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We describe the spatial and temporal organization of spiral and scroll waves in spherical shells of
different sizes and solid spheres. We present simulation results for the evolution of the dynamics
and clustering of spiral waves as a function of the excitability of the medium. The excitability,
topology, and size of the domain places restrictions on how single and multiarmed spiral waves are
organized in space. The results in spherical geometries are compared with those in planar two-
dimensional media. These studies are relevant to the dynamics of spiral waves in a variety of media
including the heart, and chemical reactions on spherical surfaces. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2346237�
eentrant activity in the form of spiral or scroll waves
lays a fundamental role in a wide range of physical,
hemical, and biological systems. In the case of heart tis-
ue, interaction, and self-organization of spiral waves
ay be of interest, particularly in three-dimensional ge-

metries. Following a brief survey of some general prop-
rties pertaining to motion of isolated singularities in
hree-dimensional geometries, we explore the self-
rganization of many singularities as a function of me-
ium properties and geometry. Our results indicate that
lthough there are some common features in the self-
rganization of singularities in two-dimensional and
hree-dimensional geometries, some important differ-
nces arise in weakly excitable media.

. INTRODUCTION

The existence of spiral or scroll waves has been well
ocumented for a wide range of physical, chemical, and bio-
ogical systems.1 Spiral waves in chemical systems have
een studied extensively2 in the Belousov-Zhabotinsky
eaction3,4 and surface catalytic oxidation reactions.5 In bio-
ogical systems they play a role in the cAMP waves in dic-
yostelium discoideum6 and Ca+2 waves in pancreatic �
ells,7 to cite just a few examples. They are also involved in
lectrical wave propagation in cardiac tissue.8–10 Spiral
aves can break up under certain conditions leading to ir-

egular spatio-temporal patterns that may be responsible for
ardiac fibrillation.11,12 In such circumstances it is convenient
o focus on counting the numbers and chiralities of spiral
aves that characterize the spatio-temporal pattern.13 Multi-

rmed spirals may also occur, and such patterns have been
bserved experimentally in the Belousov-Zhabotinsky
eaction,14 mounds of dictyostelium discoideum,15 and two-

16
imensional cardiac cultures.
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A variety of factors can influence the dynamics of spiral
waves. These include external fields17–20 and spatial
inhomogeneities.21–26 The excitability of the medium is also
an important factor in determining the nature and dynamics
of the spiral waves. In media with reduced excitability where
isolated spirals have a core, spiral interactions play a more
dominant role. For two-dimensional sheets with no-flux
boundary conditions, spiral interactions lead to induced mi-
gration of spiral waves with elimination of many spiral
waves through collisions with the boundaries of the medium,
or each other. On large sheets after long simulation times,27

or on smaller sheets,15 surviving spiral waves group together
forming self-organized states in the form of multiarmed spi-
rals. In finite circular domains, it has been shown that in
some cases the interaction of spirals with medium bound-
aries leads to drift of the spirals along the boundary,28 and if
the circular domain is small enough, the frequency of rota-
tion may increase substantially.29

It has long been recognized that geometry can influence
the nature and dynamics of spiral waves. For instance, car-
diac tissue is inhomogeneous and the heart is a thick excit-
able medium with a complex nonplanar geometry. These fea-
tures influence the dynamics of cardiac electrochemical
waves and must be incorporated in realistic heart
models.9,10,30–32 However, by examining model systems with
simple geometries, we can help clarify the ways in which
geometry interacts with dynamics. The spherical geometry is
one of the simplest contexts in which to investigate the ef-
fects of curvature and, more generally, geometry, on spiral
dynamics and both theory and simulation have been used to
explore spiral dynamics in such systems.21,33

This paper is organized as follows: In Sec. II we present
a brief survey of spiral wave dynamics on spherical surfaces

and point out some of its distinctive features in comparison

© 2006 American Institute of Physics5-1
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o the analogous behavior on planar media with given bound-
ry conditions. Boundary effects do not play a role on spheri-
al surfaces and this places restrictions on the nature and
umbers of spiral waves that can exist in the system. Section
II presents results for the dynamics of spiral waves on
pherical surfaces when the excitability of the medium var-
es. In this section we show that multiarmed spirals form on
he spherical surface as the excitability of the medium de-
reases and these clusters form and evolve in characteristic
ays that depend on the geometry. We compare these results
ith similar studies on planar geometries. Scroll wave fila-
ent dynamics in thick spherical shells and solid spheres is

riefly reviewed in Sec. IV where again the spherical geom-
try plays a role in determining the dynamics.

I. SPIRAL WAVES ON SPHERICAL SURFACES

In this section we review some aspects of the dynamics
f spiral waves on spherical surfaces or spherical shells of
xcitable media that are sufficiently thin so that the medium
s effectively two-dimensional. In comparison to spiral wave
ynamics on planar geometries, the consideration of spheri-
al geometries introduces new features since spiral waves
annot collide with boundaries, and the geometry places to-
ological restrictions on the numbers and chiralities of the
piral waves. In addition, the curvature of the surface leads to
piral wave motion that differs from that in planar media.

