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A quantum-classical limit of the canonical equilibrium time correlation function for a quantum
system is derived. The quantum-classical limit for the dynamics is obtained for quantum systems
comprising a subsystem of light particles in a bath of heavy quantum particles. In this limit the time
evolution of operators is determined by a quantum-classical Liouville operator, but the full
equilibrium canonical statistical description of the initial condition is retained. The
quantum-classical correlation function expressions derived here provide a way to simulate the
transport properties of quantum systems using quantum-classical surface-hopping dynamics
combined with sampling schemes for the quantum equilibrium structure of both the subsystem of
interest and its environment. ©2004 American Institute of Physics.@DOI: 10.1063/1.1797191#

I. INTRODUCTION

The dynamical properties of systems close to equilib-
rium may be described in terms of equilibrium time correla-
tion functions of dynamical variables or operators. For a
quantum system with HamiltonianĤ at temperatureT with
volumeV, linear response theory shows that the time corre-
lation function of two operatorsÂ and B̂, needed to obtain
transport properties, has the Kubo transformed form,1,2
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whereb5(kBT)21, r̂e5ZQ
21e2bĤ is the quantum canonical

equilibrium density operator,ZQ5Tre2bĤ is the canonical
partition function, and, in the second line,t15t2 i\(b2l)
and t25t2 i\l. The evolution of the operatorÂ(t) is given
by the solution of the Heisenberg equation of motion,
dÂ(t)/dt5 i /\ @Ĥ,Â(t)#, where the square brackets denote
the commutator.

While such correlation functions provide information on
the transport properties of the system, their direct computa-
tion for condensed phase systems is not feasible due to our

inability to simulate the quantum mechanical evolution equa-
tions for systems with a large number of degrees of freedom.
While approximate schemes have been devised to treat quan-
tum many-body dynamics, for example, quantum mode cou-
pling methods have proved useful in the calculation of col-
lective modes for some applications,3 we are primarily
concerned with methods that approximate the full many-
body evolution of the microscopic degrees of freedom. In
many circumstances only a few degrees of freedom need to
be treated quantum mechanically~quantum subsystem! while
the remainder of the system with which they interact can be
treated classically~classical bath! to a good approximation.
Examples where such a description is appropriate include
proton and electron transfer processes occurring in solvents
or other chemical environments composed of heavy atoms.
Quantum-classical methods have been reviewed by Egorov,
Rabani, and Berne4 and one form of a quantum-classical ap-
proximation has been assessed in the weak coupling limit
where there is no feedback between the quantum and classi-
cal subsystems. Although it is difficult to determine transport
properties such as the reaction rate constant from the full
quantum time correlation function when the entire system is
treated quantum mechanically, methods are being developed
to carry out such calculations.5 Mixed quantum-classical
methods also provide a route to carry out nonadiabatic rate
calculations.

A number of schemes have been proposed for carrying
out quantum dynamics in classical environments.6–13 We fo-
cus on approaches where the evolution is described by a
quantum-classical Liouville equation.14–21 For a quantum
system coupled to a classical environment it is possible to
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derive an evolution equation for dynamical variables or op-
erators~or the density matrix! by an expansion in a small
parameter that characterizes the mass ratio of the light and
heavy particles in the system. The quantum-classical analog
of the Heisenberg equation of motion is21

d

dt
ÂW~X,t !5

i

\
@ĤW ,ÂW~ t !#2 1

2 @$ĤW ,ÂW~ t !%

2$ÂW~ t !,ĤW%#

5 i L̂ÂW~X,t !. ~2!

