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The effects of molecular crowding on the enzymatic conformational dynamics and transport

properties of adenylate kinase are investigated. This tridomain protein undergoes large scale hinge

motions in the course of its enzymatic cycle and serves as prototype for the study of crowding

effects on the cyclic conformational dynamics of proteins. The study is carried out at a

mesoscopic level where both the protein and the solvent in which it is dissolved are treated in a

coarse grained fashion. The amino acid residues in the protein are represented by a network of

beads and the solvent dynamics is described by multiparticle collision dynamics that includes

effects due to hydrodynamic interactions. The system is crowded by a stationary random array of

hard spherical objects. Protein enzymatic dynamics is investigated as a function of the obstacle

volume fraction and size. In addition, for comparison, results are presented for a modification of

the dynamics that suppresses hydrodynamic interactions. Consistent with expectations,

simulations of the dynamics show that the protein prefers a closed conformation for high volume

fractions. This effect becomes more pronounced as the obstacle radius decreases for a given

volume fraction since the average void size in the obstacle array is smaller for smaller radii. At

high volume fractions for small obstacle radii, the average enzymatic cycle time and characteristic

times of internal conformational motions of the protein deviate substantially from their values in

solution or in systems with small density of obstacles. The transport properties of the protein are

strongly affected by molecular crowding. Diffusive motion adopts a subdiffusive character and the

effective diffusion coefficients can change by more than an order of magnitude. The orientational

relaxation time of the protein is also significantly altered by crowding.

1 Introduction

Since the interior of a living cell is crowded with obstacles such

as organelles, structural elements and numerous macromolecular

species, the mechanisms by which transport and other biochemical

processes take place in the cell may differ from those that

operate in simple aqueous solution.1–5 For instance, protein

folding and assembly are affected by crowding6–12 and diffusion

of biomolecules takes place on longer time scales and is often

subdiffusive in character.13–16 When acting as enzymes, many

proteins undergo large conformational changes in the course of

a complete enzymatic cycle, which involves substrate binding

and ultimate product release with return of the protein to its

original conformation. Crowding can alter the dynamics of

enzymatic cycles by favoring certain protein conformations

over others and by changing reaction rates.17,18

In order to investigate the effect of molecular crowding19

on protein enzymatic kinetics, we consider a specific protein,

adenylate kinase (AKE). This protein undergoes large confor-

mational motions during its enzymatic cycle and will serve to

illustrate how enzymatic dynamics is affected by crowding. The

AKE tridomain protein comprises LID, CORE andNMPdomains

and catalyzes the reversible reaction ATP + AMP " 2ADP.

In the course of this reaction the LID and NMP domains

undergo the large-scale hinge motions shown in Fig. 1.

A proposed mechanism20,21 for the catalytic activity involves

two additional metastable states where only one of the two

domains is in the closed state, in addition to the fully open and

Fig. 1 Adenylate kinase domains: CORE (green), LID (blue) and NMP

(light blue). The LID domain binds ATP while the NMP domain binds

AMP; both domains undergo large hinge motions in the course of the

catalytic cycle.
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fully closed conformations shown in the figure. A catalytic

cycle involves closing of the LID domain associated with

binding of ATP,22 followed by binding of AMP and closing

of the NMP domain. After the phosphoryl transfer reaction

with the protein in the fully closed configuration, the LID domain

then opens and one of the ADPmolecules is released, followed by

opening of the NMP domain and release of the second ADP

molecule. After these steps have taken place the protein is again

in its original fully open state completing the enzymatic cycle.

In this paper we consider how the presence of obstacles that

act as crowding agents affects the enzymatic cycle dynamics.

We also investigate how crowding alters the diffusive motion

of the protein while it is undergoing conformational changes

associated with enzymatic catalysis. The crowding agents are

taken to be hard stationary spherical objects with specified

radii that are randomly distributed in the system. Crowding

effects are studied as a function of the quenched disorder,

obstacle radius and volume fraction.

The investigation of the enzymatic dynamics is carried out

at a particle-based mesoscopic level where amino acid residues

in the protein are represented by beads and the solvent is

described by multiparticle collision dynamics.23,24 Substrate

and product molecules are not explicitly included in the

mesoscopic description; instead reactive events are modeled

by probabilistic changes in the interaction potentials that give

rise to specific conformational changes in the protein.25

The outline of the paper is as follows. Section 2 describes the

model system and presents details of the simulation method.

