming languages OpenCL C and Lua
to be published alongside a subsequent computational article.
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Fig. 2: (Colour on-line) Probability densities of the scaled
propulsion velocity, f(V ′

z ), for small (σN = 4; top) and large
(σN = 10; bottom) dimers, for several values of εNB. The
dashed lines indicate the means, 〈V ′

z 〉, of the distributions.

Table 1: Sphere dimer properties for several diameters, σN and
σC = σN/2, and values of εNB: Mean scaled propulsion velocity,
〈V ′

z 〉, orientational relaxation time, τr, diffusion constant, Dm,
theoretical estimate for diffusion constant, Dth

m , scaled ballis-
tic prefactor, B′

I, and theoretical estimate for scaled ballistic
prefactor, B′th

I .

σN εNB 〈V ′
z 〉 τr Dm Dth

m B′
I B′th

I

10 1 −0.002 2035 0.006 2.977
10 0.1 0.504 1931 0.361 0.352 3.265 3.254
10 10 −0.468 3774 0.659 0.590 3.196 3.219
8 1 0.001 1010 0.008 2.985
8 0.1 0.365 1078 0.198 0.207 3.138 3.133
8 10 −0.345 2134 0.389 0.359 3.098 3.119
6 1 0.002 531 0.010 2.981
6 0.1 0.254 503 0.109 0.117 3.062 3.065
6 10 −0.232 1036 0.207 0.192 3.025 3.054
4 1 0.001 195 0.018 2.952
4 0.1 0.153 174 0.057 0.063 2.991 3.023
4 10 −0.137 302 0.110 0.080 2.963 3.019

inhomogeneous steady-state concentration fields. As a re-
sult the non-equilibrium average of the force projected
along the dimer axis is 〈ẑ · Fm〉 �= 0. Due to momen-
tum conservation, this force can be written in terms of
the force exerted on the solvent,

〈ẑ · Fm〉 =
∫

dr�(r)(ẑ · r̂)dVCA(r)
dr

+
B∑

α=A

∫
dr′�α(r′ + Rẑ)(ẑ · r̂′)dVNα(r′)

dr′
,

(1)

where r has the catalytic C sphere as the origin, while
r′ = r − Rẑ is defined with the non-catalytic N sphere
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Fig. 3: (Colour on-line) Cylindrically averaged solvent density
fields, �(r) (top) and �B(r) (bottom), in the frame of the mov-
ing dimer, for the large dimer (σN = 10) and εNB = 0.1. The
solid black lines indicate the interaction distances σCα and σNα.

as the origin. In eq. (1) �α(r) = 〈�α(r; rNα)〉 is the
non-equilibrium average of the microscopic concentra-
tion field, �α(r; rNα) =

∑Nα

i=1 δ(riα − r). The total
concentration of the A and B fields is �(r) = �A(r)+�B(r).
In our simulations we have VCA = VCB and have used this
fact in writing the first term in eq. (1), which now de-
pends only on the total concentration in the vicinity of
the C sphere. Since VNA �= VNB, the second term depends
on the individual A and B concentration fields close to the
N sphere and is the term that dominates the force.

The concentration fields are significantly influenced by
solvent structural effects as can be seen in fig. 3, which
shows �(r) and �B(r) in a cylindrical coordinate frame
(ρ, z, φ) that is co-moving with the dimer. The concen-
tration fields exhibit oscillations near the surface of the
dimer spheres that are characteristic of particles with an
excluded volume. The radial (top) and angular (bot-
tom) concentration fields with origin at the centre of the
N sphere are shown in fig. 4. The radial concentration
fields are determined by separately averaging over N hemi-
spherical regions with r̂′ · ẑ > 0 (towards the C sphere,
solid lines) and r̂′ · ẑ < 0 (away from the C sphere, dashed
lines) in order to characterize the inhomogeneous nature
of the concentration fields around the N sphere. Since the
interaction potentials have finite range and are non-zero
only for r′ < 6

√
2σNα (vertical dashed line in the figure),

the density fields with values in this range contribute to
the propulsion force; the system is force-free outside this
boundary layer region. The pronounced oscillations in the
radial concentration fields are evident within the bound-
ary layer surrounding the dimer and directly affect the
propulsion force in eq. (1). A major element in the force
that drives propulsion is the concentration inhomogeneity
across the N sphere and this is evident in the angular de-
pendence of the concentration fields at a fixed value of r′

shown in the lower panel of the figure. For θ values close
to zero near the C sphere the B concentration is large and
the A concentration is small. As θ increases to values near
π on the opposite side of the N sphere the A concentration
increases while B decreases.