Here ÂW(X,t) is the partial Wigner representation21,22 of a
quantum operator; it is still an operator in the Hilbert space
of the quantum subsystem but a function of the phase space
coordinatesX5(R,P) of the classical bath. In this equation
$¯,¯% is the Poisson bracket andL̂ is the quantum-classical
Liouville operator. A few features of quantum-classical Liou-
ville dynamics are worth noting. This equation of motion
includes feedback between the classical and quantum de-
grees of freedom. The environmental dynamics is fully clas-
sical only in the absence of coupling to the quantum sub-
system. In the presence of coupling the environmental
evolution cannot be described by Newtonian dynamics, al-
though the simulation of the quantum-classical evolution can
be formulated in terms of classical trajectory segments.21 For
harmonic environmental potentials with bilinear coupling to
the quantum subsystem the evolution is equivalent to the
fully quantum mechanical evolution of the entire system.
Quantum-classical simulations of the spin-boson model are
in accord with the numerically exact quantum results23 and
have been used to test quantum-classical simulation
algorithms.24,25

Equation~2! is valid in any basis and an especially con-
venient basis for simulating the evolution by surface-hopping
schemes is the adiabatic basis,$ua1 ;R&%, the set of eigen-
states of the quantum subsystem Hamiltonian in the presence
of fixed classical particles. In this case the matrix elements of

an operatorA
W

a1a18(X,t)5^a1 ;RuÂW(X,t)ua18 ;R& satisfy

d

dt
A

W

a1a18~X,t !5 i (
b1b18

La1a
18b1b

18
A

W

b1b18~X,t !, ~3!

whereLa1a
18b1b

18
denotes the representation of the quantum-

classical Liouville operator in the adiabatic basis.21 This
equation may be solved using surface-hopping schemes that
combine a probabilistic description of the quantum transi-
tions interspersed with classical evolution trajectory
segments.24–28 Although further algorithm development is
needed to carry the simulations to arbitrarily long times, the
quantum-classical evolution is not a short time approxima-
tion to full quantum evolution. Rather, it is an approximation
to the full quantum evolution for arbitrary times since the
quantum-classical evolution is derived at the level of the
Liouville operator and not the quantum propagator. Given
the evolution equation~2! ~and the corresponding quantum-
classical Liouville equation for the density matrix! one may
construct a statistical mechanics of quantum-classical

systems29,30and compute transport properties such as chemi-
cal rate constants31 from the correlation functions obtained
from this analysis.

In this paper we consider another route to determine
quantum-classical correlation functions for transport proper-
ties. We begin with the full quantum mechanical expression
for the time correlation function@Eq. ~1!# and take the limit
where the dynamics is determined by quantum-classical evo-
lution equations for the spectral density that enters the cor-
relation function expression. While the calculations leading
to our expression for the correlation function are somewhat
lengthy, the final result has a simple structure:

CAB~ t;b!5 (
b18b1b28b2

E dX1dX2B
W

†b1b18S X1 ,
t

2D
3A

W

b2b28S X2 ,2
t

2D W̄b18b1b28b2~X1 ,X2 ;b!.

~4!

This expression for the time correlation function retains the
full quantum statistical character of the initial condition
through the spectral density functionW̄ @Eq. ~40! below# but
the forward and backward time evolution of the operators

B
W

†b1b18 andA
W

b2b28 , respectively, are given by the solutions of
the quantum-classical evolution equation~3!. Consequently,
one may combine algorithms for determining quantum equi-
librium properties with surface-hopping algorithms for
quantum-classical evolution to estimate the value of the cor-
relation function. Quantum effects enter in all orders in this
expression for the correlation function. In addition to the fact
that the initial value of the spectral density contains the full
quantum equilibrium statistics, since the quantum-classical
Liouville operator appears in the exponent in the propagator,
the quantum-classical propagator contains all orders of\,
albeit in an approximate fashion.

The outline of the paper is as follows: In Sec. II we
construct the partial Wigner representation of the quantum
time correlation function and obtain expressions for the spec-
tral density and its matrix elements in an adiabatic basis. In
Sec. III we derive a quantum-classical evolution equation for
the matrix elements of the spectral density and establish a
connection to quantum-classical Liouville evolution. The re-
sults of these two sections are used in Sec. IV to obtain Eq.
~4!. In Sec. V we analyze the initial value of the spectral
density in the high temperature limit. The conclusions of the
study are given in Sec. VI while additional details of the
calculations are presented in the Appendixes.