Excitable media are typically described in terms of
eaction-diffusion models with propagator-controller �or
ctivator-inhibitor� kinetics which take the general form,

�u�r,t�
�t

= Ru�u,v� + Du�
2u ,

�1�
�v�r,t�

�t
= Rv�u,v� + Dv�

2v .

ere u is the propagator with an N-shaped nullcline,

u�u ,v�=0, and v is the controller variable with a monotonic
ullcline, Rv�u ,v�=0. The diffusion coefficients of these spe-
ies are Du and Dv, respectively. A prototypical example of a
xcitable media is the FitzHugh-Nagumo �FHN� model,34–36

here

Ru�u,v� = − ku�u − a��u − 1� − lv ,

�2�
Rv�u,v� = �u − v�/� .

rovided �a−1 � �2�l /k there is a unique stable fixed point
t the origin. We shall use this FHN model to illustrate the
esults in this paper.

Rotating spiral waves in two dimensions can be charac-
erized by an index, and restrictions on the numbers and
ypes of spiral waves are provided by an index theorem. With
he exception of a finite number of singular points �located at
he “tips” of spiral waves�, each point in an orientable and
ompact two-dimensional differentiable manifold M is as-
igned a unique phase �.39 The resulting phase field is as-
umed to be continuously differentiable except at the singu-
ar points. Given any positively oriented closed curve C that
oes not pass through a singularity in a two-dimensional
wnloaded 28 Sep 2006 to 142.150.190.39. Redistribution subject to AIP
phase field, one can compute the index I of the curve �also
called the winding number, topological charge,40 or topologi-
cal defect� using the line integral

2�I = �
C

� � · dl . �3�

Phase singularities will lead to nonzero integer indices for
curves encircling the singularities. In our case, the two-
dimensional domain is a thin spherical shell of fixed radius,
and C is any curve on its surface.41 If more than one singu-
larity is located inside C, then I is the sum of the indices of
each of the singularities. If the curve C is small enough,
nonzero values of the integral indicate existence of a singu-
larity inside C, or in our case, existence of a spiral tip or
multiarmed spiral on the spherical surface. The sum of the
indices of all singular points is zero for oriented two-
dimensional surfaces.42 The implication of this result is that
the numbers and types of singularities are restricted. For ex-
ample, if all singularities have an index of ±1, then singu-
larities must occur in pairs of opposite sign on spherical
shells so that the sum of the indices is zero. The existence of
holes in the geometry does not affect this result provided the
domain is connected, and one determines the index of holes
by considering a closed curve C encompassing the hole.21

On a curved surface the reaction-diffusion equation takes
the form43

�u�x,t�
�t

= Ru�u,v� + Du
1
�g

�

�x��g���g
�

�x�	u ,

�4�
�v�x,t�

�t
= Rv�u,v� + Dv

1
�g

�

�x��g���g
�

�x�	v .

Here g�� is the metric tensor and g is its determinant. Ap-
proximate spiral wave solutions of this equation for homo-
geneous excitable media have been constructed using kine-
matic theory for weakly excitable media where the pitch of
the spiral wave is much larger than the length of the refrac-
tory zone following the excitation. In this circumstance the
spiral wave can be approximated as a space curve with
length � parameterized by the arc length s, with a free end at
s=0, and characterized by the local geodesic curvature ��s�.
In the case where the inhibitor is immobilized �Dv=0�, one
can make use of the eikonal relations connecting the normal
velocity vN of the front to the curvature and planar velocity
vp, vN=vp−Du� �Ref. 44� with the analogous equation for
the tangential front velocity at the free end of the space
curve, vTf =vTfp−� f��0�, leading to the equation of motion
for the local curvature47,48

�

�t
��s,t� = −

�2vN

�s2 − �2vN −
��

�s �
0

s

ds���s�,t�vN + vTf	
− 	vN, �5�

where 	=1/R2 is the Gaussian curvature of the sphere. So-
lutions of this equation for a steadily rotating spiral wave on
the surface of a sphere have been constructed.47–50 In this
case Eq. �5� admits two solutions which are symmetric and

antisymmetric with respect to the sphere equator. Only the
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ymmetric solution is allowed on the sphere surface in view
f the structure of Eq. �5� under the transformation s→ �−s.
igure 1 shows such a symmetric solution obtained in a
imulation of the FHN equation for low excitability. The
ower right panel of this figure shows that the spiral tips
xecute circular orbits on the sphere surface.

Kinematic theory also provides an expression for the ro-
ation frequency of the spiral,


 = 
p�1 +
vp	

2�2��c
3	 , �6�

here �c=vTfp /� f, 
p is the planar rotation frequency and
he numerical factor �=0.685. This formula predicts that a
piral wave rotates faster on the surface of a sphere than in a
lanar geometry.

