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Microscopic dynamical aspects of the propulsion of nanomotors by self-phoretic mechanisms are
considered. Propulsion by self-diffusiophoresis relies on the mechanochemical coupling between the
fluid velocity field and the concentration fields induced by asymmetric catalytic reactions on the
motor surface. The consistency between the thermodynamics of this coupling and the microscopic
reversibility of the underlying molecular dynamics is investigated. For this purpose, a mechanochem-
ical fluctuation theorem for the joint probability to find the motor at position r after n reactive events
have occurred during the time interval t is derived, starting from coupled Langevin equations for
the translational, rotational, and chemical fluctuations of self-phoretic motors. An important result
that follows from this analysis is the identification of an effect that is reciprocal to self-propulsion
by diffusiophoresis, which leads to a dependence of the reaction rate on the value of an externally
applied force. Published by AIP Publishing. https://doi.org/10.1063/1.5008562

Recently, synthetic micromotors powered by different
self-phoretic mechanisms have been constructed and studied
experimentally.1–5 Self-propulsion is achieved by the gen-
eration of local gradients of chemical concentrations, elec-
trochemical potential, or temperature, which produce the
force driving the motor.6–10 This is the case in particu-
lar for Janus motors with catalytic and chemically inactive
hemispheres, moving by diffusiophoresis in a solution with
out-of-equilibrium concentrations of fuel and product.10–13

The propulsion mechanism is based on the mechanochem-
ical coupling between the fluid velocity around the motor
and the concentration fields induced by the reaction taking
place on the catalytic hemisphere. Mechanochemical cou-
pling has been considered in a number of different contexts
for molecular machines and swimmers undergoing conforma-
tional changes.14–17 Work has also been devoted to the ther-
modynamics of collections of such motors without considering
the role of this coupling.18–20 A fundamental issue that arises
in this context is the consistency between the thermodynamics
of this coupling and the microreversibility of the underlying
molecular dynamics. The challenge is that the synthetic motors
have micrometric or nanometric sizes and, therefore, are sub-
jected to thermal fluctuations due to the atomic structure of
matter.

In this communication, we address this issue by deducing
a mechanochemical fluctuation theorem starting from coupled
Langevin equations for the translational, rotational, and chem-
ical fluctuations of self-phoretic motors. Since the fluctuation
theorem is a consequence of microreversibility,21–26 we can
identify the effect that is reciprocal to the self-diffusiophoretic

a)gaspard@ulb.ac.be and rkapral@chem.utoronto.ca

propulsion. In this way, we show that the reaction rate is influ-
enced by an external force and an external torque, and can be
reversed in the linear regime close to thermodynamic equilib-
rium, possibly leading to the synthesis of fuel from product.
This reciprocal effect is analogous to what is observed at the
nanoscale for molecular motors.14,23,27,28

With this aim in mind, we consider the following Langevin
equation for a spherical particle:29

m
dV
dt
= −γV + Fd + Fext + Ffl(t) , (1)

where m is the mass of the Janus motor, V = dr/dt is its veloc-
ity, γ = kBT /D is the translational friction coefficient related
by Einstein’s relation to the particle diffusion coefficient D,
Fd = Fdu is the diffusiophoretic force directed along the axis
of the Janus motor specified by the unit vector u, Fext is an
external force, and Ffl(t) is the Langevin fluctuating force.
Since the diffusiophoretic force Fd is proportional to the mean
reaction rate W rxn, we introduce the diffusiophoretic coupling
coefficient

χ ≡
Fd

γWrxn
. (2)

In the overdamped limit, the Langevin equation (1) becomes

dr
dt
= Vd u + βD Fext + Vfl(t) , (3)

where r = (x, y, z) is the particle position, Vd = χW rxn

= Fd/γ is the diffusiophoretic velocity, β = (kBT )−1 is the
inverse temperature, and Vfl(t) = Ffl(t)/γ is the fluctuating
velocity.

The orientation u of the Janus particle is ruled by the
following rotational overdamped Langevin equation:30,31
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du
dt
= −

1
γrot

u × [Text + Tfl(t)] , (4)

where γrot is the rotational friction coefficient,32 Text is an
external torque due to an external magnetic field B exerted
on a magnetic dipole µu attached to the particle,33 Text = µu
× B, or due to a gravitational field acting on the nonuniform
mass density of the Janus particle,34 and Tfl(t) is the Langevin
fluctuating torque associated with the rotational diffusion coef-
ficient Drot = (βγrot)−1. Since the Janus motor is assumed to
be spherical, there is no torque due to diffusiophoresis. We
note that the external force and torque are derived from the
potential energy U(r, u) = �Fext · r � µB · u.

