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A quantum-classical limit of the canonical equilibrium time correlation function for a quantum
system is derived. The quantum-classical limit for the dynamics is obtained for quantum systems
comprising a subsystem of light particles in a bath of heavy quantum particles. In this limit the time
evolution of operators is determined by a quantum-classical Liouville operator, but the full
equilibrium canonical statistical description of the initial condition is retained. The
quantum-classical correlation function expressions derived here provide a way to simulate the
transport properties of quantum systems using quantum-classical surface-hopping dynamics
combined with sampling schemes for the quantum equilibrium structure of both the subsystem of
interest and its environment. @004 American Institute of Physic§DOI: 10.1063/1.1797191

I. INTRODUCTION inability to simulate the quantum mechanical evolution equa-
) ) .. tions for systems with a large number of degrees of freedom.
~ The dynamical properties of systems close to equilibyyije approximate schemes have been devised to treat quan-
rium may be described in terms of equilibrium time correla-tum many-body dynamics, for example, quantum mode cou-
tion functions of dynamical variables or operators. FOr a,jing methods have proved useful in the calculation of col-
guantum system with Hamiltoniad at temperaturd with lective modes for some applicatiohswe are primarily
volumeV, linear response theqry shoyvs that the time correxzoncerned with methods that approximate the full many-
lation function of two operator# and B, needed to obtain body evolution of the microscopic degrees of freedom. In
transport properties, has the Kubo transformed fbfm, many circumstances only a few degrees of freedom need to
be treated quantum mechanicalguantum subsystemvhile
1 (s . X the remainder of the system with which they interact can be
Cas(t;B)= —f dATrA(t)eMBTe Mp, treated classicallyclassical bathto a good approximation.
B Jo Examples where such a description is appropriate include
proton and electron transfer processes occurring in solvents
:l Jﬁd)\iTréTe(i/h)tfl:iAef (ilh) tzl:l, 1) or other chemigal environments composed.of heavy atoms.
Blo  Zg Quantum-classical methods have been reviewed by Egorov,
Rabani, and Berffeand one form of a quantum-classical ap-
proximation has been assessed in the weak coupling limit
- ) L8R ] where there is no feedback between the quantum and classi-
equilibrium density operatoZq="Tre ”" is the canonical .| 5psystems. Although it is difficult to determine transport
partition function, and, in the second I'rﬁ’:t—'ﬁ(ﬂ_)‘) properties such as the reaction rate constant from the full
andt,=t—i#\. The evolution of the operatdk(t) is given  quantum time correlation function when the entire system is
by the solution of the Heisenberg equation of motion,yreated quantum mechanically, methods are being developed
dA(t)/dt= i/ [H,A(t)], where the square brackets denoteto carry out such calculatiofsMixed quantum-classical
the commutator. methods also provide a route to carry out nonadiabatic rate
While such correlation functions provide information on calculations.
the transport properties of the system, their direct computa- A number of schemes have been proposed for carrying
tion for condensed phase systems is not feasible due to o@ut quantum dynamics in classical environménts.We fo-
cus on approaches where the evolution is described by a

whereg=(kgT) !, pe=Zg'e P is the quantum canonical

“Electronic mail: asergi@chem.utoronto.ca quantum-classical Liouville equatidfi** For a quantum
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derive an evolution equation for dynamical variables or op-system&*°and compute transport properties such as chemi-
erators(or the density matrixby an expansion in a small cal rate constants from the correlation functions obtained
parameter that characterizes the mass ratio of the light anfdom this analysis.

heavy particles in the system. The quantum-classical analog In this paper we consider another route to determine

of the Heisenberg equation of motiorfs guantum-classical correlation functions for transport proper-
g . ties. We begin with the full quantum mechanical expression
5 e 4 N A for the time correlation functiohEqg. (1)] and take the limit
— =_ _1
gt AW D= ZHw A= 2 [{Hw Aw(D} where the dynamics is determined by quantum-classical evo-

. . lution equations for the spectral density that enters the cor-
—{Aw(t),Hw}] relation function expression. While the calculations leading
o to our expression for the correlation function are somewhat

=i LAW(X1). (2 . . )
lengthy, the final result has a simple structure:

Here Ay(X,t) is the partial Wigner representatfdrf? of a - t
quantum operator; it is still an operator in the Hilbert space  Cas(t:8)= > f dXdXoBy, | X1, 5

of the quantum subsystem but a function of the phase space B1B182B>

coordinatesX=(R,P) of the classical bath. In this equation , t\_ .,

{-+--+-}is the Poisson bracket aitlis the quantum-classical XAgfﬂz(Xz,— E) WFELPLP2P2(X 1, X5 B).
Liouville operator. A few features of quantum-classical Liou-

ville dynamics are worth noting. This equation of motion 4

includes feedback between the classical and quantum derhis expression for the time correlation function retains the
grees of freedom. The environmental dynamics is fully clasfull quantum statistical character of the initial condition

sical only in the absence of coupling to the quantum SUbthrough the spectral density functiod [Eq. (40) below] but

system. In the presence of coupling the environmentajhe forward and backward time evolution of the operators
evolution cannot be described by Newtonian dynamics, al- ;4 s