If the excitable medium is inhomogeneous, for example,
s a result of the excitability being nonuniform on the sur-
ace of the sphere, the spiral waves can now drift on the
urface of the sphere.43 Kinematic theory has been used to
redict the existence of such a drift and the fact that the
irection of the drift due to gradients depends on the model
ystem and its parameters.48 In the kinematic description for
piral waves on curved surfaces, only surfaces with noncon-
tant Gaussian surfaces can lead to drift of spiral tips across
he surface.51 Experimental and theoretical studies show that
piral waves travel to the “top” of a paraboloid or prolate
llipsoid, and the rotation frequency of the spiral is higher on
uch surfaces than on the plane.43 The propagation of wave
ronts on periodically modulated curved surfaces can also be
redicted with the kinematic theory, and the numerical re-
ults agree well with experimental findings.52

IG. 1. �Color online� Symmetric spiral solution on a sphere. Top �a�, bot-
om �b�, and side �c� views of the sphere. Also shown in �d� is the time
volution of the spiral tip locations when �=5.
wnloaded 28 Sep 2006 to 142.150.190.39. Redistribution subject to AIP
Simulations on the FHN model with a linear gradient in
the excitability at an angle � to the polar axis illustrates the
dynamics of a pair of spirals with opposite chirality initially
located near the poles on the sphere.21 In the presence of a
gradient, the frequencies of the two spirals differ and the
spiral with the higher frequency controls the dynamics.53 As
a consequence, the low-frequency spiral core is pushed far-
ther from the high-frequency spiral core53,54 leading to the
creation of a source-sink pair.55 Maselko and Showalter56,57

observed such source-sink pairs in experiments on the excit-
able Belousov-Zhabotinsky reaction on spherical beads.
However, topological constraints imposed by the index theo-
rem, must nevertheless be satisfied by the source-sink pair.21

The inhomogeneous excitability also induces a drift of the
spiral cores.21,58 The dominating spiral drifts toward lower
excitability and its wave fronts continuously push the other
core in the opposite direction. After a long transient the
slaved spiral reverses its drift direction and both spirals drift
toward lower excitability until they form a stable bound pair.
The bound pair slowly moves along a �closed� equiexcitabil-
ity curve on the surface of the sphere. This example illus-
trates the complex dynamics that arise from the interplay
between inhomogeneity and spherical geometry.

III. EXCITABILITY AND THE DYNAMICS
OF SPIRAL WAVES

A. Dynamics on spherical shells

We now consider the dynamics of spiral waves on
spherical shells starting from random initial conditions. Our
primary focus will be on the nature and dynamics of the
spiral waves as a function of the excitability of the medium.
The excitability of the medium with FHN kinetics can be
tuned conveniently by varying the parameter �, as discussed
in the Appendix. Initial conditions of the form shown in Fig.
2 were employed in this investigation. The phase space tra-
jectory of an excitable system can be partitioned into excit-
able, refractory and resting �stable state� segments.

The initial conditions comprise randomly oriented seg-
ments of refractory domains adjacent to excited domains in a
background of the resting state as shown in the figure. All
simulations were carried out using algorithms described

59,60

FIG. 2. �Color online� Example of a random initial condition on a thin
spherical shell whose outer radius is R=60. The two panels show two dif-
ferent views of the sphere with 30 initial segments. Red �or black� regions
represent excited domains, blue �or light gray� refractory domains, and
green �or dark gray� regions are cells at rest.
elsewhere.
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An earlier study33 of excitable FHN kinetics on thin
pherical shells showed that, starting from random initial
onditions, the system evolved to a random distribution of
ssentially fixed spiral waves. There was a maximum spiral
ensity, and a minimum spherical shell size was required to
upport self-sustained spiral waves. Here we consider how
he dynamics changes with medium excitability by varying �.
or the rest of this paper, we will refer to a medium as
weakly excitable” if the dynamics of the spiral tip corre-
ponds to motion of waves in a weakly excitable medium
see, for example, Fig. 1 for �=5� while increasing � leads to
hanges in the wave dynamics that generally correspond to
n increase in the excitability of a medium. The terminology
s rather loose and is discussed more fully in the Appendix.

Figure 3 shows the time evolution of singularities on a
pherical shell with R=60 for various values of � �right-hand
anels of the figure�, together with snapshots of the spiral
aves on the sphere taken near the end of the corresponding

IG. 3. �Color� Snapshots of spiral waves on spherical shells with R=60 for
arious values of � �panels on left� and plots of the locations of the singu-
arities every 100 time steps during a time interval of length 5000 �panels on
ight�. Red circles represent locations of the singularities with I=−1, while
lue crosses are used for I= +1. �a� �=10 with a right view of the sphere
left panel� and singularity dynamics during 25 000� t�30 000. �b� �=8
ith a right view of the sphere and singularity dynamics for 25 000� t
30 000. �c� �=7 with a top view of the sphere and locations of singulari-

ies for 25 000� t�30 000. �d� �=6 with a top view of the sphere and
ocation of the singularities for 30 000� t�35 000.
ime interval �left-hand panels�. For comparison purposes, in

wnloaded 28 Sep 2006 to 142.150.190.39. Redistribution subject to AIP
a time interval of length 5000, an isolated singularity would
have rotated approximately 50 times for �=5, 100 times for
�=6, and more than 200 times for �
7.