II. PARTIAL WIGNER REPRESENTATION
OF QUANTUM CORRELATION FUNCTION

We consider quantum systems whose degrees of freedom
can be partitioned into two subsets corresponding to light
~massm) and heavy~massM ) particles, respectively. We
use small and capital letters to denote operators for phase
points in the light and heavy mass subsystems, respectively.
In this notation the Hamiltonian operator for the entire sys-
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tem is the sum of the kinetic energy operators or the two
subsystems and the potential energy of the entire system,Ĥ

5 p̂2/2M1 p̂2/2m1V̂(q̂,Q̂).
We are interested in the limit where the dynamics of the

heavy particle subsystem is treated classically and the light
particle subsystem retains its full quantum character. To this
end it is convenient to take a partial Wigner transform of the
heavy degrees of freedom and represent the light degrees of
freedom in some suitable basis.

In order to carry out this program we begin with the
quantum mechanical Kubo transformed correlation function
and write the trace over the heavy subsystem degrees of free-
dom in the second line of Eq.~1! using a$Q% coordinate
representation,

CAB~ t;b!5
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dQi^Q1uB̂†uQ2&

3^Q2ue~ i /\! t1* ĤuQ3&^Q3uÂuQ4&

3^Q4ue2 ~ i /\! t2ĤuQ1&. ~5!

The prime in Tr8 refers to the fact that the trace is now only
over the light particle subsystem degrees of freedom. Making
use of the change of variables,Q15R12Z1/2, Q25R1

1Z1/2, Q35R22Z2/2, and Q45R21Z2/2, this equation
may be written in the equivalent form
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2 L . ~6!

The next step in the calculation is to replace the coordinate
space matrix elements of the operators with their representa-
tion in terms of Wigner transformed quantities. The partial
Wigner transform of an operator is defined by22,21

ÂW~R2 ,P2!5E dZ2e~ i /\! P2Z2K R22
Z2

2 UÂUR21
Z2

2 L ,

~7!

while the inverse transform is

K R22
Z2

2 UÂUR21
Z2

2 L
5

1

~2p\!nh E dP2e2 ~ i /\! P2Z2ÂW~R2 ,P2!. ~8!

Herenh is the dimension of the heavy mass subsystem. The
partially Wigner transformed operatorÂW(X2) is a function
of the phase space coordinatesX2[(R2 ,P2) and an operator

in the Hilbert space of the quantum subsystem. It is conve-
nient to consider a representation of such operators in basis
of eigenfunctions. In this paper we use an adiabatic basis
since, through this representation, we can make connection
with surface-hopping dynamics. The partial Wigner
transform of the HamiltonianĤ is ĤW5P2/2M1 p̂2/2m

1V̂W(q̂,R)[P2/2M1ĥW(R). The last equality defines the
HamiltonianĥW(R) for the light mass subsystem in the pres-
ence of fixed particles of the heavy mass subsystem. The
adiabatic basis is determined from the solutions of the eigen-
value problem,ĥW(R)ua;R&5Ea(R)ua;R&. The adiabatic
representation ofÂW(X2) is

ÂW~X2!5 (
a2a28

ua2 ;R2&AW

a2a28~X2!^a28 ;R2u, ~9!

whereA
W

a2a28(X2)5^a2 ;R2uÂW(X2)ua28 ;R2&.
By inserting Eq.~9! into Eq. ~8! we can express the

coordinate representation of the operatorÂ as

K R22
Z2

2 UÂUR21
Z2

2 L
5

1

~2p\!nh (
a2a28

E dP2e2 ~ i /\! P2Z2ua2 ;R2&AW

a2a28~X2!

3^a28 ;R2u. ~10!