In Section 3, we discuss the effects of molecular crowding on

the steady state conformational distributions, enzymatic cycle

dynamics and transport properties of this protein. The con-

clusions of the study are presented in Section 4.

2 Mesoscopic model

The mesoscopic model for adenylate kinase and solvent dynamics

in the absence of obstacles was presented elsewhere;25 con-

sequently, our discussion of the main components of the

model in this section will be brief. The way in which the

crowded environment was constructed will be specified.

Adenylate kinase contains 214 amino acid residues and has

three mobile domains: the CORE domain with 133 residues,

the NMP domain with 38 residues and the LID domain

with 43 residues. This protein has been studied often, both

experimentally26–36 and theoretically,20,21,37–45 making it a

good candidate for additional studies of the effects of crowding

on its dynamics. In our mesoscopic description AKE is modeled

by a network of Nb = 214 beads that represent the amino acid

residues in the protein. The protein potential energy functions

VP(R;l) describe the interactions in a network where beads in

the protein with coordinates R= (R1,R2,. . .,RNp
) are connected

by bonds. The basic conformational states that are used in the

construction of this potential function are the fully open

conformation with no substrates bound, and the fully closed

conformation with both ATP and AMP substrates bound. The

total potential energy of the AKE network is given by

VPðR; lÞ ¼
XnL

n¼1

VP
n ðrn; wnzÞ; ð1Þ

where the sum is over all nL bonds in the network. The protein

binding state l enters in the specification of the bond poten-

tials in the sum in eqn (1). In particular, the following notation

is used to label these protein states: let wz be a variable that

takes the value wz = 1 for an open conformation and wz = 0

for a closed conformation. The index z = LC,NC and the

variables wLC and wNC are defined for the LID–CORE and

NMP–CORE conformations, respectively. Using this notation the

four binding states of the protein may be labeled by l=(wLC,wNC).

In particular, the fully open state where both the LID–CORE

andNMP–CORE domains are openmay be labeled by l1 = (1,1),

the fully closed state has the label l3 = (0,0) and the remaining

states have the notation l2 = (0,1) and l4 = (1,0).

Substrate binding and product release are modeled by

probabilistic transitions that change the binding state l of

the potential function. The transition rates between the different

binding states depend on the instantaneous conformation of the

protein. The distances between the centers of mass of the LID

and CORE domains, Rcm
LC, and NMP and CORE domains,

Rcm
NC, are monitored and these collective variables are used to

determine when a binding or unbinding event occurs.25 An

enzymatic cycle consists of the following sequence of confor-

mational changes:20,21 l1 - l2 - l3 - l4 - l1.
46 As a result

of the continuous application of such probabilistic rules for

changes in the protein binding states, the system evolves to

and is maintained in a steady state where the protein stochas-

tically executes enzymatic cycles.

The solvent is also described at a mesoscopic level using

multiparticle collision (MPC) dynamics.23,24 In MPC dynamics,

Ns point solvent particles, representing coarse grained real

molecules, free stream and undergo effective collisions at discrete

time intervals t, accounting for the effects of many real collisions

during this time interval. The dynamics of the protein in this

solvent can be simulated by combined molecular dynamics–

multiparticle collision (MD–MPC) dynamics. The protein inter-

acts with the mesoscopic solvent by including the protein beads in

the MPC collision step.47 No protein–solvent forces need be

introduced or computed. The scheme conserves mass, momentum

and energy, and hydrodynamic interactions, which are important

for the large-scale protein conformational motions, are properly

taken into account. In order to assess the influence of hydro-

dynamic interactions on the conformational and diffusive

dynamics one may replace the MPC collision rule with an

alternative collision rule where explicit solvent particles are

replaced by a heat bath and solvent correlations are destroyed.48

More specifically, each protein bead is coupled to an effective

solventmomentum,P, which is chosen from aMaxwell–Boltzmann

distribution with variance mgkBT, where g is the average number

of solvent particles per cell. The center of mass velocity of a cell

containing a protein bead with velocity vb used in the MPC

collision step is then given by Vx = (mbvb + P)/(mg + mb).