For �=10, many singularities execute small movement
across the sphere surface initially �0� t�5000�, but most of
the singularities become fixed for later times. Only three out
of the thirty singularities exhibit small motion for 5000� t
�10 000, and in particular one singularity moves in a small
circular path until about t�25 000. The final state of the
system �top row of Fig. 3� is reached when t�25 000. The
figure shows the right view of the sphere �Fig. 3�a�, left
panel� at the end of the time interval 25 000� t�30 000,
together with the locations of the singularities found at every
100th time step during this interval �Fig. 3�a�, right panel�.
All singularities with I=−1 �red circles� and I= +1 �blue
crosses� are stationary during the entire time interval. No
clustering of singularities based on index, nor other forms of
self-organization were observed.

For �=8, the system had not reached a steady-state by
the time simulations were stopped at t�30 000, and singu-
larities in this transient regime executed extensive motion
across the sphere surface. This motion is captured in the
singularity plot for 25 000� t�30 000 �right panel of Fig.
3�b��. In this realization of the dynamics, the singularities
perform relatively small motions across the sphere for 0� t
�10 000, but after this time, singularities move extensively
on the sphere surface. The result of this motion is the sepa-
ration of singularities to opposite hemispheres based on their
index. This separation is shown in the second row, right
panel of the figure where all I=−1 �red circles� singularities
are located on the back of the sphere while I= +1 �blue
crosses� singularities are located on the front.

For �=7 �Fig. 3�c��, singularities exhibit large-scale mo-
tion across the sphere surface, even for 0� t�5000, and a
three-armed spiral, characterized by a cluster of three singu-
larities with the same index, forms during 10 000� t
�15 000. During 15 000� t�20 000 a second three-armed
spiral forms on the opposite hemisphere. Once this three-
armed spiral is formed it induces motion in the first cluster
until it becomes fixed once again during 25 000� t
�30 000. The final configuration is shown in the third row,
left panel of the figure where one of the three-armed spirals
that is located on the back right portion of the sphere is
clearly visible. Although not completely clear in the picture,
the waves on the left hand portion of this view correspond to
the waves coming from the second three-armed spiral that
resides on the front-left portion of the sphere. The fixed
circles in the right-hand panel of Fig. 3�c� represent the time-
evolution of the three-armed spirals for 25 000� t�30 000.
The red circles correspond to the motion of the three I= +1
singularities that make up this three-armed spiral, and the
blue circle corresponds to the three-armed spiral comprised
of I=−1 singularities on the back-right portion of the sphere.
The remaining singularities that appear in the graph corre-
spond to isolated singularities on the front-right of the
sphere, which are in close proximity to one another, but do
not arrange themselves into multiarmed structures.

For �=6 �Fig. 3�d��, simulations were carried out until

t�35 000. A snapshot at the final time of the spherical sur-
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ace �top view� is shown in the left panel. The two-armed
pirals visible in the center of this view correspond to the
lue cluster on the center-left portion of the singularity plot
n the right panel, which shows the time evolution for
0 000� t�35 000. Other two-armed spirals have formed,
ut the system is still in the transient regime, although sepa-
ation of singularities based on charge has occurred in this
ase as well. As the system evolved in time, a pair of two-
rmed clusters was visible during 5000� t�10 000, of
hich one was fixed on the sphere while the other exhibited

arge amplitude motion. Additional two-armed spirals were
bserved during 15 000� t�20 000. Three of them exhib-
ted little motion during 20 000� t�25 000, and five two-
rmed spirals were seen on the sphere during 25 000� t
30 000. These five two-armed spirals also exhibited little
ovement during the final time interval shown in the plot, as

ndicated by the five more concentrated regions in the corre-
ponding singularity plot �Fig. 3�d�, right panel�.

In view of the random initial conditions it is interesting
o examine the mean number of singularities �ns�t�
 versus
ime determined from an average over initial conditions.
lots of �ns�t�
, computed from an average over an ensemble
f several initial states, versus time for �=10 �top line�, �=6
center line�, and �=5 �bottom line� are shown in Fig. 4 for a
phere with R=60. For �=5, averages were computed using
4 initial states, while 7 initial states were used in each of the
ther cases. When �=10 there is no change in the number of
ingularities after a short transient, and all singularities are
ssociated with rotating single-armed spiral waves �recall top
ow, Fig. 3�. For �=6 there is a gradual loss of singularities
hrough annihilation events, and all systems were still in a
ransient state when simulations were stopped. Only isolated
otors and two-armed spirals were observed on the sphere for
his value of �. For �=5, all 14 initial conditions led to a pair
f four-armed spirals �eight singularities in total� for t
25 000, and in one case, the pair of four-armed spirals had

lready formed at t�7000.
In light of the finding that every random initial condition

onsidered �14 in total� led to the same final number of sin-
ularities for �=5, which we classified as four-armed spirals