though the simulation of the quantum-classical evolution calPw andA?”, respectively, are given by the solutions of
be formulated in terms of classical trajectory segméhgor  the quantum-classical evolution equati@). Consequently,
harmonic environmental potentials with bilinear coupling to®n€ may combine algorithms for determining quantum equi-
the quantum subsystem the evolution is equivalent to thébrium properties with surface-hopping algorithms  for
fully quantum mechanical evolution of the entire system.quantum-classical evolution to estimate the value of the cor-
Quantum-classical simulations of the spin-boson model aréelation function. Quantum effects enter in all orders in this
in accord with the numerically exact quantum resdlend expression for the correlation function. In addition to the fact
have been used to test quantum-classical simulatiothat the initial value of the spectral density contains the full
algorithms?+%° guantum equilibrium statistics, since the quantum-classical
Equation(2) is valid in any basis and an especially con- Liouville operator appears in the exponent in the propagator,
venient basis for simulating the evolution by surface-hoppingh€ quantum-classical propagator contains all orders,of
schemes is the adiabatic basfsy;;R)}, the set of eigen- albeit in an approximate fashion.
states of the quantum subsystem Hamiltonian in the presence The outline of the paper is as follows: In Sec. Il we
of fixed classical particles. In this case the matrix elements ofonstruct the partial Wigner representation of the quantum
aja) i ) . time correlation function and obtain expressions for the spec-
an operatom,, (X.t)=(ar;RIAW(X,)]a1;R) satisfy tral density and its matrix elements in an adiabatic basis. In
d , , Sec. Ill we derive a quantum-classical evolution equation for
a1 . H . .
aAwl (X, t)=i 2 EalaiﬁlﬁiAﬁ/lBl(x't)’ (3) the mapnx elements of the ;pectrgl dgnsny anq establish a
BB, connection to quantum-classical Liouville evolution. The re-
sults of these two sections are used in Sec. IV to obtain Eq.
whereL, .14 5, denotes the representation of the quantum-<(4). In Sec. V we analyze the initial value of the spectral
classical Liouville operator in the adiabatic baSisThis  density in the high temperature limit. The conclusions of the
equation may be solved using surface-hopping schemes thatudy are given in Sec. VI while additional details of the
combine a probabilistic description of the quantum transi<calculations are presented in the Appendixes.
tions interspersed with classical evolution trajectory
segment$?~28 Although further algorithm development is

needed to carry the simulations to arbitrarily long times, theII PARTIAL WIGNER REPRESENTATION

quantum-classical evolution is not a short time approximapg QUANTUM CORRELATION FUNCTION
tion to full quantum evolution. Rather, it is an approximation

to the full quantum evolution for arbitrary times since the We consider quantum systems whose degrees of freedom
guantum-classical evolution is derived at the level of thecan be partitioned into two subsets corresponding to light
Liouville operator and not the quantum propagator. Given(massm) and heavy(massM) particles, respectively. We
the evolution equatioi2) (and the corresponding quantum- use small and capital letters to denote operators for phase
classical Liouville equation for the density majriane may  points in the light and heavy mass subsystems, respectively.
construct a statistical mechanics of quantum-classicaln this notation the Hamiltonian operator for the entire sys-
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tem is the sum of the kinetic energy operators or the twadn the Hilbert space of the quantum subsystem. It is conve-

subsystems and the potential energy of the entire sydtem, nient to consider a representation of such operators in basis

= p2I2M + p2m+V(§,0). o_f eigenfunction;. In this paper we use an adiabatic ba_sis
We are interested in the limit where the dynamics of theSince, through this representation, we can make connection

heavy particle subsystem is treated classically and the lightith ~ surface-hopping — dynamics. The partial Wigner

particle subsystem retains its full quantum character. To thi§ansform of the HamiltoniarH is Hy,=P?/2M + p?/2m

end it is convenient to take a partial Wigner transform of the+ Vy(8,R)=P%/2M + hy(R). The last equality defines the

heavy degrees of freedom and represent the light degrees pfamiltonianhy(R) for the light mass subsystem in the pres-
freedom in some suitable basis. o ence of fixed particles of the heavy mass subsystem. The
In order to carry out this program we begin with the adiabatic basis is determined from the solutions of the eigen-

quantum mechanical Kubo transformed correlation function,5 e problem,hy(R)|a;R)=E,(R)|«:R). The adiabatic
and write the trace over the heavy subsystem degrees of fre “

dom in the second line of Ed1) using a{Q} coordinate
representation,

Fepresentation ohy(X,) is

Aw(X)= 2 |aziR)AL2(Xo) (a3 iRy, )
azaz

4
1 (8 1 , -
CAB(t;B):EfO d)\Z—QTr fll;[l dQi(Q1/B'Qy)
L ) whereAy2“2(X,) = (a2 Ryl Aw(X,)| 5 i Ry).
X(Q,|e 1 Q4)(Q3lA|Qy) By inserting Eq.(9) into Eq. (8) we can express the
coordinate representation of the operatoas

X(Qyle” M LM|Qy). 5)
The prime in Tt refers to the fact that the trace is now onlyg R,— Z2 AR, + é>
over the light particle subsystem degrees of freedom. Makin 2
use of the change of variable,=R;—2/2, Q,=R; 1 .
+27412, Q3=R,—Z,/2, and Q,=R,+Z,/2, this equation =5 2 fdpze—(i/h) P222|a2;R2>A\C;V2a2(X2)
may be written in the equivalent form (27h) ayal
X{ay;Ryl. (10)

1 (8 1
Cas(t;8)= B fo d)\Z_
Q Then, substituting the result into E@) (along with a similar

2 . &t .
Zi| A 4 representation of thB' operato), we obtain

xTr’f I1 dRidZi<Rl—7l BT R, + 71>

- 1 (s 2 taal

Cas(t:B)== | dx X [T dxBy*“1(Xy)