Momentum is not conserved locally in this collision rule and,

thus, hydrodynamic interactions are destroyed. Comparisons

between MPC dynamics and dynamics where hydrodynamic

interactions are suppressed will be made below. Further descrip-

tions of the MD–MPC dynamics simulation scheme along with

examples of applications can be found in recent reviews.49,50

The obstacles that are responsible for crowding are taken

to be stationary hard spherical objects which are randomly
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distributed in the system. Both the solvent molecules and

protein beads interact with the obstacles by hard bounce-back

collisions where the velocity of the colliding particle is reversed.

The obstacle distribution was constructed in the following way.

Given an obstacle radius RO and system volumeV, the number

of obstacles NO that are needed to achieve a desired volume

fraction f = 4pNOR
3
O/3V was computed. These NO obstacles

were then placed at random positions in the volume, accounting

for overlaps between the obstacles. To insert the protein in the

obstacle array, a point was chosen at random inside the

simulation volume and outside the obstacles and an attempt

was made to insert the protein with its center of mass at the

randomly chosen point. If any bead in the protein overlapped

any of the NO obstacles another random position was chosen

and another attempt to insert the protein was made. This

procedure was continued until there was successful insertion

of the protein. Especially when f is large and RO is small it may

be difficult or even impossible to find a suitable location for the

protein in the finite volume. In this case, if after 10000 attempts

no suitable location for the protein was found, a new random

array was generated and the process was continued until the

desired number of realizations was obtained. The point solvent

molecules were then placed at random positions, again

accounting for overlaps with the obstacles, consistent with

the desired solvent density. Because the point solvent particles

interact with the protein through MPC dynamics, overlaps

with the protein do not have to be taken into account.

Since the protein is inserted in the random obstacle array, its

initial state may determine where it is inserted. If the protein is

in the fully closed l3 � lcl conformation, its volume is smaller

than if it is in the fully open l1 � lop conformation. (Since we

shall primarily be concerned with these two configurations we

adopt the more obvious notations, lop and lcl, for the fully

open and fully closed conformations in the remainder of the

paper.) In this case the protein could be inserted into voids in

the obstacle array that were too small to accommodate the

protein when it is fully open. This may then have an effect on

the subsequent cyclic enzymatic dynamics where the protein

attempts to visit all conformational states in the cycle. The

obstacle radius as well as the volume fraction control the

distribution of void sizes in the obstacle array, so the depen-

dence on both of these factors can lead to differences in the

initial states for open and closed proteins. One may also draw

the initial protein conformations from the set of all conforma-

tions encountered as the protein executes enzymatic cycles.

The results are intermediate between the two extremes of fully

open and fully closed initial conformations; thus, we have chosen

to contrast results for these two limiting cases. Realizations of the

system constructed when the fully open or fully closed protein

is inserted in the random obstacle array will be labeled as Pop

or Pcl realizations, respectively.

Of course, a crowded system where the crowding elements

are identical spherical particles forming a frozen obstacle

distribution is a highly idealized version of most real crowded

systems. In a biological cell the crowding elements have a

diverse range of geometries, ranging from nearly spherical to

long filaments, some of which are anchored and others are mobile.

There have been Brownian dynamics simulations, including

hydrodynamic interactions, of more realistic crowded systems.51

Nevertheless, studies of frozen obstacle arrays do allow one to

obtain useful information on crowding and have been used

frequently for this purpose.52–55 They also serve to model the

dynamics on intermediate but long time scales of systems

where the obstacles are sufficiently massive that the time scales

of their motion are far longer than characteristic times for

enzymatic conformational, translational and orientational

dynamics.

The simulations of AKE dynamics were carried out in a

cubic box with periodic boundary conditions containing the

protein, solvent and obstacles. For the multiparticle collision

events, the simulation box was divided into (42)3 cubic cells

with side a. In the MD–MPC algorithm, velocities were

rotated about randomly chosen axes by angles �p/2 at time

intervals t. Grid shifting was implemented in the MPC step of

the dynamics.56,57 For MD the portions of the dynamics

Newton’s equations were integrated using the velocity

Verlet algorithm with a time step of Dt=0.002t. Dimensionless

units were used in the calculations: lengths were measured in

units of a, energy in units of e and mass in units of m. The

dimensionless mass of a solvent molecule was taken to bem=1

while the mass of a protein bead was mb = 5. The solvent

average number density was ns = 7 and the reduced temperature

was kBT/e = 1/3. The solvent transport properties can be

computed analytically for MPC dynamics.49,50

3 Effects of crowding on AKE dynamics

An example of a trajectory of the protein in the field of

obstacles using MD–MPC dynamics is given in Fig. 2. The

trajectory of the center of mass of the enzyme is shown as a

green line, while the obstacles are depicted as white spheres.