IG. 4. Plots of the average number of singularities �ns�t�
 as a function of
ime for spherical shells with R=60 for various values of �. See text for
etails.
ased on a visual inspection of the dynamics of the singu-

wnloaded 28 Sep 2006 to 142.150.190.39. Redistribution subject to AIP
larities in the system during the final time interval, we per-
formed a more detailed simulation of the motion of the sin-
gularities for 25 000� t�25 200. The result is shown in the
Fig. 5�b�, where the red trajectory corresponds to the four-
armed spiral made up of singularities with I=−1 visible in
the left view of the sphere �left panel of 5�a��, while the blue
trajectory is the motion of the singularities with I= +1 mak-
ing up the four-armed spiral visible in the right view of the
sphere �right panel of 5�a��.

The singularity plot has been rotated in order to more
clearly show the meandering of the singularities. In general,
one of the four-armed spirals exhibits larger amplitude mo-
tion while the other remains more fixed on the sphere. The
large amplitude motion is only apparent over time intervals
of approximately 5000 time units. In all cases considered the
dynamics consisted of four-armed spirals that appeared to
execute complex dynamics.

Next, we consider how the average number of singulari-
ties as a function of time varies with the radius of the sphere.
Figure 6 plots �ns�t�
 as a function of time for R=120, R
=90, and R=60, for �=5. For R=60 �bottom curve�, all re-
alizations evolve to a dynamic state involving one pair of
four-armed spirals. For systems that appeared to have
reached a steady state in the R=90 case �center curve of the
figure�, some systems evolved to pairs of four-armed spirals,
while others led to three-armed spirals �see Fig. 7�. The dy-
namics of the three-armed spirals was similar to that of the
four-armed spirals in this medium in that the spirals lie on
opposite hemispheres and one spiral exhibits larger ampli-
tude motion than the other. In general, multiarmed spirals
typically consisted of three or four arms on spheres with R
=90, and the remaining singularities were isolated ones. For

FIG. 5. �Color� �a� Left and right views of a spherical shell with R=60 for
�=5, together with a plot of the location of the singularities for every time
step in the range 25 000� t�25 200 in �b�.
R=120 �top curve of Fig. 6�, most systems were still in the
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ransient regime when simulations were stopped at t
22 000, although the common trend consisting of a loss of

ingularities in time is evident in the figure.

. Comparison with two-dimensional planar media

We now compare the above results with studies of spiral
ave dynamics on planar two-dimensional surfaces with no-
ux boundary conditions. Such investigations have been car-
ied out by Vasiev et al.15 on small domains for the same
HN model, Eqs. �1� and �2�, as a function of k. Simulations
f weakly excitable media using a different model have been
arried out by Zaritski et al.27 on large domains. In weakly
xcitable media multiarmed spiral configurations, like those
iscussed above, have been observed. In large domains,
tarting from random initial conditions, the system typically
elf-organizes into a dilute distribution of multiarmed spirals.
he number of singularities decreases over time either as a

esult of collisions with the boundaries or by collisions in
hich pairs of oppositely rotating spirals collide and

nnihilate.27

We have carried out simulations on the reaction-
iffusion equation �1� with FHN kinetics �2� as a function of
on large �1498�2990 rectangular grids with �x=0.6� two-
imensional systems with no-flux boundary conditions to
ake comparisons of the planar and spherical shell systems

or the same model.61

For �=8, initially, recombination and annihilation of sin-
ularities occur, but this interaction is short-lived. The re-

IG. 6. A plot of �ns�t�
 for �=5 as a function of time for R=120 �solid
ircles�, R=90 �unfilled circles�, and R=60 �solid squares�.

IG. 7. �Color online� Front and back views of a sphere for �=5 with R

90 showing a pair of three-armed spirals at t�23 000.

wnloaded 28 Sep 2006 to 142.150.190.39. Redistribution subject to AIP
maining singularities survive for long times �see Fig. 8�a��.
For �=7 �Fig. 8�b��, spiral interactions lead to migration of
spirals across the medium, forming small clusters of singu-
larities. Once a cluster is formed, isolated singularities are
eventually forced towards the medium boundaries where
they are annihilated. For �=6 �Fig. 8�c��, singularities cluster
much earlier, and the annihilation of isolated singularities
with the boundaries also occurs more rapidly. For �=5, the
clustering is even faster still, and the removal of isolated
singularities occurs very quickly �see Fig. 8�d��.