21| im) i Z; BlJo ; e W
X( R+ —|elMuH R, — = ag,ap,az,a,

2 2

Z|.| 2z X AR 2(Xg) WAL1922( Xy Xy, BN
X<R2—? A R2+? (11)

Z . - Z Here we defined the matrix elements of the spectral densit
X < R2+ ?2 e_ (I/h) tZH Rl_ ?1> . (6) by p y

The next step in the calculation is to replace the Coordi”atW“i“1“§“2(xl,Xz,t;ﬁ,x)
space matrix elements of the operators with their representa-

tion in terms of Wigner transformed quantities. The partial 1 2 :
Wigner transform o? an operator is decl{‘inedzfﬁf1L P = Zf Il:[l dzie” WPzt PaZd( Ry |
Aw(Rsz):f dzze(”mpzzz< Ro— = A|R,+ é> 21| im e Z; . '
2 2 X<R1+? et Rz—?>|a2,R2)<a2,R2|
(7
while the inverse transform is ><<R n 22 e (IMGLH R é> lagiRy) 1
2 15 LY Q)2
Z,| . Z,
<R2—? AR+ ?> (12)
1 ' A Ouc ta,sk is now to find an evolution equation for
:Wf dPye” (MMP222A(R,,Py). (8)  weirea(X, X,.t:;8,\) in the mixed quantum-classical

limit. Before doing this we observe that the expression for
Here vy is the dimension of the heavy mass subsystem. Théne quantum correlation function in the partial Wigner repre-
partially Wigner transformed operaté,y(X,) is a function — sentation is equivalent to an expression involving full
of the phase space coordinads=(R,,P,) and an operator Wigner transforms of the operators.
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A. Relation to full Wigner representation Using the definition of the matrix elements f in Eq. (12)
and performing the sums on states we may write this equa-

Since the correlation function is independent of the rep-" ! ”
ion in the equivalent form

resentation we choose for the light and heavy mass suth

systems; we may also represent the light mass subsystem Wi(x, ,x,,X;,X,,t; 8,\)

terms of a Wigner transform instead of a set of basis func- )

tions. To establish the connection between these two forms 1 f H dzdze™ (0Piz1+pazo) g (I)(P1Z1+PoZy)
i=1

of the correlation function we note that the full Wigner trans- B Zg
form of the operatoA is given by

Zl Zl . * ) Zz ZZ
X<“+E<Rl+7 e Ry 7> 2= E>
_ i) poz 2|4 )
Aw(X2,X)= | dzpe!"™ Pz ry— I A(Xp)|ro+ ),
2 2 w1yt 2 RvLée‘(”ﬁ”Z'z'R—é o
202\ 2 o2/t 2
i Z aal 1
=> J'dzze('m)pZZZQSa (rz__;R2>AW2 2(X2) X— 1
a2 AT 2 (2wh)?" 17
. Z where v=v,+v,. Equation(17) gives the spectral density
X ¢aé ra+ §;R2>, (13 in the full Wigner representation while E¢L6) relates this

guantity to its matrix elements in the light mass subsystem
basis. In particular, lettin§V be a(supej matrix whose el-

wherex,=(r», and ¢, (r,;Ry)=(r 'R,). We have " ! .
2=(2,P2) Paylr2iR2) =(rala2;Ry) ements araV®141%292 Eq. (16) may be written formally as

used Eq.(9) to write the second line of this equation. The
inverse of this expression is W=TW, (18

whereT is the transformation specified by E{.6).
. 22 dlras 2 For future use, we note that the inverse of this expres-
2 2 202 sion is given by

Xe (i74) pzzzAW( X2 1X2) Waialaéaz(xl !XZ vtu ﬂl )\)

' 1
a2a2 - -
AW (XZ) (zwh)V(J'dpzd

4

X ¢22( =5 ;Rz) bay

z 2
r2+ Ezng) 1l = j H dxidzie(i/ﬁ)(p121+p222)¢al( rl_ %'Rl)
=1

(14
* Z; Z
X\t E;Rl) ¢a2( ra— E;Rz)
where v, is the dimension of the light mass subsystem. In- !
. . . azaé _ Z
serting this expression fak,; ?(X;) [and the analogous ex v ‘15: [+ ?2;Rz)W(Xl,Xz,Xl,Xz,t;,B,)\), (19
2

pression foan‘lai(Xl)] into Eq. (11) we find
as can be verified by substituting Ed.7) into Eqg. (19) and
1 (8 2 performing the integrals. Like Eq16), Eqg. (19) gives a
Cas(t,B)= Ef d\ H dXidXiB\R/(Xl,Xl) relation betweeWW and its m,atrbf elements but now in the
0 =1 opposite direction, relating/*141*2%2 to W. Using a formal
X A(Xa,Xo)W(Xq,X1,%X2,X5:t,8,\), (15)  hotation like that in Eq(18), we can write Eq(19) as

W=7 low, (20)

where which definesZ 1, the inverse of7.