The solvent molecules are not shown for clarity. The protein is

represented as a network of beads (light blue) and the four

metastable configurations that the protein adopts as enzymatic

cycles are executed along the trajectory are explicitly shown.

The random nature of the center of mass trajectory is evident

and collisions of the protein with the obstacles can be seen in

this figure. The transport and steady state properties reported

Fig. 2 A random configuration of obstacles with radiusRO= 5.0. The

volume fraction of obstacles in the system is f = 0.1. The trajectory of

the center of mass of the enzyme is shown as an irregular green line. The

conformations of the protein at four different times along this trajectory

are also shown. The solvent molecules are not shown in the figure.
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below were obtained from time averages of such trajectories

as well as averages over many realizations of the random

distributions of obstacles.

3.1 Steady state conformational properties

Molecular crowding can change the steady state probability

densities of the different conformational states of the protein. The

major conformational changes of the protein along the trajectory

can be identified by monitoring the value of the instantaneous

radius of gyration RgðtÞ � ðN�1
b

PNb
i¼1 jðRiðtÞ � RpðtÞjÞ2Þ1=2,

where Ri(t) is the position of bead i and Rp(t) is the center of

mass position of the protein at time t. The probabilities of the

open and closed conformational states can then be determined

from the probability density, P(Rg), constructed from histo-

grams of Rg generated from an ensemble of trajectories for

different realizations of the obstacle distributions. The prob-

ability densities for a system with f = 0.3 and obstacles with

radius RO = 5.0 (black solid line) and for a system without

obstacles (brown broken line) are compared in Fig. 3. As

might be expected,58,59 the probability of observing the protein

in the closed conformation is larger and the probability of the

open conformation is smaller when the system is crowded by

obstacles. Let Rgm denote the position of the central minimum

in P(Rg), the probability of observing the closed conforma-

tions is Pcl ¼
RRgm

0 dRgPðRgÞ, while the probability of the

open conformation is Pop = 1 � Pcl. The ratio Pcl/Pop is

plotted in Fig. 4 as a function of f for RO = 5.0. We see that

up to volume fractions of approximately f = 0.2 this ratio

is constant within statistical uncertainty, but then strongly

increases as the volume fraction increases.

The relative probabilities of open and closed conformations

depend not only on the obstacle volume fraction but also on

the obstacle radius, since both of these factors determine the

average sizes of the voids in the obstacle array in which the

protein resides. The size of the protein in the closed and open

conformational states can be gauged from the maxima in the

probability distribution of Rg, which lie at Rg E 2.8 and 3.2,

respectively. We consider obstacles with radii that are compar-

able to or larger than the protein. The effects of obstacle size

on the ratio Pcl/Pop are quantified in Table 1 where this ratio is

given as a function of RO for f = 0.30 for both Pop and Pcl

realizations. For comparison, the first entry in this table

(denoted by RO = 0.0) is for the protein in the absence of

obstacles. For RO Z 3.5 the ratio is roughly constant for Pop

realizations, while the ratio increases slowly with decreasing

RO for Pcl realizations. Significant changes occur for RO = 3.

For RO = 3.0 and Pop realizations, configurations can arise

where the obstacles are in the region between the LID and

NMP domains. In Fig. 5 we show instantaneous conformations of

the protein in its open state for f = 3.0 and RO = 3.5 (left) and

3.0 (right). In the right panel of the figure where f = 0.3 and the

voids are small on average, the LID domain is bounded by four

obstacles, accounting for the low value in Table 1. This makes

conformational changes more difficult during the enzymatic cycles

(see right, Fig. 5). Consequently, Pcl/Pop is less than that for

Fig. 3 Plot of the probability density P(Rg) for f=0.3 withRO= 5.0

(black solid line) and for the system without obstacles (brown broken

line). The histograms were constructed from averages over 200 Pop

realizations.