30004-p3



Peter H. Colberg and Raymond Kapral

0 2 4 6 8 10

r

0.0
0.2
0.4
0.6
0.8
1.0
1.2

α
(r

|ẑ
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Fig. 4: (Colour on-line) Radial (top) and angular (bottom) sol-
vent density, of species A, B, and both, from the centre of the
N sphere, for the large dimer (σN = 10) and εNB = 0.1. The
radial density is averaged separately over each hemisphere: the
solid lines show the density averaged over the hemisphere on
the positive z-axis (towards the C sphere), the dashed lines
over the hemisphere on the negative z-axis (away from the C
sphere). The vertical dashed line indicates the cut-off distance
of the force, rc = 6

√
2 (σN + 1) /2. The angular density is aver-

aged over the azimuth angle, φ, at a distance r′ = 5.5 from the
centre of the N sphere, which corresponds to the second peak
of the total radial density.

Due to momentum conservation, fluid flows are
generated in the solvent and are an integral part of the
propulsion mechanism. On molecular scales continuum
hydrodynamic approaches break down. However, such de-
scriptions have proven to be successful on even very small
scales. Similar observations apply to the flows generated
by our Ångström-scale motors. Due to the small size of a
motor and the strong thermal fluctuations it experiences,
extensive averaging is required to visualize the fluid flow
fields4. In fig. 5 the fluid velocity fields are shown in a
cylindrical coordinate fame using two different represen-
tations. The top panel shows the flow field in a moving
frame where the dimer velocity is zero. The flow field
far from the dimer has the value −〈Vz〉. The lower panel
shows the flow field in the vicinity of the moving dimer.
Here the flow field far from the dimer tends to zero while a
flow field with dipole-like components exists in the vicin-
ity of the dimer. These results are consistent with the
macroscopic flows that appear in the phoretic mechanism
for propulsion [28].

The mean square displacement (MSD) of the motor,
ΔL2(t) = 〈|rcm(t) − rcm(0)|2〉, where rcm is the position
of the centre of mass of the dimer, is plotted in fig. 6 for
chemically active dimers with different sizes, σN = 10 and

4The velocity fields are averaged over 1000 configurations per
realization of 107 steps, and 100 realizations. The solvent velocities
are transformed to the non-inertial dimer frame by v′

i = vi −vcm −
ω × (ri − rcm), where ω is the angular velocity of the dimer.
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Fig. 5: (Colour on-line) Cylindrically averaged fluid velocity
field, v (ρ, z), relative to the moving dimer, for the large dimer
(σN = 10) and εNB = 0.1. The fluid velocity field is shown in
the dimer frame (top) and in the simulation frame (bottom).

10−3 10−2 10−1 100 101 102 103 104 105

t

10−10
10−8
10−6
10−4
10−2
100
102
104
106

Δ
L

2
(t

)

10−10
10−8
10−6
10−4
10−2
100
102
104
106

Δ
L

2
(t

)

NB = 1
NB = 0.1
NB = 10

Fig. 6: (Colour on-line) Mean square displacement for small
(σN = 4; top) and large (σN = 10; bottom) dimers, for sev-
eral values of εNB. The dotted lines show fits of ballistic and
diffusive regimes. The vertical dashed lines indicate crossover
times, τc, between these regimes. The solid lines show theoret-
ical estimates (eq. (4)).