Then, substituting the result into Eq.~6! ~along with a similar
representation of theB̂† operator!, we obtain
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dl (
a1 ,a18 ,a2 ,a28

E )
i 51

2

dXiBW

†a1a18~X1!

3A
W

a2a28~X2!Wa18a1a28a2~X1 ,X2 ,t;b,l!.

~11!

Here we defined the matrix elements of the spectral density
by

Wa18a1a28a2~X1 ,X2 ,t;b,l!

5
1

ZQ
E )

i 51

2

dZie
2 ~ i /\!(P1Z11P2Z2)^a18 ;R1u

3 K R11
Z1

2 Ue~ i /\! t1* ĤUR22
Z2

2 L ua2 ;R2&^a28 ;R2u

3 K R21
Z2

2 Ue2 ~ i /\! t2ĤUR12
Z1

2 L ua1 ;R1&
1

~2p\!2nh
.

~12!

Our task is now to find an evolution equation for

Wa18a1a28a2(X1 ,X2 ,t;b,l) in the mixed quantum-classical
limit. Before doing this we observe that the expression for
the quantum correlation function in the partial Wigner repre-
sentation is equivalent to an expression involving full
Wigner transforms of the operators.
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A. Relation to full Wigner representation

Since the correlation function is independent of the rep-
resentation we choose for the light and heavy mass sub-
systems; we may also represent the light mass subsystem in
terms of a Wigner transform instead of a set of basis func-
tions. To establish the connection between these two forms
of the correlation function we note that the full Wigner trans-
form of the operatorÂ is given by

AW~x2 ,X2!5E dz2e~ i /\! p2z2K r 22
z2

2 UÂW~X2!Ur 21
z2

2 L ,

5 (
a2a28

E dz2e~ i /\! p2z2fa2S r 22
z2

2
;R2DA

W

a2a28~X2!

3fa
28

* S r 21
z2

2
;R2D , ~13!

wherex25(r 2 ,p2) and fa2
(r 2 ;R2)5^r 2ua2 ;R2&. We have

used Eq.~9! to write the second line of this equation. The
inverse of this expression is

A
W

a2a28~X2!5
1

~2p\!n,
E dp2dS r 22

z2

2 DdS r 21
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2 D
3e2 ~ i /\! p2z2AW~x2 ,X2!

3fa2
* S r 22
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2
;R2Dfa

28S r 21
z2

2
;R2D ,

~14!

wheren, is the dimension of the light mass subsystem. In-

serting this expression forA
W

a2a28(X2) @and the analogous ex-

pression forB
W

†a1a18(X1)] into Eq. ~11! we find

CAB~ t,b!5
1

b E
0

b

dlE )
i 51

2

dxidXiBW
† ~x1 ,X1!

3AW~x2 ,X2!W~x1 ,X1 ,x2 ,X2 ;t,b,l!, ~15!

where

W~x1 ,x2 ,X1 ,X2 ,t;b,l!

5 (
a18a1a28a2

E )
i 51

2

dzie
2 ~ i /\!(p1z11p2z2)

3fa
18S r 11

z1

2
;R1Dfa1

* S r 12
z1

2
;R1D

3fa
28S r 21

z2

2
;R2Dfa2

* S r 22
z2

2
;R2D

3Wa18a1a28a2~X1 ,X2 ,t;b,l!
1

~2p\!2n,
. ~16!

Using the definition of the matrix elements ofW in Eq. ~12!
and performing the sums on states we may write this equa-
tion in the equivalent form

W~x1 ,x2 ,X1 ,X2 ,t;b,l!

5
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3
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wheren5n,1nh . Equation~17! gives the spectral density
in the full Wigner representation while Eq.~16! relates this
quantity to its matrix elements in the light mass subsystem
basis. In particular, lettingW be a~super! matrix whose el-

ements areWa18a1a28a2, Eq. ~16! may be written formally as

W5T+W, ~18!

whereT is the transformation specified by Eq.~16!.
For future use, we note that the inverse of this expres-

sion is given by

Wa18a1a28a2~X1 ,X2 ,t;b,l!