In order to describe the mechanochemical coupling,
Eqs. (3) and (4) must be supplemented by a stochastic equa-
tion for the reaction. Here, we consider the simple reaction
A 
 B, where A is the fuel and B is the product, so that the
mean reaction rate is given by Wrxn = k+c̄A − k−c̄B in terms
of the rate constants k± and the concentrations c̄A and c̄B

far from the Janus particle. The mean reaction rate vanishes
at chemical equilibrium when c̄A/c̄B = k−/k+. Forward reac-
tive events A→ B predominate over their equilibrium number
if c̄A > k−c̄B/k+, corresponding to net production of product,
W rxn > 0, while W rxn < 0 if c̄B > k+c̄A/k− and reverse events
B→ A predominate corresponding to net production of fuel.
These considerations allow one to identify the state of thermo-
dynamic equilibrium and choose concentrations c̄A and c̄B so
that system is in the linear regime close to it.

To satisfy microreversibility, a reciprocal contribution of
the external force back onto the reaction rate must be taken
into account. The necessity of including this contribution can
be seen by considering the evolution equations for the mean
position r and net number n of reactive events yielding product
in the linear regime close to equilibrium. Letting X = (r, n),
these equations are

d〈X〉
dt
= L · A, (5)

where A = (Amech, Arxn) is the vector of the generalized ther-
modynamic forces comprising the mechanical affinity, Amech

= β Fext, and the chemical affinity in the linear regime, Arxn

= W rxn/Drxn.22,26 The matrix L is given by

L =
(

D 1 χDrxn u
χDrxn u Drxn

)
, (6)

with L = LT to be consistent with Onsager’s reciprocal rela-
tions when the Janus particle has the instantaneous orientation
u, which is ruled by Eq. (4). Consequently, the chemical
stochastic equation must take the form

dn
dt
= Wrxn + β χDrxnu · Fext + Wfl(t) , (7)

where the second term on the right (β χDrxnu ·Fext) is the
reciprocal contribution due to the diffusiophoretic coupling.
The velocity and rate fluctuations are coupled Gaussian white
noises characterized by

〈Vfl(t)〉 = 0 , 〈Wfl(t)〉 = 0 , (8)

〈Vfl(t) ⊗ Vfl(t ′)〉 = 2D δ(t − t ′) 1 , (9)

〈Wfl(t) Wfl(t ′)〉 = 2Drxn δ(t − t ′) , (10)

〈Vfl(t) Wfl(t ′)〉 = 2χDrxn u δ(t − t ′) , (11)

where ⊗ denotes the tensorial product and 1 denotes the 3 × 3
identity matrix. In order to satisfy the second law of thermo-
dynamics, the diffusivities should satisfy D ≥ 0, Drxn ≥ 0, and
D ≥ χ2Drxn.

The control parameters are the mean reaction rate W rxn

determined by the solute concentrations, the external force
Fext, and the external torque Text. An important aspect is that
only the mean reaction rate and the external force can drive
the Janus particle into a nonequilibrium steady state. Indeed,
the external torque has here the sole effect of aligning the
Janus particle parallel to the external magnetic or gravitational
field33,34 but does not generate a gyration of the particle as
in Ref. 35. Accordingly, the probability distribution of the
particle orientation reaches equilibrium after the rotational
relaxation time τrot = 1/(2Drot) and no longer contributes to
the entropy production rate,36–38

1
kB

diS
dt
= β Fext · 〈ṙ〉 + Arxn 〈ṅ〉 ≥ 0 . (12)

The mechanochemical fluctuation theorem corresponding
to the entropy production (12) is given by

P(r, n; t)
P(−r,−n; t)

' exp (β Fext · r + Arxn n) (13)

for the joint probability density P(r, n; t) to find the motor at
the position r after n reactive events have occurred during the
time interval t. This latter should be longer than the rotational
relaxation time, as well as the characteristic time of solute
molecular diffusion.

The fluctuation theorem (13) can be deduced from the
Fokker-Planck equation for the time evolution of the proba-
bility density p(X, u; t) associated with the coupled Langevin
equations,

∂tp = −∂X ·
(L · A p − L · ∂Xp

)
+ L̂rotp ≡ L̂p , (14)

with the matrix L given by Eq. (6) and

L̂rotp =
Drot

sin θ

{
∂θ

[
sin θ (∂θp + βµB sin θ p)

]
+

1
sin θ

∂2
φp

}
,

(15)
if B = (0, 0, B) and u = (sin θ cos φ, sin θ sin φ, cos θ). The
fluctuation theorem can be proved by introducing the cumulant
generating function21,23,26