W(Xq,X5,X1,X5,t;8,\)

2 R (P121+ pzy) Ill. QUANTUM-CLASSICAL EVOLUTION EQUATION
= > JH dze PrzLt P22 FOR SPECTRAL DENSITY
a’a a’a i=1
1941%2%2
The quantum-classical evolution equation for matrix el-

z z P

X g\ r1+ %;Rl) q&’;l( r{— 51; Rl) ements of the spectral densiy*1%1*2%2(X,,X,,t; 8,\) can

1

be obtained using various routes. In this paper we first derive

Z z, a quantum-classical evolution equation for the spectral den-
ra+ §;R2>¢’;Z<r2— §;Rz) sity W(xq,X5,X1,X5,t;8,\) in the full Wigner representa-

tion. We then change to an adiabatic basis representation of

the quantum subsystem to obtain our final result for the evo-

lution equation for\N“i“Wé“Z(Xl,Xz,t;ﬂ,k)-

X,

’ ’ 1
XWalalagaz(xl,Xz,t;IB,)\)m. (16)
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A. Evolution of W in the full Wigner representation In the following, we denote scaled quantities with a
The evolution equation fow(x4,X,,Xq,X5,t;8,\) can prime; e.9.r"=r/\m, R’=R/)\_m, P’ =p/pm, P,.:P/PM’ .
a (X0, X5, X1, X5,t: 8,1 t’ =t/ty, etc. The scaled version of the equation of motion

be obtained by differentiating its definition in EGL7) with ) "
respect to time and then inserting complete sets of coordinalfé’r W has the same form as Equ). but with all quantities
replaced by their primed dimensionless counterparts. The

states to obtain a closed equationvih The result was ob- . S .
tained earlier by Filinowet al3 and, for our composite sys- scaled operators and functions in this equation are
tem, is given by

J «1 (0)r ’ ’ ’ Jd ’ 4
EW(X]JXZ’X]_!XZ!I:B,)\) II‘I (XI 5XI):pI [?_qlf +ILLPI (7_R|, . (24)
1 (0) i1 (0)
Z_E[ILl (Xq,X1) —iL37(X2,X2)]
and
XW(XJ_!XZYXl!XZYt;BI)\)
1 2
+ = dd r,S,R,S 5(s5) I ’ ’ ’ 2 “NAVZ, = ’ N
zfﬂl SAS[1(r1,51,R1,51) () A(S,) wl(1] R s 'S):?fdmm(ri_ri RI—uR)
_wz(rZ!SZ!R2152)5(Sl)5(sl)] XS",KZS/TV_’_ZSII':'{!) (25)
11 1 17"

XW(xy— 71, X3 =1y, Xo = 2, Xo—1I5,t; B,N). (21

Here we have introduced the notatien=(0,s;) and II;

. . JoA In writing the last line of thew equation we have performed
=(0,S). The classical free streaming Liouville operators are . - s .
the change of variableR;= ™ "R, in the dummy variable

b d P, d in the integration in order to move the dependence from

iLO(X; X)) = = =+ — — (22)  the sine factor to the potential, which is more convenient for
mag; - M IR taking the classical limit. We see that the classical free

streaming evolution is linear ip but the quantum kernel has

for (i=1,2). Thew; functions under the integral are defined all powers ofu.

by
2 _ . _
wi(ri !Ri ,Si ,Si)= Wf dr_idRiV(ri—ri 'Ri_Ri)
. C. Quantum-classical equation for W
xsin %S‘r‘JrﬁS‘R‘)' (23 For u<1 the quantum-classical limit is obtained ex-

panding the evolution operator up to linear termsirSince
. ] momentum is related to the de Broglie wavelength of a par-
B. Scaled equation of motion ticle, this procedure is equivalent to averaging out the short
In order to take the quantum-classical limit of Eg1), de Broglie oscillations of the heavy particles on the scale of
we consider systems for which the ratio between the lighthe long de Broglie oscillations of the light particles.
particle mass and the heavy particle mass is small, and em- The expansion of the evolution operator is obtained from
p|oy the same mass Sca”ng that is used in Ref. 21 to Obtaﬁhe expansion of the interaction potential to linear order in
the quantum-classical Liouville equation. One is naturallythe small parameteg,
led to consider an expansion in the small parameter
=(m/M)*? from the following arguments. Consider a unit
of energy ey, say the thermal enei%ypzﬁ‘l, a unit of V' (rl =T ,Ri’—Mﬁi’FV(fi’ -7 ,Ri')—/bﬁi
length N\ ,,=%/p,,, wherep,=(mey)*'“ is the unit of mo-
mentum of the light particles, a unit of timg=7%¢,* and a
unit of momentum for the heavy particld,= (M ¢)*2
These units may be used to scale the coordinates of the sys-
tem so that the magnitude of the scaled momentum of the (26)
heavy particlesP/P), , is of the same order of magnitude as
that for the light particlesp/p,,. Only momenta are scaled
by different factors; characteristic lengths are scaled by thénserting this expansion in Eq25), working out the inte-
light particle thermal de Broglie wavelengtk,,. This is  grals, substituting the result into the scaled version of Eq.
analogous to the scaling used to derive the equations dR1) and finally going back to unscaled coordinatd®e de-
Brownian motion for a heavy particle in a bath of light par- tails are given in Appendix Aone obtains the quantum-
ticles. classical equation fow in unscaled coordinates as

(9V'(I’i/ _TI' ’Ri,)
X !
IR,

%’O(MZ)-
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d 1 _ _ :
ST WO X2, X1, X, B0) = = STLEY(x) L a(X0) —ILE(xp) I o(X2) IW(x1 X2, X1, Xz, B.N)