5E )
i 51

2

dxidzie
~ i /\!(p1z11p2z2)fa1S r 12
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3fa
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;R1Dfa2S r 22

z2

2
;R2D

3fa
28

* S r 21
z2

2
;R2DW~x1 ,x2 ,X1 ,X2 ,t;b,l!, ~19!

as can be verified by substituting Eq.~17! into Eq. ~19! and
performing the integrals. Like Eq.~16!, Eq. ~19! gives a
relation betweenW and its matrix elements but now in the

opposite direction, relatingWa18a1a28a2 to W. Using a formal
notation like that in Eq.~18!, we can write Eq.~19! as

W5T 21+W, ~20!

which definesT 21, the inverse ofT.

III. QUANTUM-CLASSICAL EVOLUTION EQUATION
FOR SPECTRAL DENSITY

The quantum-classical evolution equation for matrix el-

ements of the spectral densityWa18a1a28a2(X1 ,X2 ,t;b,l) can
be obtained using various routes. In this paper we first derive
a quantum-classical evolution equation for the spectral den-
sity W(x1 ,x2 ,X1 ,X2 ,t;b,l) in the full Wigner representa-
tion. We then change to an adiabatic basis representation of
the quantum subsystem to obtain our final result for the evo-

lution equation forWa18a1a28a2(X1 ,X2 ,t;b,l).
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A. Evolution of W in the full Wigner representation

The evolution equation forW(x1 ,x2 ,X1 ,X2 ,t;b,l) can
be obtained by differentiating its definition in Eq.~17! with
respect to time and then inserting complete sets of coordinate
states to obtain a closed equation inW. The result was ob-
tained earlier by Filinovet al.32 and, for our composite sys-
tem, is given by

]

]t
W~x1 ,x2 ,X1 ,X2 ,t;b,l!

52
1

2
@ iL 1

(0)~x1 ,X1!2 iL 2
(0)~x2 ,X2!#

3W~x1 ,x2 ,X1 ,X2 ,t;b,l!

1
1

2 E )
i 51

2

dsidSi@v1~r 1 ,s1 ,R1 ,S1!d~s2!d~S2!

2v2~r 2 ,s2 ,R2 ,S2!d~s1!d~S1!#

3W~x12p1 ,X12P1 ,x22p2 ,X22P2 ,t;b,l!. ~21!

Here we have introduced the notationp i5(0,si) and P i

5(0,Si). The classical free streaming Liouville operators are

iL i
(0)~xi ,Xi !5

pi

m

]

]qi
1

Pi

M

]

]Ri
~22!

for ( i 51,2). Thev i functions under the integral are defined
by

v i~r i ,Ri ,si ,Si !5
2

\~p\!n E dr̄ idR̄iV~r i2 r̄ i ,Ri2R̄i !

3sinS 2

\
si r̄ i1

2

\
SiR̄i D . ~23!

B. Scaled equation of motion

In order to take the quantum-classical limit of Eq.~21!,
we consider systems for which the ratio between the light
particle mass and the heavy particle mass is small, and em-
ploy the same mass scaling that is used in Ref. 21 to obtain
the quantum-classical Liouville equation. One is naturally
led to consider an expansion in the small parameterm
5(m/M )1/2 from the following arguments. Consider a unit
of energye0 , say the thermal energye05b21, a unit of
length lm5\/pm , where pm5(me0)1/2 is the unit of mo-
mentum of the light particles, a unit of timet05\e0

21 and a
unit of momentum for the heavy particlesPM5(Me0)1/2.
These units may be used to scale the coordinates of the sys-
tem so that the magnitude of the scaled momentum of the
heavy particles,P/PM , is of the same order of magnitude as
that for the light particles,p/pm . Only momenta are scaled
by different factors; characteristic lengths are scaled by the
light particle thermal de Broglie wavelengthlm . This is
analogous to the scaling used to derive the equations of
Brownian motion for a heavy particle in a bath of light par-
ticles.