In general, formation of multiarmed spirals is favored in

FIG. 8. Spiral configurations on 2D rectangular domains with no-flux
boundary conditions for �a� �=8 at time 7500, �b� �=7 at time 7500, �c� �
=6 at time 10 000, and �d� �=5 at time 7500. The formation of several
clusters of occurs in all cases except for �=8. For �=5, the pair of four-
armed spirals appears early �t�2500� in the simulation, and persists for the
duration of the simulation.
systems with lower excitability corresponding to smaller val-
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es of ��7. When multiarmed spirals form, isolated singu-
arities may still persist, primarily in regions between the
ultiarmed spirals. When � is sufficiently large, here �
8,

he initially surviving singularities tend to remain fixed in
pace and do not migrate. In these simulations we observed
ne-armed spirals for �=8, three-armed spirals for �=7, two-
rmed spirals for �=6, and four-armed spirals for �=5.

As noted above, the propensity to form multiarmed spi-
als is a feature of the reduced excitability of the medium.
owever, on spherical shells, the sum of the indices must be

qual to zero. A multiarmed spiral tends to be paired with
nother multiarmed spiral with the same number of arms,
hough the geometries of the two pairs of multiarmed spirals
re often not identical. Other spiral geometries could occur
ased solely on the topological constraints. Hypothetically
peaking, a four-armed spiral rotating in one direction could
e balanced by two two-armed spirals rotating in the oppo-
ite direction. Since there are no boundaries on the sphere,
he large number of singularities initially present are re-
oved by annihilation events involving collisions of oppo-

itely rotating spiral waves.

V. THICK SPHERICAL SHELLS AND SOLID SPHERES

For thick spherical shells, solid spheres or, indeed, any
hree-dimensional volume of an excitable medium, we must
onsider the dynamics of scroll waves. For scroll waves the
ip of a spiral wave is drawn out to form a vortex filament
hose dynamics must be determined. Scroll waves have
een observed in a number of different physical
ystems.8,62–64

The filament of the scroll wave is a space curve R�s�
arameterized by the arc length s, 0�s� � �t� with ��t� the
otal length of the filament. The tangent t̂�s�, normal n̂�s�,
nd binormal b̂�s� unit vectors to the curve are defined by

�s�=dR�s� /ds, n̂�s�=dt̂ /ds / �dt̂ /ds� and b̂�s�= t̂�s�� n̂�s�,
nd satisfy the Frenet-Serret equations,

dt̂

ds
= �n̂,

dn̂

ds
= − �t̂ + �b̂,

db̂

ds
= − �n̂ , �7�

here ��s�= �dt̂ /ds� is the curvature and ��s�= �db̂ /ds� is the
orsion.

We must account for the fact that the phase field may
wist around the filament; thus, we are led to consider the
ynamics of ribbon curves. The local phase of the spiral may

e defined as the angle between the unit vector V̂ and a local

eference direction. We may choose V̂= b̂ cos �+ n̂ sin �,

here � is the angle V̂ makes with the binormal.65 The edges
f the ribbon curve are then defined by X�s� and X�s�
�V̂�s�, where � is a small constant. The vector V̂ twists
long the filament and the local twist rate is w�s�
�V̂�

dV̂
ds

� · t̂=��s�+ d�
ds . The twist can be decomposed into

he twist of the filament that measures how the binormal
wists around the filament, and the ribbon twist, that mea-
ures how the ribbon twists around the binormal or Frenet

ibbon.

wnloaded 28 Sep 2006 to 142.150.190.39. Redistribution subject to AIP
Kinematic descriptions based on the Frenet equations
that account for growth or shrinkage of the filament have
been constructed.33,47,65,66 Keener66 derived the following
equation of motion for an untwisted filament in a plane:

d�

dt
= a�,

dR

dt
· b̂ = b�,

dR

dt
· n̂ = c� , �8�

where the coefficients a, b, and c can be determined from the
solution of the eigenvalue problem corresponding to the lin-
earized reaction-diffusion equation. The motion of the fila-
ment can be resolved into components corresponding to

shrinking, dR�t ,s� /dt · n̂, drifting, dR�t ,s� /dt · b̂, and a mean-
dering motion. When Du=Dv=D, c=D, and a=b=0, an ini-
tially planar filament will remain in the same plane at all
times and the normal velocity of the filament is proportional
to the diffusion coefficient. If the diffusion coefficients are
unequal, b is not zero, and a planar filament will not remain
planar unless the filament is initially exactly a circle. If a is
not zero an untwisted filament will develop twist unless it is
exactly circular initially.66 Some new features enter when
spherical shells are considered since the curvature � depends
on the Gaussian curvature 	 of the spherical shell in this case
�recall �5��. Furthermore, a recent generalization of �8� �Ref.
67� extended these ideas to incorporate a dependence of the
filament motion itself on the twist of the filament, allowing
the study of twist-induced instabilities of the filament.