1 . [ 2sg7 _ [ 2syr
+f ds,ds, Wf r 6(52)V(r1—r,R1)sm(ﬂ—5(sl)V(r2—r,R2)sm(ﬂ

1 J J
+ 5] 0(S2) AF1(Ry,81) 75~ — 8(S1)AF2(R2,80) -5~ | WXy — 71, X — 72, X1, X5, B,N).
2 P4 P,
(27)
|
Here we have defined full classical Liouville operators for 1
the heavy mass subsystem as =5 ICW(H). (32)
) P, ¢ J . )
iLi(X)= MR FR_ﬁ (28)  The transformed operator on right-hand side of 84) can
i Lo

be calculated explicitly by a straightforward but lengthy cal-
for (i=1,2), where the forcég =—dV(r;,R;)/dR;. We  culation which is given in detail in Appendix B. The result of

have also introduced the quantity this calculation is

& 1 a ! ’
AFi(R;,s)=— ﬁ[v(ri Ri)6(s)— ey o7 Waae22(Xy, X, L BN
1
— 2s;r 1
Xf dr_V(ri_r,Ri)CO T . (29) :E 2 Kaialaéaz,ﬁiﬁlﬁéﬂz
B1B1B3B2

If the potential is decomposed into light and heavy mass

8181838 :
subsystem potential§/,(r;) and Vy(R;), respectively, and XWFPLE2P2(X1 X, 6 BN

their interaction potentidV (r; ,R;) asV=V,+V,+V,, itis 1 _
easy to demonstrate thatF;(R;,s;) depends only on the =5 E [=iLaa; 616, (X1) 8asp)Bayp,
interaction potential. B1B1B2B2

The quantum-classical evolution equati@7) for W can
be written formally and compactly as

J 1 X WALBLB2B2( X1 Xyt BN). (32

S W(D) =5 KeW(b), (30)

+i Eaéaz,ﬁéﬁz(XZ) 501:;_[315011,51]

We see that the apparently formidable evolution operator
where the operatdf is defined by comparison with E(R7). IC for the matrix elements of the spectral density, which
To simplify the notation, we have dropped the classical phasdepends on eight quantum indices, takes a simple form con-
space arguments here and some of the following equatiorssting of a difference of two quantum-classical Liouville
when confusion is unlikely to arise. operators, each acting separately on the classical phase space

This quantum-classical evolution equation for the specvariables and quantum indices with labels 1 and 2. The
tral density is not yet in a convenient form for simulation quantum-classical Liouville operators are just those obtained
since the kernels that appear in this equation are highly osn earlier derivations of the quantum-classical Liouville
cillatory functions arising from the fact that a Wigner repre- equatior’
sentation of the quantum degrees of freedom has been used.

In the following section we reintroduce the adiabatic basis 1 La/q, 5/ 5(Xi) =104/ o (R) Tk o/ (Xi) 180/ g1 S0,
and obtain a form of the quantum-classical evolution equa-
tion that can be solved by surface-hopping schemes. _Ja{ai ,B{Bi(xi)' (33

wherew,,(R)=[E,(R)—E, (R)]/% and

D. Quantum-classical evolution equation for Weraraze; LX) P, o 1[Fai,(R) F(R)] 17 (34)
| a! a; V=5 T3 i)t | i D
The operatorsZ and 7~ can be used to convert Eq. T MRy 20 W W P
(30) into an evolution equation faV, the matrix elements of ) . ) i
W. Acting from the left withZ ~* on Eq.(30) and inserting are the classical Liouville operators involving the
unity in the formw= 767 ~%oW=ZsW, we obtain mean of the Hellmann-Feynman forces wheiey,
=—(a;R|0V\(8,R) /dR|a;R) = —(a;R| dH (R) /IR | a;
J 1 R). Quantum transitions and bath momentum chan
7 i lake T e . ges are
(?tW(t) Z(T KeT')eW(L), described by
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P
‘]ai'ai ,ﬁi’ﬁi(xi): - Md !

1
1+ S’B(R) } aBi

1 J
- Mdaiﬁi[1+ 2 Say,(Ri) p?_P,} Sl )

(39
where S, ;=(E,—Eg)d.z[(P/M)d, ;17" and d, 4
=(«;;R| Vg Bi ;R) are the nonadiabatic coupling matrix ele-
ments.
The formal solution of Eq(32) is

WeLe19292(t) = (36)

exp(%lCt)W(O)

aialaéaz
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— 5! ! 1 B ’ ’
WA1A1B2B2(X | X, B) = E j ANWPLALA2P2( X X,,0;8,\).
0

(40)
Equation(38) shows that the correlation function at tinhe
can be calculated by sampling; and X, from suitable
weights determined bWV‘”l‘”leBZ(X1 X5 8) at time zero
and propagatln@T 11 forward in time andA“2 2 backward
in time for an interval of length/2. Note that while the time
evolution in Eq.(38) is by quantum-classical dynamics, the
initial condition for WA1A18282(X, X, 8) is still an exact
expression for the full equilibrium quantum mechanical
spectral density.

Now that the guantum-classical evolution equation for they HIGH TEMPERATURE EORM OF W

matrix elements ofNV and its formal solution have been de-

termined, we can return to the calculation of the quantum-

classical limit of the quantum time correlation function.

IV. QUANTUM-CLASSICAL CORRELATION FUNCTION

Equation(32) is one of the main results of this paper.