Q(λλλ) ≡ lim
t→∞
−

1
t

ln
〈
e−λλλ·X

〉
t

(16)

with the auxiliary parameters λλλ = (λλλr, λn) used to generate
the cumulants by successive derivations. The angular bracket
〈·〉t denotes an average over the probability density p(X, u; t).
This latter evolves in time according to p = eL̂tp0 from the
initial distribution p0. Accordingly, the average in Eq. (16)
can be transformed as〈
e−λλλ·X

〉
t
=

∫
dX du e−λλλ·X eL̂t p0 =

∫
dX du eL̂λλλ t e−λλλ·X p0

(17)
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by introducing the modified operator

L̂λλλ ≡ e−λλλ·XL̂ eλλλ·X

= −A · L · (∂X + λλλ) + (∂X + λλλ) · L · (∂X + λλλ) + L̂rot .

(18)

In the long-time limit, the expression (17) will decay at a rate
given by the leading eigenvalue of the modified operator that
is the solution of the following eigenvalue equation:21

L̂λλλΨ = −Q(λλλ)Ψ . (19)

The modified operator (18) has the symmetry

η−1 L̂λλλ η = L̂†A−λλλ (20)

expressed in terms of the Boltzmann factor

η = exp(βµB cos θ) , (21)

where the adjoint of the operator is defined with respect to
the scalar product 〈g|f 〉 ≡ ∫ dX du g∗f. The symmetry (20)
is established by noting that η−1 L̂rot η = L̂†rot and by using
∂†X = −∂X in the first two terms of Eq. (18).21,23,26 As a conse-
quence, the cumulant generating function obeys the symmetry
relation

Q(λλλ) = Q(A − λλλ) , (22)

which implies Eq. (13) for the marginal probability distribution
P(X; t) = ∫ du p(X, u; t) by using large-deviation theory.21,23,26

The theorem (13) extends previous relations35,39–41 by includ-
ing the chemical fluctuations, which are essential to obtain all
of the contributions to the entropy production and prove its
non-negativity (12) by Jensen’s inequality 〈exp x〉 ≥ exp〈x〉.
Figure 1 shows that the mechanochemical fluctuation theo-
rem is satisfied. The fluctuation theorem is also valid in the
nonlinear regime away from equilibrium for reactions more
complicated than those considered here.22,26

Suppose that the particle is subjected to an external force
in the z-direction Fext = (0, 0, F), as well as to the external
magnetic field B = (0, 0, B) so that the particle is oriented
on average in that direction: 〈uz〉 = coth(βµB) � 1/(βµB).
Often, only the position is observed while the rate is very large.
Since the probability distribution becomes Gaussian after a
long enough time by the central limit theorem, we recover the
effective fluctuation relation40 for the displacement along the
z-direction

P(z; t)
P(−z; t)

' exp

(
Feff z

kBTeff

)
, (23)

which is expressed in terms of an effective force
Feff = F + Fd〈uz〉 resulting from the external and diffusio-
phoretic forces, and the effective temperature Teff =T

[
1

+ (V2
d /D) ∫

∞
0 Czz(t)dt

]
, where Czz(t)≡ 〈[uz(0) � 〈uz〉][uz(t)

� 〈uz〉]〉 is the time-dependent correlation function of the ori-
entation along the z-direction. In the absence of an external
force and torque (F = 0 and B = 0), we also recover the known
result that diffusion is enhanced due to the self-phoretic effect,
the effective translational diffusion coefficient being given by
Deff = D + V2

d /(6Drot).9

FIG. 1. Janus particle subjected to an external force and magnetic field
oriented in the z-direction. (a) Probability density P(z∗, n∗; t∗) with n∗
= n

√
Drot/Drxn = 2, 1, 0,−1,−2 versus the rescaled displacement z∗

= z
√

Drot/D at the rescaled time t∗ = Drott = 1 for the parameter val-
ues p = βµB = 1, f = βF

√
D/Drot = −1, w =Wrxn/

√
DrxnDrot = 0.4, and

c= χ
√

Drxn/D= 0.4. (b) Verification of the mechanochemical fluctuation rela-
tion (13) in the same conditions. The probability ratio is calculated if P(z∗,
n∗; t∗) and P(�z∗, �n∗; t∗) are larger than 10�4. The dots are the results of a
numerical simulation with an ensemble of 107 trajectories and an integration
with the time step dt∗ = 10�3, using the method described in the Appendix.
The lines depict the theoretical expectations.