Fig. 4 Plot of Pcl/Pop as a function of f for RO = 5.0. The error bars

denote � one standard deviation. The results were computed from

averages over 200 Pop realizations of the obstacle distributions.

Table 1 The ratio Pcl/Pop for f = 0.3 as a function of the obstacle
radius RO. The two columns show results for the Pop and Pcl

realizations

RO Pcl/Pop (Pop) Pcl/Pop (Pcl)

0.0 2.40 � 0.04 —
6.0 2.60 � 0.06 2.58 � 0.05
5.0 2.75 � 0.04 2.79 � 0.05
4.0 2.72 � 0.05 2.86 � 0.04
3.5 2.73 � 0.05 3.01 � 0.06
3.0 2.27 � 0.07 3.00 � 0.07

Fig. 5 Instantaneous conformations of the protein in the open state

for f = 0.3 and RO = 3.5 (left), and RO = 3.0 (right).

D
ow

nl
oa

de
d 

by
 F

rit
z 

H
ab

er
 In

st
itu

t d
er

 M
ax

 P
la

nc
k 

G
es

el
ls

ch
af

t o
n 

28
 A

pr
il 

20
12

Pu
bl

is
he

d 
on

 1
5 

M
ar

ch
 2

01
2 

on
 h

ttp
://

pu
bs

.rs
c.

or
g 

| d
oi

:1
0.

10
39

/C
2C

P4
02

00
A

View Online



This journal is c the Owner Societies 2012 Phys. Chem. Chem. Phys., 2012, 14, 6755–6763 6759

the protein in solution without obstacles. If instead Pcl

realizations are considered, the ratio Pcl/Pop follows the

increasing trend with decreasing RO. If the obstacle radius is

large, the average void size increases and the differences that

depend on the type of realization become smaller.

3.2 Conformational dynamics

Several characteristic times can be used to monitor the effect of

crowding on the enzymatic dynamics. The average time tC it

takes to complete a full enzymatic cycle can be computed from

averages over many realizations of long simulations involving

many enzymatic cycles. Fig. 6 (top) plots tC versus f. The
average cycle time is approximately constant for most of

the f range but increases for the highest values, f > 0.225.

The value of the time tC depends on the residence times of the

protein in the open and closed metastable states and the times

to make transitions between these states. Since transitions

between the metastable states are rapid, the average cycle time

mainly depends on the average times htopi and htcli spent in
the open and closed conformations, respectively. Fig. 7 shows

the histograms of top (top) and tcl (bottom) for systems with

f=0.3 andRO= 3.0. BothPop (blue bars) andPcl (black bars)

realizations were considered. We see that the distribution of

open times top is shifted to larger values for Pop realizations

when compared to Pcl realizations, while the distribution of

closed times tcl shows the opposite trend. The average residence
time is htopi = 4100 � 100 and 3500 � 100 for Pop and Pcl

realizations, respectively, while htcli = 10300 � 300 and

12 300 � 400 for these two realizations. These trends are in

accord with the variations in probabilities of the open and

closed conformations determined from the radius of gyration

probability density, P(Rg), discussed earlier. We also note that

simulations show that for a given f, the average cycle time is

constant, within small statistical uncertainty, for all 3r RO r 6

considered in this investigation.

More detailed information on the conformational dynamics

can be obtained by considering the decay of the autocorrelation of

the LID–CORE or NMP–CORE fluctuations. The LID–CORE

correlation function is defined by,25

CLC(t) = hdRcm
LC(t)dR

cm
LC(0)i E h(dRcm

LC)
2ie�t/tLC, (2)

where Rcm
LC is the distance between the centers of mass of the

LID and CORE domains, dRcm
LC = Rcm

LC � hdRcm
LCi and the

angle brackets signify a time average and an average over

realizations of the obstacle distributions. Since this correlation

function focuses explicitly on the time scale of the domain

motions which occur during the catalytic cycle, tLC provides a

sensitive probe of crowding of conformational motions. The

effect of crowding on the LID–CORE distance fluctuations

can be seen in Fig. 6 (bottom) where the ratio tLC(f)/tLC(0) is
plotted as a function of f. Results are presented for the two

types of realizations. In the figure we see that the characteristic

time tLC smoothly deviates from its value in the absence of

obstacles and it reaches 1.2–1.3 times its value at f = 0. The

deviations are somewhat larger for Pop realizations.