Using it we can obtain a quantum-classical approximation to
the quantum correlation function by replacing the full quan-

tum evolution of the spectral density in E(QL1) with its
evolution in the quantum-classical limit given by E&6),
the solution of Eq(32). We have

Craltif)= f N f HldxiBJV‘”l“i(xn

ala a2a

X ALZ(X,)
1
X ex;{th)W(Xl ,XZ,O;,B,)\)}
aialaéaz
(37)

Since the operatdiC is the sum of two operators, one acting
only on functions ofX; and quantum indices with subscript
1, and the other on functions & and quantum indices with
subscript 2, we may integrate by parts to have the operat
act on the dynamical variables insteadvidf We obtain

Cas(t.B)= > J H dXB*Blﬂl(xl, )

B1B1B3B2
[
5 WF1P1B2P2(X | X, B),

2

B2B5
XA\NZ Z(Xz,_

(39)

where

BT,Blﬁl( Xy, = ) E [el(t/Z L(Xl)] p1pla a/éxlal(xl)’

alal
(39

A'82B2<X21_§) E [e—|(t/2)£(x2)]ﬂzﬁ2 za azaz(xz)

CYZC(Z

In writing Eq. (38) we defined

At t=0, W is given explicitly by
We1@1292(X ) X5,0;8,\)

1 ‘
_ — (ilh)(P1Z1+ PyZ,)
" (2mh) ”thfdzldzze C

e_(B_A)H

, Zy Z,
X(ay;Ry| R1+7 Rz‘f laz;Ry)

—\A

Z;
> |€ Ri— > lai;Ry). (41
It can be computed using path integral techniques but its
evaluation is still a difficult problem. In order to illustrate its
structure we consider its form in the high temperature limit.
In this limit we may write

><<a£;R2|<Rz

Zya| _\§ Zy
<R2+? A Rl_?>
M| 2 M (R~ Z;)?
—Nh[R.— (1/4) Z45] _ ¢
e (2mhz) ex‘{ AV
(42

where h= (p%2m) +V and we have introduced the vari-
bIeSZC:(Zl+Z2)/2, 212221_22, RC:(R1+R2)/2, and
12=R;—R,. Taking the desired matrix element of this ex-

pression and inserting complete sets of adiabatic states we

obtain

—xh

Zy
Rl_? |a1;Ry)

<a§;R2|< R,
Z1p

=

4

:E ef)\Ea[Rcf (212/2)]< aé;RZ a’R

21
4

X<C¥;RC_ al;R1>

:EexE

@

Ry Ryl a; R} Rl a1 1 Ry) +O(Zy).

(43

Keeping only the zero-order term in,, the integral over
Z45in Eq. (41) gives a factor (4h)"h8(P1— P,). The other
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term in Eq.(41), which arises from the combination of the condensed phase systems. Difficult many-body quantum dy-
Gaussian on the right-hand side of E¢2) along with the  namics is replaced by quantum-classical evolution which can
analogous expression coming from the high-temperaturge carried out using surface-hopping schemes involving
limit of (Ry+ (Z4/2) |e” ®"MH|R,— (Z,/2)), can be evalu- probabilistic sampling of quantum transitions, with associ-
ated by performing the Gaussian integral 4nto obtain ated momentum changes in the bath, and classical trajectory

M\ 2 12520 1) R (2126 2 segments. The classical trajectory segments are accompanied
27rﬁ2/3> e ¢ PIB) Rizg AR by phase factors that account for quantum coherence when
off-diagonal matrix elements app&arThe full equilibrium
x @~ [MB=\)BI2PEIM quantum structure of the entire system is retained. While the
M\ 2 , equilibrium calculation is still a difficult problem it is more
:(m) f(Ryp,Po)e MB=M/BI2PL/M) (44)  tractable than the quantum dynamics needed to treat the

many-body system using full quantum dynamics. For ex-
where P.=(P;+ P,)/2. The functionf(R,,P.) still con- ample, imaginary time Feynman path integral methods for
tains quantum information since it is composed of a phaseomputing equilibrium properties are far more tractable than
factor and a Gaussian expressing quantum dispersion effedtseir corresponding real time variants. Since quantum infor-
in the heavy mass coordinates. We can obtain a classical bahation about the entire system is retained in the equilibrium
approximation if we represeri(R;,,Pc) in a multipole ex- gy cture, the formula for the correlation function incorpo-
pansion and keep only the first-order terf(R;,,Pc) rates some aspects of nuclear bath quantum dispersion that is
~[JdRw2f (Ri2,Pc) J6(Ry2), we have missing in other quantum-classical schemes. The importance

mh2B\ " a2 of retaining the full quantum equilibrium structure has been
f(R”’PJ%( 2M ) e FRINETESR). (49 | oted in Ref. 33,

Combining terms we obtain a high-temperature, classical- Thg results al-so.prowde a fr_amework for explormg and
bath approximation toV: extending the statistical mechanics of quantum-classical sys-

tems. The correlation functions for transport properties that

W1#19292(X 1, X;,0;8,N) result from linear response theory in quantum-classical sys-
1 , tems involve both quantum-classical evolution, like that de-
~—————e FPIMe=(F~NE(R)g ™ Eq(Ry) rived in this paper, as well as the equilibrium quantum-
(27h) " Zq : , . )
classical density that is stationary under the quantum-
X O oy Bajair, O(R1) (P 1o). (46)  classical evolutior®*°One may construct approximations to

o _ _ o _ quantum transport properties by considering other approxi-
Thus the quantityV, defined in Eq.(40), is given in the  mate |imiting forms of the equilibrium spectral density. We
high-temperature, classical-bath limit by also note that to establish a complete comparison with

Waialaéaz(xllxz;ﬂ) quantum-classical linear response theory requires the_reten—
tion of terms that were neglected in the calculations\Wor
= ;efﬁ[(P?ZM) +Eq(Ry)] presented in Sec. V. It should be fruitful to pursue extensions
(27h)"Zq of such calculations to obtain other approximations for quan-
eBlEq;(R)—E (R _ 9 tum transport properties.

“BIE, R EnyRo] OajarOaair, O R12) 6(P1a).