For FHN kinetics with equal diffusion coefficients, the
motion of scroll wave filaments in solid spheres has been
investigated.33 Depending on the parameter values, the fila-
ment may form an arc of a circle that shrinks in time, or the
filament may meander. When amplitude of meander is small,
the filament rapidly adopts the shape of an arc circle with
radius ��t� and shrinks until it disappears. The relevant ge-
ometry is shown in Fig. 9. Solving Eq. �8� for this leads to

��t� = R�e2c�tf−t�/R2
− 1�1/2, �9�

where tf is the lifetime of the filament. This result agrees
well with simulations of the shrinkage of the filament.33

If the parameters of the FHN model change it is possible

FIG. 9. A scroll wave filament in a solid sphere of excitable medium with
radius R in the form of an arc of a circle with radius �. This geometry was
used to obtain the solution to Eq. �8� given in Eq. �9�.
to enter a regime in which the vortex filament has negative
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ension and grows to fill the spherical volume instead of
hrinking.33 This leads to a type of vortex filament turbu-
ence. Such filament turbulence has been studied in 3D cubic
r rectangular geometries68–70 and in 3D heart models.71–73

n addition to parameter changes, changes in the thickness of
he medium can also affect the dynamics of scroll waves in
ubic geometries.74 The full details of the filament dynamics
n spherical geometries however, remains to be investigated.

. CONCLUSIONS

Geometry plays an important role in determining the na-
ure of spiral pattern formation in excitable media. Most ex-
itable media in nature, except in specifically designed labo-
atory experiments, are not simply planar, but have complex
eometries and are inhomogeneous. In order to describe the
ynamics of spiral waves in these systems, models must in-
orporate all of these features. For example, in simulations of
ardiac wave propagation that involve realistic heart geom-
tries, the inhomogeneous nature of cardiac tissue and real-
stic models for cardiac action potentials are now often taken
nto account.9

Studies of spiral wave dynamics on spherical geometries
llow one to focus on certain generic aspects of wave propa-
ation on nonplanar surfaces. Two of the most important
uch aspects are the effects of curvature and the role of
oundary conditions on the wave dynamics. Curvature leads
o modifications of the wave characteristics and dynamics,
ncluding a change in the rotation period of spirals and dis-
inctive dynamics of spirals and vortex filaments. If inhomo-
eneities in the excitability of the medium are incorporated
n the spherical geometry, then new classes of spiral wave
atterns are seen, such as source-sink pairs of spirals that are
eminiscent of antispirals but have a completely different ori-
in. If the spherical shell is punctured with holes then certain
ross features of spiral wave re-entry can be investigated in a
imple context. These studies allow one to abstract important
eatures of the pattern formation process that are seen in
ystems like cardiac tissue which has holes and obstacles due
o the presence of valves and veins.

Our simulations on spiral wave dynamics on spherical
urfaces as a function of the excitability of the medium re-
ealed a number of interesting features. Spiral tip motion in
eakly excitable media often results in waves rotating about
circle of finite radius, and the weaker the excitability, the

reater the travel distance of isolated singularities in the me-
ium. This is one of the important distinctions between
eakly and highly excitable media. In particular, the effect
f the greater travel distance of singularities is to enhance
piral interactions, increasing possible annihilation events
nd formation of multiarmed spirals if the medium allows it.
he additional tendency of waves to lengthen in weakly ex-
itable media until the entire sphere is occupied �recall Fig.
�, leads to a separation of singularities of opposite chirality
o opposite hemispheres. The medium excitability controls
he extent of each of these factors, which in turn affects the
elf-organization of the singularities on the sphere.

Through variation of � in our model we were able to
dentify and quantify some of the distinctive features that a

eakly excitable medium may exhibit compared to a more

wnloaded 28 Sep 2006 to 142.150.190.39. Redistribution subject to AIP
highly excitable one. Our simulations showed that for stron-
ger excitability corresponding to larger values of � ��
10�,
singularities are essentially fixed in space, while for smaller
values of �, singularities of the same chirality collect on the
same hemisphere. This is true regardless of sphere size, and
regardless of the value for �. The type of clusters formed,
and the cluster dynamics depend on the value of �, but an
increase in sphere radius does not lead to significant changes.

For ��7 the interactions among spiral waves on the
sphere are similar to those seen in planar media.15,27 Cluster-
ing of singularities leads to formation of multiarmed spirals,
some of which rotate stably about fixed cores ��=6, �=7�,
while others exhibit motion across the spherical surface
��=5�. In this last case, we observe long-lived multiarmed
spirals with either three or four arms, in which the singular
points associated with one chirality form a more localized
cluster than those associated with the other chirality. For
weakly excitable media, the lack of boundaries in spherical
shell geometries leads to a balance between the observed
tendency of singularities to separate to opposite hemispheres
based on their index, and the tendency of singularities to be
expelled from multiarmed spirals formed from singularities
with the same index. Such a balance is impossible to obtain
in two-dimensional planar geometries, since expelled arms
of multiarmed spirals would be lost by collision with the
boundaries. The resulting state leads to a very dynamic,
yet long-lasting state comprised of four-armed spirals
��=5, R=60�.