We may also consider the effects of hydrodynamic inter-

actions on these characteristic times since the hydrodynamic

interactions can be suppressed in the simulation as discussed

earlier. Enzymatic cycle times are longer when hydrodynamic

interactions are not taken into account, leading to more rapid

domain motions in solution. The effects are significant but

not very large since the protein resides in its metastable

states for long periods of time in a complete cycle. The

hinge motions associated with substrate binding and product

release are more strongly influenced by hydrodynamic

interactions but these motions comprise only a small part of

the full cycle. For example, in solution without obstacles

tC=15000� 300, while tNH
C =18300� 400 when hydrodynamic

Fig. 6 (top) The average cycle time tC (�10�4) as a function of f (full

circles). (bottom) Plot of the ratio tLC(f)/tLC(0) versus f. Results for

Pop (full squares) and Pcl (full triangles) realizations are shown. The

error bars denote � one standard deviation over 200 realizations.

Fig. 7 The histograms of the times spent in the open conformation,

top (top), and the closed conformation, tcl (bottom), for systems with

f= 0.3 and RO = 3.0. Results forPop realizations (blue bars) andPcl

realizations (black bars) are plotted. The histograms were determined

from 200 realizations of the enzymatic cyclic dynamics.
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interactions are suppressed.25 Thus, there is a modest increase

in the cycle time when hydrodynamic interactions are suppressed

(tNH
C /tC E 1.2).

3.3 Translational and rotational motion

The transport properties of macromolecules are strongly

affected by both hydrodynamic interactions and molecular

crowding. Hydrodynamic interactions couple the motions of

distant parts of a macromolecule through collective solvent

viscous modes. Multiparticle collision dynamics has been used

to study the effects of hydrodynamic interactions on colloidal

suspensions,60 polymer transport and collapse,61–64 protein

dynamics25 and the dynamics of molecular machines.65–67

Both the character and magnitude of translational diffusive

motions of biomolecules are changed in a crowded environment.15

Experiment and simulation have shown that the characteristic

diffusion times of large biomolecules may be orders of magni-

tude smaller in densely crowded systems than in aqueous

solution.14–16,68 In addition, diffusion is often observed to be

subdiffusive in character on intermediate but long time scales.

Subdiffusive dynamics of proteins and finite-size probe

molecules has been observed in crowded cellular systems69–72

and membranes.73–75 In systems with randomly distributed

stationary obstacles, such anomalous diffusion is commonly

seen on spatial scales that depend on the obstacle volume

fraction and size, as well as the size of the diffusing particle.

For short times that probe distances less than the character-

istic spatial scale, normal diffusive behavior is seen, while

subdiffusive behavior is observed on time scales sufficiently

long that the particle can explore the spatial scales that

characterize the obstacle distribution. As long as the particle

does not become trapped, normal diffusion will again be seen

on long time scales.

The character of the diffusive motion can be determined

from the form of the mean square displacement (MSD)

versus time,

DL2(t) = h|Rp(t) � Rp(0)|
2i = 6Gta, (3)

where Rp is again the center of mass of the protein, G is a

constant that does not depend on time and a is an exponent

that characterizes the nature of the diffusive motion; a = 1 for

normal diffusion, a > 1 for superdiffusive motion and a o 1

for subdiffusive motion. Fig. 8 plots the MSD versus time for a

few representative values of the obstacle volume fraction and

radius. In the figure the colored solid lines are the simulated

values of the MSD while the dotted lines are the best fits to the

data using eqn (3). The straight dashed lines are linear fits to

the data for long times. The subdiffusive character is evident in

these plots and one can see the crossover into the regime of

normal diffusion. When diffusion is anomalous G can be

associated with the instantaneous diffusion coefficient76 at

time t by D(f;t) = aGt(a�1). When the time is long enough

the diffusion coefficient can be obtained from the linear long-

time fit. In view of the fits to the data shown in Fig. 8 we find

that the values of D(f,t = 105) and D(f) extracted from the

long time decay are indistinguishable within statistical errors.