(47)
;Ja?sg similar manipulations, the high-temperature limit OfACKNOWLEDGMENTS
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(38), the result may be shown to correspond with the
quantum-classical linear response theory form lowest or-
der inf.

APPENDIX A: DERIVATION OF QUANTUM-
CLASSICAL EVOLUTION EQUATION FOR W
The expression for the quantum-classical limit of the
quantum correlation function derived in this paper providesa The equation of motion for the spectral densjfyq.
route for the calculation of quantum transport properties in(21)] takes a similar form in scaled coordinates:

VI. CONCLUSION
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(? ’ ! ! ! ! /. ! !
EW (Xl,XZ,Xl,Xz,t ,B ,)\ )

1. ! ! H "(x! X!
:_E[IL(lm (X1, X)) =L (x5,X3)]

XW'(X1,%5,X1,X5,t"; 8", \")
2
1 ! / ! ! ! ! ’ ! !
+§f iljl ds'dS[wi(ry,s1,Ri,S))8(s;) 8(Sy)

—w5(r3,5,R3,5;)8(s1) 4(S))]

MW (%] — 77} X, =TT xh— 1y Xy — 14 1" B \'),

7Té ,X2
(A1)
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where we have used the relatiofgR; R} cos(5;R;)=0 and
JARR; sin(2S|R)=—(7"/2)d5(S})/dS,. Then to order
O(w),

wi(ri,si,Ri,Si)

q'V'(r;—r1,Ry)sin(2s1r1) 8(Sy)
1 N (r]=T1,R) _dasy)
T WWJ’d?la—RiCOS{Zslrl ds,
(A6)

Using this expression we may compute the integral on
the right-hand side of EqAl) involving w;. The algebra

where the scaled free streaming Liouville operator and |ntefor the w; term is similar. Given the expressidAG), the

gral kernel are defined in Eq&4) and(25), respectively.
Inserting Eq.(26) into the expression fow; and retain-
ing only terms up to linear order ip we find

wi(ri,si,Ri,Si)%Wf drjdR;V'(r;—T],R})

X Sin(25,T]+ 2SR} — (W—‘)‘
., V'(r1—11,Ry)
X !
f dridry IR}
X R} sin(2s]r]+2S]R}) +O(u?).
(A2)
We observe that
f drjdR;V/(r;—T],R})sin(2s]r] +2S|R})
deRlv (ri—r1,Rp[sin(2s;r; )cos{ZSlRl)
+cog2s;1] )S|n(281R1)] (A3)

using the trigonometric identity for the sine of a sum of

arguments. Then, using the fact thddR; cos(BR))
="8(S;) we have

f dridRV/(r;—T7,R)sin(2s;T; + 2SRy
=7’ frv (r;=77,Ry)sin(2s;17) 8(S)), (A4)

where we have usefti R; sin(25;R;)=0. In a similar manner

. V' (ri—r1,R)) .,
J’dﬂdRi R; sin(2s]T] +2S;R})
IR}
a’h ﬁV’(ri—ﬂ,Rl) dé(sy)
__zfdﬂ IR S(ledsi’

(A5)

integral

J ds;dSjwi(ry,s1,R;,S7)

XW' (xy— 5, X, =111 ,x5,X5,t"; B,\) (A7)

has two contributions. The first is

2 ! / 1 ! ! ! ! ! ! li
ﬁf dSldslw (Xl—Wl,Xl—Hl,Xz,Xz,t ;,8,)\)
fd—’v (ri—r1,Ry)sin(2sir1)8(S))

2 ! 13 ! ! ! ! ! !

_V€ dslw (X1_7T1!X1!X2!X2;t 1B1)\)

« [ arv - Rpsinasir), (A8)

while the second is
M ! / ! ! !
ﬁf dSldSlW (X1—7T1,Xl
—1I17,x5,X5,t’ ,6')\)[ d—i V (ri—r1,Ry)
J asize
SlaP1

XW' (Xl W11X11X2!X2!t B)\) fﬂ

do(s))
ds,

all
Ve

X cog2s:r;
o

)

XV’ (r;—F},R})cog 2s{F7).

AF;Qi §= (919R7) [V' (Ry) 8(sy) — (Lim™0)
Jdr7 cos(&ry)V'(r;—r1,R;)] and returning to unscaled coor-
dinates we obtain Eq(27), the desired quantum-classical
evolution equation for the full Wigner representation\Vuf

The first term in the definition cAF’ is compensated by the
introduction of the full classical propagator for the heavy
mass degrees of freedom. Written in this forkk' also
depends only on the interaction potential between the light
and heavy mass particles.

(A9)

Defining
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APPENDIX B: EQUATION IN THE PARTIAL WIGNER Consider the calculation Of7 il ,(X;)o7 JoW

REPRESENTATION which is composed of two terms. The force term is
In this Appendix we perform explicitly the calculations 7~ ‘°Fg d/dP1TsW=Fg d/dP;W, since7 and its inverse

that, starting from Eq(27), lead to Eq(32). This calculation do not depend onP,;. The free streaming term

amounts to the evaluation off (" 1eKo7)oW(t). The vari- [T Y (P{/M) 9ldR,°T JoW requires additional calcula-
ous terms inK, defined by Eq.(27), are considered sepa- tjons since7 depends omR;. We have
rately.