In the following, we denote scaled quantities with a
prime; e.g.,r 85r /lm , R85R/lm , p85p/pm , P85P/PM ,
t85t/t0 , etc. The scaled version of the equation of motion
for W has the same form as Eq.~21! but with all quantities
replaced by their primed dimensionless counterparts. The
scaled operators and functions in this equation are

iL i
(0)8~xi8 ,Xi8!5pi8 S ]

]qi8
D 1mPi8S ]

]Ri8
D . ~24!

and

v i8~r i8 ,Ri8 ,si8 ,Si8!5
2

pn E dr̄ i8dR̋i8V8~r i82 r̄ i8 ,Ri82mR̋i8!

3sin~2si8 r̄ i812Si8R̋i8!. ~25!

In writing the last line of thev i8 equation we have performed
the change of variablesR̋15m21R̄1 in the dummy variable
in the integration in order to move them dependence from
the sine factor to the potential, which is more convenient for
taking the classical limit. We see that the classical free
streaming evolution is linear inm but the quantum kernel has
all powers ofm.

C. Quantum-classical equation for W

For m!1 the quantum-classical limit is obtained ex-
panding the evolution operator up to linear terms inm. Since
momentum is related to the de Broglie wavelength of a par-
ticle, this procedure is equivalent to averaging out the short
de Broglie oscillations of the heavy particles on the scale of
the long de Broglie oscillations of the light particles.

The expansion of the evolution operator is obtained from
the expansion of the interaction potential to linear order in
the small parameterm,

V8~r i82 r̄ i8 ,Ri82mR̋i8!5V~r i82 r̄ i8 ,Ri8!2mR̋i

3F ]V8~r i82 r̄ i8 ,Ri8!

]Ri8
G1O~m2!.

~26!

Inserting this expansion in Eq.~25!, working out the inte-
grals, substituting the result into the scaled version of Eq.
~21! and finally going back to unscaled coordinates~the de-
tails are given in Appendix A! one obtains the quantum-
classical equation forW in unscaled coordinates as
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G J W~x12p1 ,x22p2 ,X1 ,X2 ,t;b,l!.

~27!

Here we have defined full classical Liouville operators for
the heavy mass subsystem as

iL i~Xi !5
Pi

M

]

]Ri
1FRi

]

]Pi
~28!

for ( i 51,2), where the forceFRi
52]V(r i ,Ri)/]Ri . We

have also introduced the quantity

DFi~Ri ,si !52
]

]Ri
FV~r i ,Ri !d~si !2

1

~p\!n,

3E dr̄V~r i2 r̄ ,Ri !cosS 2si r̄

\ D G . ~29!

If the potential is decomposed into light and heavy mass
subsystem potentials,V,(r i) and Vh(Ri), respectively, and
their interaction potentialVc(r i ,Ri) asV5V,1Vh1Vc , it is
easy to demonstrate thatDFi(Ri ,si) depends only on the
interaction potential.

The quantum-classical evolution equation~27! for W can
be written formally and compactly as

]

]t
W~ t !5

1

2
K+W~ t !, ~30!

where the operatorK is defined by comparison with Eq.~27!.
To simplify the notation, we have dropped the classical phase
space arguments here and some of the following equations
when confusion is unlikely to arise.

This quantum-classical evolution equation for the spec-
tral density is not yet in a convenient form for simulation
since the kernels that appear in this equation are highly os-
cillatory functions arising from the fact that a Wigner repre-
sentation of the quantum degrees of freedom has been used.
In the following section we reintroduce the adiabatic basis
and obtain a form of the quantum-classical evolution equa-
tion that can be solved by surface-hopping schemes.