These results may have implications for drug treatment
for cardiac arrhythmias. Arrhythmic drugs act by changing
permeability of ionic channels and in this fashion lead to
changes in the excitability of cardiac tissue,75 corresponding
in the simplified model to changes in the value of �. There is
a complicated interaction between the value of � and the
geometry of the medium in governing the evolution of spi-
rals and the possible formation of multiarmed spirals. Con-
sequently, it seems reasonable to hypothesize that some an-
tiarrhythmic agents may lead to the formation of multiarmed
spirals similar to those observed in some of our simulations.
Indeed two-armed spirals have been observed in tissue cul-
ture studies of dynamics of cardiac cells.16

The theoretical studies of spiral wave dynamics on
spherical geometries makes clear that the rich interactions
between the geometry of the medium and the excitability of
the medium can lead to unexpected self-organization and
temporal evolution of spiral waves. Investigation of dynam-
ics in domains of other topologies, such as tori, would be of
theoretical interest. Further, these studies underscore the ob-
servation that theoretical assessment of the efficacy of drugs
used to treat cardiac arrhythmias based on overly simplified
analyses, may not be capable of predicting drug effects in the
geometrically complex spatially heterogeneous human heart.
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PPENDIX: EXCITABILITY PARAMETER

The ability of an excitable medium to accommodate spi-
al waves depends on the medium properties. As the excit-
bility increases, there is a transition from no waves to re-
racting waves, to rigidly rotating waves, and finally to
eandering spirals.37 If the excitability of the medium is

elow a minimum value, then waves will retract, while
bove it, waves lead to re-entry. This minimum excitability
an be characterized37,76,77 by �min,

�min = �Rv�u+,v*�
Ba0

2 	1/3

D1/3. �A1�

ere D is the diffusion constant, B�0.535 is a numerical
onstant determined from a kinematic description for waves
n weakly excitable media for which a critical finger �a wave
hat neither retracts nor leads to re-entry� exists, and Rv is
iven in Eq. �2�. The value for v at which a traveling wave of
he system vanishes is denoted by v*, and points of intersec-
ion of v=v* with the nullcline for u are denoted by u−, u0,
nd u+ where u−�u0�u+. Since the excitability of the me-
ium for our model is given by �=v*−veq=v*, where veq

0 is the equilibrium value for v, we can compare � with

min to predict retracting waves if ���min, or re-entrant
aves if ���min. To determine �min we need to compute

he parameter a0 that enters in the expression for the wave
peed c�v�, c�v�=a0�v*−v�. For the FHN model v*, u+, and

0 depend on k, l, and a, but are unaffected by changes in �.
owever, Rv is inversely proportional to �, so an increase in
leads to a decrease in �min �see �A1��. Thus, by varying �

or fixed values of the other parameters, we can simulate
aves that retract ����min�, as well as rigid rotors ��
�min�.

The parameter a0 can be determined as follows. Follow-
ng Tyson and Fife,78 in seeking plane wave solutions of the
eaction-diffusion equation, v is treated as a parameter be-
ause it varies slowly. We let u=u�x−ct�, where c is the
ave speed. Substitution in the reaction-diffusion equation
ields the ODE, Duu��z�+cu��z�+Ru�u�z� ,v�=0, for which
he wave speed c vanishes if and only if



u−

u+

Ru�u,v*�du = 0. �A2�

his equation can be solved to determine v*.
Next, a piecewise linear approximation to Ru�u ,v*�, is

ade by using the slopes of the curve Ru�u ,v�=0 at the
oints of intersection of v=v* and the curve. Using implicit
ifferentiation, the slope can be found using m=−

�Ru

�u � �Ru

�v .
aking m− to be the slope of Ru=0 at �u− ,v*�, m0 the slope at
u0 ,v*�, and m+ the slope at �u+ ,v*� leads to the piecewise
traight line approximation for Ru�u ,v� in the form

L1:m−�u − u−� − �v − v*� for u � uA,

L2:m0�u − u0� − �v − v*� for uA � u � uB, �A3�

L3:m+�u − u+� − �v − v*� for u 
 uB,

here uA and uB are the values of u at the points of intersec-
ion of L with L and L with L , respectively.
1 2 2 3
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Substitution into the ODE, and use of the boundary con-
ditions

lim
z→−�

u�z� = u− + �v − v*�/m−, �A4�

lim
z→0−

u�z� = uA = lim
z→0+

u�z� , �A5�

lim
z→0−

u��z� = lim
z→0+

u��z� , �A6�

lim
z→z1

−
u�z� = uB = lim

z→z1
+
u�z� , �A7�

lim
z→z1

−
u��z� = lim

z→z1
+
u��z� , �A8�

lim
z→�

u�z� = u+ + �v − v*�/m+, �A9�

leads to equations for z1 and c in terms of v. Solving these
numerically for each choice of parameters, allows the deter-
mination of the slope that best fits c�v�=a0�v−v*�. For k
=4.86, l=1.5, a=0.05, and Du=1 a least squares fit of a
straight line to ten numerically obtained values for c�v� with
v in the range of −0.1 to 0.5 gives a0�3.3.
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