σN = 4; the results for the corresponding chemically inac-
tive dimers are also plotted for comparison. Both ballistic
(∼ BIt

2) and diffusive (∼ 6Dmt) regimes, indicated by
the straight lines, can be seen in the plots. The vertical
dashed lines indicate the crossover times, τc, between these
regimes. The prefactors B′

I = BIMm/kBT that character-
ize the ballistic regime and the dimer diffusion coefficients
Dm, obtained from short- and long-time fits to the data,
respectively, are given in table 1, along with several other
quantities that are used in the analysis given below.
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ẑ
(t

)·
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Fig. 7: (Colour on-line) Auto-correlation of orientation ẑ(t) for
small (σN = 4; top) and large (σN = 10; bottom) dimers, for
several values of εNB. The solid lines show a fit that assumes
exponential decay. The vertical dashed lines indicate decay
times τr.

The MSD can be written using the dimer velocity au-
tocorrelation function (VAF), CV V (t) = 1

3 〈V(t) · V〉, as

ΔL2(t) =
∫ t

0

dt′
∫ t′

0

dt′′CV V (t′′). (2)

Expressing the velocity in terms of its average in the di-
rection of the dimer axis and deviations from this value,
V(t) = 〈Vz〉ẑ(t) + δV(t), inserting this expression in
the definition of the VAF, and assuming exponential de-
cay of the orientation, 〈ẑ(t) · ẑ〉 = e−t/τr , and velocity,
〈δV(t) · δV〉 = (3kBT/Mm)e−t/τV , correlation functions
we obtain,

CV V (t) =
1
3
〈Vz〉2e−t/τr +

kBT

Mm
e−t/τv . (3)

Using this expression, the MSD takes the form

ΔL2(t) = 6Dmt − 2〈Vz〉2τ2
r

(
1 − e−t/τr

)
(4)

− 6
kBT

Mm
τ2
v

(
1 − e−t/τv

)
.

In the ballistic regime, t � τv, the MSD reduces to
ΔL2(t) ≈ (3kBT/Mm + 〈Vz〉2)t2 = BIt

2, while in the dif-
fusive regime, t 
 τr, we have ΔL2(t) ≈ 6((kBT/Mm)τv +
1
3 〈Vz〉2τr)t = 6Dmt. The effective dimer diffusion coeffi-
cient is Dm = D0 + 1

3 〈Vz〉2τr. The diffusion coefficient in
the absence of propulsion is D0 = (kBT/Mm)τv.

The assumptions made in constructing this model for
the VAF and MSD can be tested by direct simulation.
The orientational correlation function is plotted in fig. 7
for dimers with σN = 10 and 4 for three values of εNB.
The correlation function decay is well approximated by
an exponential form and the orientational relaxation time
τr can be determined. Note the significant difference in the
orientational relaxation times between the εNB = 0.1 and
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Fig. 8: Normalised auto-correlation of the velocity, C′
V V (t) =

CV V (t)/(kBT/Mm), for small (σN = 4; top) and large
(σN = 10; bottom) dimers, for several values of εNB. The dot-
ted lines show a fit of an exponential decay to the measured
data. The vertical dashed lines indicate decay times τv.

εNB = 1 cases, which are the same within statistical errors,
and the εNB = 10 case where τr is significantly longer. In
this latter case, since εNB 
 εNA, the B particles interact
with the N sphere with a repulsive potential that is much
stronger than the A–N repulsive potential. This results in
propulsion with the N sphere in front (negative velocity)
and motion down the concentration gradient, which tends
to stabilize the motor to orientational fluctuations. Such
effects have been considered for pushers and pullers for
motors with dimer geometries [29]. The τr relaxation times
for a variety of parameters are presented in table 1.

The VAFs for an inactive dimer (〈Vz〉 = 0) are presented
in fig. 8. These correlation functions cannot be quantita-
tively modelled by exponential decay and show additional
structure. As expected for systems with continuous poten-
tials there is a very small inertial regime where the VAF
behaves as ∼ 〈V (0)2〉 − 〈F (0)2〉/(2M2

m)t2, and gives rise
to a zero initial slope. Here F (0) is the initial value of
the force on the dimer. This regime has negligible con-
sequence for our low Reynolds number conditions. The
VAF exhibits other characteristic features. For the small
dimer with σN = 4 a minimum in the decay is clearly seen
and is due to caging effects that are significant when the
dimer is comparable in size to the solvent. For the larger
dimer this effect is smaller and no minimum is seen. For
both dimer sizes there is a long-time power law decay due
to the coupling of solvent collective modes to the dimer
centre-of-mass velocity. The long-time decay is especially
evident for the larger dimer.