D. Quantum-classical evolution equation for Wa18a1a28a2

The operatorsT andT 21 can be used to convert Eq.
~30! into an evolution equation forW, the matrix elements of
W. Acting from the left withT 21 on Eq.~30! and inserting
unity in the formW5T+T 21+W5T+W, we obtain

]

]t
W~ t !5

1

2
~T 21+K+T !+W~ t !,

[
1

2
K+W~ t !. ~31!

The transformed operator on right-hand side of Eq.~31! can
be calculated explicitly by a straightforward but lengthy cal-
culation which is given in detail in Appendix B. The result of
this calculation is

]

]t
Wa18a1a28a2~X1 ,X2 ,t;b,l!

5
1

2 (
b18b1b28b2

Ka
18a1a

28a2 ,b
18b1b

28b2

3Wb18b1b28b2~X1 ,X2 ,t;b,l!

5
1

2 (
b18b1b28b2

@2 iLa
18a1 ,b

18b1
~X1!da

28b
28
da2b2

1 iLa
28a2 ,b

28b2
~X2!da

18b
18
da1b1

#

3Wb18b1b28b2~X1 ,X2 ,t;b,l!. ~32!

We see that the apparently formidable evolution operator
K for the matrix elements of the spectral density, which
depends on eight quantum indices, takes a simple form con-
sisting of a difference of two quantum-classical Liouville
operators, each acting separately on the classical phase space
variables and quantum indices with labels 1 and 2. The
quantum-classical Liouville operators are just those obtained
in earlier derivations of the quantum-classical Liouville
equation,21

iLa
i8a i ,b

i8b i
~Xi !5@ iva

i8a i
~Ri !1 iL a

i8a i
~Xi !#da

i8b
i8
da ib i

2Ja
i8a i ,b

i8b i
~Xi !, ~33!

wherevaa8(R)5@Ea(R)2Ea8(R)#/\ and

iL a
i8a i

~Xi !5
Pi

M

]

]Ri
1

1

2
@F

W

a i8~Ri !1FW
a i~Ri !#

]

]Pi
~34!

are the classical Liouville operators involving the
mean of the Hellmann-Feynman forces whereFW

a

52^a;Ru]V̂W(q̂,R) /]R ua;R& 5 2^a;Ru ]ĤW (R) /]R ua;
R&. Quantum transitions and bath momentum changes are
described by
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Ja
i8a i ,b

i8b i
~Xi !52

Pi

M
da

i8b
i8F11

1

2
Sa

i8b
i8
~Ri !

]

]Pi
Gda ib i

2
Pi

M
da ib iF11

1

2
Sa ib i

~Ri !
]

]Pi
Gda

i8b
i8
,

~35!

where Sa ib i
5(Ea i

2Eb i
)da ib i

@(P/M ) da ib i
#21 and da ib i

5^a i ;Ru¹Rub i ;R& are the nonadiabatic coupling matrix ele-
ments.

The formal solution of Eq.~32! is

Wa18a1a28a2~ t !5FexpS 1

2
Kt DW~0!G

a
18a1a

28a2

. ~36!

Now that the quantum-classical evolution equation for the
matrix elements ofW and its formal solution have been de-
termined, we can return to the calculation of the quantum-
classical limit of the quantum time correlation function.

IV. QUANTUM-CLASSICAL CORRELATION FUNCTION

Equation~32! is one of the main results of this paper.
Using it we can obtain a quantum-classical approximation to
the quantum correlation function by replacing the full quan-
tum evolution of the spectral density in Eq.~11! with its
evolution in the quantum-classical limit given by Eq.~36!,
the solution of Eq.~32!. We have

CAB~ t;b!5
1

b E
0

b

dl (
a1 ,a18 ,a2 ,a28

E )
i 51

2

dXiBW

†a1a18~X1!

3A
W

a2a28~X2!