P, d P
(TlomlaRloT)owz Ml > Hdrdz¢> (r1+ R1)¢al< > Rl)¢

B1B1B2BY

0ot - > Rz)

Z;
r{+ > ,R1>
IR,

Z, 9P,
T R2)¢ﬁ (r2+ R2)¢ﬁ2( EJRz)

X Gyl T2

0% [ r- 2R
210 AL
2t IR,

Wﬁiﬁlﬁéﬂz

><¢’[;l( M Rl) t g,

ra+

Z3

top |t Rl)d’,gl( —oR

(9 ’ ’
a—leﬁlﬁlﬁzﬁz . (B1)

The last term wher@W/JR, appears is simple to calculate and givés (M) 0/0R1W“1“1“§“2. To calculate the other two
terms, we make the change of variabtps=r,— (2,/2), d,=r1+ (21/2), d3=r>— (2,/2), andq,=r,+ (2,/2). Integrating
overqs andg, and usingfdq¢,(q,R) ¢§(q,R)= Oap, WE Obtain

_E fd%dqyﬁ /(d2;R1) ¢4,(91;R1)

'Bl.Bl
Idp(G2;Ry) 9 (A1;Ry) o
% a—IR’1¢B (QI’R1)+¢[3 (Q2,R1)T WP1P1¥a2
Py
:Vg%MWUZF—E%mWMzz .

1

where we have introduced the definition of the nonadiabatic coupling vector.

Consider the calculation c[f’T‘loiL(lo)(xl)oT]oW. In this case one integration over the momentum, arising from the
definition of 7%, gives [dp;(p;,/m)el/™ Prz1=2) = (2 77)  ¢(i%/m)a5(z, — 23)/ dz5, while integration overp, gives
(27h)"8(z,—z4). One can then integrate by parts ppand obtain

d it
(T‘lo& OT)OW=—I— > fl_[ dr,H dz6(zy— Zs)¢

2,
r1+ 5 Rl bay| T2 fle

m Jry B1B1B25)
* Zy Zy Zy N Zy
X¢aé r +E'R2 ¢a2<r2_§1R2)¢ﬁé ra+ 51R2)¢52<r2_E,R2)
92 Z3

WA1B1B:B2. (B3)

925011 ¢B1(r1+ Rl)d’gl(rl E;Rl
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Then use where we have used the identitya,R|p%2m|B,R)
92 z5 = —(h*2m) [dad;;(a,R) d¢,(a,R)/ 39>,

FeRET bpr| 1t > ,Rl)%l(rl > ;Rlﬂ We consider now the transformation of the potential
3011

term in KoeW equal to cqfds;ds,d(s,)fdrV(ry

—1)Sin(25,rTh)W(Xq — 71 Xo— 72,X1, X0, t; BN),  Where ¢4

=2#"Y(wh) " ¥¢; we may immediately perform the trivial
5R1)

integrations orp;, p,, Z3, andz,. We also make the change

alro+ % of variables below Eq.B1) so that the integrations ary and
g4 are also trivial. One is left with the integral
Z3
24 (92¢21<r1—§;R1)
BZALESS §;R1> (B4)

z3\° ’
(9([’1— ;)

go back to the integral, perform the integration nnpand
make the change of variables previously introduced. The in-

1> Jd%d%f dsld_V( b ﬁ

B1B1

. : 2s
tegration overg; andq, can be performed using the com- < sin Weﬂlﬁ s1(dp— Q1)¢ (Qz Ry, (d1;Ry)
pleteness of the adiabatic basis and one gets h '
& ! ’
(7_10& OT)"W X dgr(dz;Ry) ¢ (A1 Ry WFFL272, (B6)
m (?rl 1 1

B ajaha .
E <a1’R1| |’31'R1>W we Using the fact that [ds;e(/") 192790 sin(2s,r77)

=2mh)"[ qp—0,+2r)— &q,— 0, —2r)]/2i, substituting into
Eq. (B6) and making the change of variahte=2r, the delta
2 <,31,R1| |a1,R1>W“151“2“2 (B5  functions can be integrated out and one obtains

1 . o
Iﬁ z |:J dql¢a1(quRl)¢21(qluRl):||:J dq2¢ar(q2;Rl)v(qz)d)ﬁi(qz;R1)1|WBlBla2a2
B1B1 1

1 * ’ !
T [f dQ1¢§l(Q1?Rl)V(Q1)¢al(Q1iR1)Hf dQ2¢ar(Q2;R1)¢ﬁi(Q2;Rl)}Wﬁlﬁlazaz
B1B1 !

1 ’ ~ ’ B,a a’a l ~ a/B a’a
=EE (@1;Rq|V|B1;Ry)WFL12 Z_EBE (B1:Re|V|ay;Ry)yW P12, (B7)
4 1

1

The last term that must be worked out explicitly arises
from the transformation of the quantum-classical term ( ﬁ)ve f da,da, ¢, 1(02;R1) b (15Ry)
Jds108,6(S2) AF1(Ry,81) (9/9P1) W (X1 — 71, Xo— 72, X4,

X5,t:\, B). Recalling the expr.ess.ion f&rF 4 in Eq. (29) one X d’ﬂ’(QZ;Rl)d’El(%?Rl)

sees that there are two contributions to transform. The trans-

formation of the term involvind dV(R,)/dR;] 8(s,) is the fds f d‘[ Q1+Qz TR ”

same as that for the force term i ,(X;) and yields 1 aRl it
FRlaW“i“Wé“Z/aPl. The integral term iMAF;(R;,s;) can 2s; o B 9 L

be computed by integrating over;, p,, zs, andz,, per- COE( We(' ) 51(% ql)?lwﬁlﬁlazaz- (B8)

forming the change of variables below EB1) and integrat-

ing overqs andq,, to obtain Then one can use the integrid s, cog2s,(r77) el s1(%~a
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