More generally, the effects of mechanochemical coupling
are described by Eq. (13). A key point is that the fluctuation
theorem (13) would not hold without the reciprocal term due
to the diffusiophoretic coupling χ in Eq. (7). A most impor-
tant consequence of this term is that the reaction rate depends
on the external force. In the presence of an external force and
torque, the Janus particle can move against the external force,
as shown in Fig. 2. The condition is that the force F takes a
value between the stall force Fstall = �Fd〈uz〉 and zero. For
other external force values, the motor will move in the same
direction as the applied force. Since the reaction rate depends
on the applied force, in the linear regime close to equilib-
rium, the rate can be reversed if an external force is exerted
in a direction opposite to self-propulsion and satisfies F < F0

= �W rxn/(β χDrxn〈uz〉) (Fig. 2). In this case, the rate of fuel
consumption becomes negative in Eq. (7), meaning that fuel
is synthesized from product. The thermodynamic efficiency
of synthesis ηc ≡ �Arxn〈ṅ〉/(βF〈ż〉)14 can reach the maximum
value η(max)

c = (1 −
√

1 − q2)/(1 +
√

1 − q2) = 0.25 q2 + O(q4)
with −1 ≤ q ≡ χ〈uz〉

√
D rxn/D ≤ +1. Therefore, the larger

the diffusiophoretic coupling coefficient χ, the larger the
efficiency is.

It should be possible to verify that the reaction rate of dif-
fusiophoretic motors depends on the force applied to a motor
oriented by a torque and also that a counter force of sufficient
magnitude could yield the conversion of product to fuel. In
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FIG. 2. Janus particle subjected to an external force and magnetic field ori-
ented in the z-direction. The mean values of the fluctuating rescaled velocities
ṙ∗ = ṙ/

√
DDrot and rate ṅ∗ = ṅ/

√
DrxnDrot versus the rescaled magnitude

of the external force f = βF
√

D/Drot for the parameter values p = βµB = 2,
w = Wrxn/

√
DrxnDrot = 0.8, and c = χ

√
Drxn/D = 0.8. The dots show the

results of a numerical simulation with a statistics of 105 trajectories integrated
over the time interval t∗ = 10, using the method described in the Appendix.
f stall denotes the rescaled stall force and f 0 denotes the threshold between
fuel synthesis and consumption. The Janus particle is propelled against the
external force in the interval I. Fuel synthesis happens in the interval II.

order to observe the conversion of product to fuel as a result
of an applied force by the mechanism described above, it is
important that the system remains in the linear regime where
the theory applies. The extent of the deviation from the equi-
librium state may be controlled by the values of c̄A and c̄B,
and these values should be chosen so that external force mag-
nitudes needed for fuel production do not take the system out
of the linear regime, otherwise additional nonlinear effects
come into play in Eq. (5). Finally, again given that the system
operates in the linear regime, we note that a corollary of this
result is that the action of diffusiophoretic micropumps42 can
also be reversed and fuel synthesized if a pressure of sufficient
magnitude is applied to a product solution flowing through a
microchannel or nanopore with part of its inner surface coated
by catalyst. The possibility to modify the reaction rate with
the external force is the reciprocal effect of self-propulsion
(or pumping) and constitutes a principal prediction of this
communication.

The previous results can be generalized to self-
electrophoretic or self-thermophoretic motors, as well as to
non-spherical shapes, where extra couplings are expected
between translation, rotation, and reaction.
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APPENDIX: NUMERICAL METHOD

The coupled noises (8)–(11) of the overdamped Langevin
Eqs. (3) and (7) can be simulated according to

Vfl(t) =
√

2D ξ1(t) u1 +
√

2D ξ2(t) u2

+
[√

Dλ+ ξ3(t) − ς
√

Dλ− ξ4(t)
]

u3, (A1)

Wfl(t) = ς
√

Drxnλ+ ξ3(t) +
√

Drxnλ− ξ4(t) , (A2)

in terms of the independent Gaussian white noises satisfying
〈ξ i(t)〉 = 0 and 〈ξ i(t) ξ j(t ′)〉 = δ(t � t ′) δij, the parameters
λ± = 1±

√
χ2Drxn/D and ς = χ/|χ|, and the unit vectors {u1,

u2, u3 = u} attached to the frame of the Janus particle. The
unit vector u3 = u is oriented along the particle axis pointing
from the inactive towards the catalytic hemisphere, while u1

and u2 are perpendicular to the axis.
Besides, the rotational motion is simulated by the

method of quaternions30,31 and the fluctuating torque Tfl(t)
=

√
2γrotkBT ξξξrot(t) is determined by three other independent

Gaussian noises such that 〈ξξξrot(t)〉 = 0 and 〈ξξξrot(t) ⊗ ξξξrot(t ′)〉
= δ(t − t ′).
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