The simulation results can now be compared with the
theoretical expression in eq. (4) and its limits in the bal-
listic and diffusive regimes. In the ballistic regime we have
B′

I = 3 + 〈V ′
z 〉2. Table 1 shows that the ballistic regime is

dominated by thermal speed 3kBT/Mm (B′
I � 3), rather

than the square of the propulsion velocity as is the case
for micron-scale motors. This is one of the signatures that
distinguish the behaviour of Ångström-scale motors from
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their larger counterparts. The effects of self-propulsion
manifest themselves clearly when the long-time diffusive
regime is examined. The diffusion coefficient Dm obtained
from the MSD and its theoretical estimate Dth

m are in close
accord. When εNB = 1 there is no propulsion and the dif-
fusion coefficient is given by D0. Propulsion contributes
significantly to the magnitude of the diffusion coefficient
and Dm is 50–100 times larger than D0 for the large motor
and 3–9 times larger for the small motor. The full expres-
sion for ΔL2(t) in eq. (4) agrees well with the simulation
data (fig. 6); the small deviations can be attributed to the
approximation that the VAF decays exponentially.

Converted to physical units, the large motor with length
(σC + σN)/2 + R = 5.79 nm is propelled with velocity
〈Vz〉 = 3.67 nmns−1, for εNB = 0.1. For τr = 4.15 ns
it travels an average distance 〈Vz〉τr = 15.23 nm, or 2.63
times its length. The small motor with length 2.55 nm is
propelled with velocity 4.40 nmns−1. For 0.37 ns it travels
an average distance 1.65 nm, or 0.65 times its length.

The results reported here show that Ångström-scale
chemically powered motors operate in a strongly fluctu-
ating medium where the ballistic regime is dominated by
the thermal speed rather than the propulsion speed. Nev-
ertheless, self-propulsion is responsible for the very large
enhancements of the motor diffusion coefficients. The mo-
tors are driven by the microscopic analogues of phoretic
mechanisms and, after substantial averaging to remove the
effects of fluctuations, one can observe the solvent flow
fields that are an integral part of the propulsion mecha-
nism. From the above discussion we see that these motors
operate in nanometre and nanosecond regimes. Although
the average motor velocities are very large, the reorienta-
tion times are very short. The results suggest that such
very small motors could have applications in nanoscale
systems that make use of the fast motor diffusion and the
solvent velocity fields generated by the motor motion. If
the motion of the motors is constrained so that orienta-
tional relaxation is hindered, their directed motion could
be exploited to achieve targeted delivery or active trans-
port on nanoscale, very much like biological machines.

∗ ∗ ∗
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[19] Jülicher F. and Prost J., Eur. Phys. J., 29 (2009) 27.
[20] Popescu M. N., Dietrich S., Tasinkevych M. and

Ralston J., Eur. Phys. J. E, 31 (2010) 351.
[21] Sabass B. and Seifert U., J. Chem. Phys., 136 (2012)

064508.
[22] Alder B. J. and Wainwright T. E., Phys. Rev. A, 1

(1967) 18.
[23] Muddana H. S., Sengupta S., Mallouk T. E., Sen A.

and Butler P. J., J. Am. Chem. Soc., 132 (2010) 2110.
[24] Sengupta S., Dey K. K., Muddana H. S.,

Tabouillot T., Ibele M. E., Butler P. J. and Sen A.,
J. Am. Chem. Soc., 135 (2013) 1406.

[25] Pavlick R. A., Dey K. K., Sirjoosingh A., Benesi A.

and Sen A., Nanoscale, 5 (2013) 1301.
[26] Rückner G. and Kapral R., Phys. Rev. Lett., 98 (2007)

150603.
[27] Rahman A., Phys. Rev., 136 (1964) A405.
[28] Anderson J. L., Phys. Fluids, 26 (1983) 2871.
[29] Popescu M. N., Tasinkevych M. and Dietrich S.,

EPL, 95 (2011) 28004.

30004-p6