Fig. 9 plots the effective diffusion coefficientD(f) as a function
of f for obstacles with a radius RO = 5.0. Results are shown for

MPC dynamics where hydrodynamic interactions are properly

included, as well as dynamics where these interactions are

suppressed. Computations have been carried out for the

protein in the open lop and closed lcl conformations, as well

as when the protein is executing enzymatic cyclic dynamics.

The diffusion coefficient decreases as f increases; in addition,

the importance of hydrodynamic interactions decreases since

hydrodynamic interactions are screened by the stationary

obstacle array.64 Also, in both cases, there are no discernable

differences in D(f) for Pop and Pcl realizations. The diffusion

coefficient decreases by approximately a factor of ten in going

from pure solvent to a crowded environment with an obstacle

volume fraction of f = 0.3, consistent with that found in

previous studies.77

Fig. 8 Plots of the mean square displacementMSD versus time t for the

protein undergoing cyclic enzymatic dynamics: (yellow line) f=0.3 and

RO = 4, (green line) f = 0.3 and RO = 5, and (brown line) f = 0.25

and RO = 5. The fits of the data to eqn (3) for the three different cases

are shown as black dotted lines. These are indistinguishable from the

simulation data on the scale of the figure. In addition, linear fits to the

data for t > 5 � 105 are also shown as blue dashed lines.

Fig. 9 The instantaneous diffusion coefficient D(f) at t = 100000 as

a function of f on a semi-logarithmic scale. Results for MPC dynamics

that include hydrodynamic interactions for several situations: protein

in the open lop conformation (full squares), protein in the closed lcl
conformation (full triangles) and for the protein undergoing enzymatic

cyclic dynamics (full circles). Results without hydrodynamic coupling

for the same conditions: open lop conformation (open squares), closed

lcl conformation (open triangles) and for the cyclic dynamics (open

circles). In all cases Pop realizations were used to obtain the results.

The error bars denote � one standard deviation over 200 realizations.
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From the measured values of D(f) (and direct observation

of the diffusive trajectories of the protein) we can estimate the

average characteristic linear distance ‘D ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðfÞtsim

p
over

which the protein diffuses during the total simulation time

tsim = 2 � 105. We find lD E 10Rp for the system without

obstacles, while lD E 3Rp for the most crowded system. Here

Rp is the radius of the protein. Thus, the simulation times are

long enough for the protein to diffusively explore the obstacle

environment, as suggested by the MSD plots.

Analysis of experimental data on the diffusion of macro-

molecules has indicated that the volume fraction dependence of

the diffusion coefficient could be fit with the phenomenological

functional form,78,79

D(f) = D(0)e�bfn
(4)

where b and n are scaling parameters that depend on the

molecular weight of the protein and the solvent in which it is

dissolved. The solid and dashed lines in Fig. 10 are best fits of

our simulation data to eqn (4) for both MPC dynamics and

dynamics without hydrodynamic interactions, respectively.

In both cases n E 1.5, but b E 15.0 for MPC dynamics and

b E 8.5 when hydrodynamic interactions are suppressed. This

is consistent with observations that suggest that only b depends

on hydrodynamic coupling.79

The exponent a in eqn (3) that characterizes subdiffusive

dynamics in the crowded medium depends on the volume

fraction. This dependence is shown in Fig. 11 which plots

a versus f. The magnitude of a and its dependence on f are

similar to that observed in experiments in crowded media with

anchored obstacles.75 Hydrodynamic interactions do not have

a noticeable effect on this exponent.

The translational diffusion properties in the crowded

medium depend strongly on the obstacle radius. The results

in Table 2 show that D(f), relative to its value in pure solution

without obstacles, changes by approximately two orders of

magnitude for RO in the range 3 r RO r 6. From examina-

tion of the ratio D(f)/DNH(f) in this table we can see that

the effects are stronger when hydrodynamic interactions are

taken into account. The exponent a also varies with RO and

changes by about a factor of three for systems both with and

without hydrodynamic interactions over the radius range

shown in the figure.

The rotational motion of the AKE protein is also strongly

influenced by hydrodynamic interactions25 and crowding. To

examine the rotational dynamics of the protein we consider a

unit vector n̂ in the CORE domain directed between beads

labeled 4 and 111. The CORE domain beads do not undergo

large relative motions when the LID and NMP domains open

or close, so the dynamics of this vector provides information

on the overall rotational motion of the protein. The rotational

dynamics may be characterized by the decay of the autocorre-

lation function,

Cy(t) = hn̂(t)�n̂(0)i = hcos(h(t))i E e�t/tR, (5)

where y(t) is the angle between the n̂(t) and n̂(0) vectors and tR
is the time that characterizes the approximate exponential

decay of this function. Fig. 12 shows the ratio of tR(f)/tR(0)
as a function of f for MPC dynamics. Trends similar to those

seen in the conformational dynamics data for tLC are also

apparent in the orientational correlation times.

The behavior of tR in a crowded medium and in a medium

without obstacles for systems, with and without hydro-

dynamic interactions, is shown in Table 3 as a function of

RO. The results in this table indicate that the changes in tR in

MPC dynamics are greater than those for dynamics without

hydrodynamic interactions for all values of RO considered.

The difference decreases as the radius decreases.

Fig. 10 Plot of the average diffusion coefficient ratio hD(f)/D(0)i
versus f. The diffusion coefficients for the protein in its open lop, closed
lcl conformations and while undergoing enzymatic cyclic dynamics were

averaged to obtain the results shown in the graph. The conditions are

the same as in Fig. 9. The solid and dashed lines are best fits of the data

to eqn (4) for MPC dynamics (full circles) and dynamics without

hydrodynamic interactions (open circles), respectively.

Fig. 11 The average value of a versus f. The average was taken over

results for a, determined from fits to the expression DL2(t) E ta, when

the protein was in its open lop and closed lcl conformations and as well

as when it was executing cyclic enzymatic dynamics: MPC dynamics

(full circles), hydrodynamics suppressed (open circles). Conditions are

the same as in Fig. 9.

Table 2 The diffusion coefficient for f = 0.3 and several obstacle
radii. The diffusion coefficient in the absence of obstacles is D(0) =
0.0072

RO D(f)/D(0) D(f)/DNH(f) a(f) aNH(f)

6.0 0.145 7.15 0.88 � 0.04 0.77 � 0.03
5.0 0.050 4.08 0.68 � 0.05 0.68 � 0.03
4.0 0.013 2.22 0.58 � 0.03 0.63 � 0.04
3.5 0.0030 1.92 0.38 � 0.02 0.41 � 0.04
3.0 0.0009 1.95 0.28 � 0.03 0.28 � 0.03
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4 Summary and remarks

Molecular crowding is known to affect the structural and

dynamical properties of proteins. Our investigations of AKE

in an environment crowded by stationary hard spherical

obstacles provided quantitative information on the precise

forms that these crowding effects take for this protein while

it is undergoing cyclic enzymatic activity. Here we highlight a

few of these findings. In general, as might be expected, the

closed conformation of the protein is favored over the open

conformation when obstacles are present in high volume

fraction, with the ratio Pcl/Pop increasing by a factor of

approximately 1.4 for the highest volume fraction of f = 0.3

over its value in the absence of obstacles. There are less

anticipated results as well. When the obstacle radius is com-

parable to or even smaller than that of the protein, the

obstacles may lock the protein in the open conformation

and give rise to a lower ratio.

For volume fractions 0 r f r 0.225 the average cycle time

is approximately constant and only increases by a small

amount for the highest volume fractions. The enzymatic cycle

time is large and most of that time is spent in the open and

closed metastable states. Since the steady state probabilities of

open and closed states do not vary greatly, neither does the

average cycle time. However, there are noticeable changes in

the probability distributions of the residence times in the open

and closed states.

The most significant effects are seen when the transport

properties of the protein are considered. Translational diffu-

sion adopts a subdiffusive character on the long time scales

of our simulations. The exponent a that characterizes this

behavior decreases with increasing volume fraction in a fashion

similar to that seen in experiments. This exponent does not

depend strongly on the conformational state of the protein.

The effective diffusion coefficient can decrease by more than an

order of magnitude depending on the obstacle volume fraction

and radius. Similar trends are seen in the orientational relaxa-

tion time of the protein.

While our crowded environment was highly simplified the

investigation provides insights into some of the effects to be

expected on enzymatic conformational dynamics and transport

in crowded media. The particle-based simulation methods

used in the paper may be extended to study protein dynamics

in more realistic models of crowded systems where there are a

variety of different crowding agents, both mobile and immobile,

with various sizes.51
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