3FexpS 1

2
Kt DW~X1 ,X2,0;b,l!G

a
18a1a

28a2

.

~37!

Since the operatorK is the sum of two operators, one acting
only on functions ofX1 and quantum indices with subscript
1, and the other on functions ofX2 and quantum indices with
subscript 2, we may integrate by parts to have the operator
act on the dynamical variables instead ofW. We obtain

CAB~ t,b!5 (
b18b1b28b2

E )
i 51

2

dXiBW

†b1b18S X1 ,
t

2D
3A

W

b2b28S X2 ,2
t

2D W̄b18b1b28b2~X1 ,X2 ;b!,

~38!

where

B
W

†b1b18S X1 ,
t

2D5 (
a18a1

@ei ~ t/2!L(X1)#b1b
18a1a

18
B̂

W

†a1a18~X1!,

~39!

A
W

b2b28S X2 ,2
t

2D5 (
a28a2

@e2 i ~ t/2!L(X2)#b2b
28a2a

28
Â

W

a2a28~X2!.

In writing Eq. ~38! we defined

W̄b18b1b28b2~X1 ,X2 ;b!5
1

b E
0

b

dlWb18b1b28b2~X1 ,X2,0;b,l!.

~40!

Equation~38! shows that the correlation function at timet
can be calculated by samplingX1 and X2 from suitable

weights determined byW̄b18b1b28b2(X1 ,X2 ;b) at time zero

and propagatingB
W

†a1a18 forward in time andA
W

a2a28 backward
in time for an interval of lengtht/2. Note that while the time
evolution in Eq.~38! is by quantum-classical dynamics, the

initial condition for W̄b18b1b28b2(X1 ,X2 ;b) is still an exact
expression for the full equilibrium quantum mechanical
spectral density.

V. HIGH TEMPERATURE FORM OF W̄

At t50, W is given explicitly by

Wa18a1a28a2~X1 ,X2,0;b,l!

5
1

~2p\!2nhZQ
E dZ1dZ2e2 ~ i /\!(P1Z11P2Z2)

3^a18 ;R1u K R11
Z1

2 Ue2(b2l)ĤUR22
Z2

2 L ua2 ;R2&

3^a28 ;R2u K R21
Z2

2 Ue2lĤUR12
Z1

2 L ua1 ;R1&. ~41!

It can be computed using path integral techniques but its
evaluation is still a difficult problem. In order to illustrate its
structure we consider its form in the high temperature limit.
In this limit we may write

K R21
Z2

2 Ue2lĤUR12
Z1

2 L
'e2lĥ[Rc2 ~1/4! Z12] S M

2pl\2D nh/2

expF2
M ~R122Zc!

2

2l\2 G ,
~42!

where ĥ5 ( p̂2/2m) 1V̂ and we have introduced the vari-
ablesZc5(Z11Z2)/2, Z125Z12Z2 , Rc5(R11R2)/2, and
R125R12R2 . Taking the desired matrix element of this ex-
pression and inserting complete sets of adiabatic states we
obtain

^a28 ;R2u K R21
Z2

2 Ue2lĥUR12
Z1

2 L ua1 ;R1&

5(
a

e2lEa[Rc2 ~Z12/2)#K a28 ;R2Ua;Rc2
Z12

4 L
3 K a;Rc2

Z12

4 Ua1 ;R1L
5(

a
e2lEa(Rc)^a28 ;R2ua;Rc&^a;Rcua1 ;R1&1O~Z12!.

~43!

Keeping only the zero-order term inZ12, the integral over
Z12 in Eq. ~41! gives a factor (4p\)nhd(P12P2). The other
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term in Eq.~41!, which arises from the combination of the
Gaussian on the right-hand side of Eq.~42! along with the
analogous expression coming from the high-temperature

limit of ^R11 (Z1/2) ue2(b2l)ĤuR22 (Z2/2) &, can be evalu-
ated by performing the Gaussian integral onZc to obtain

S M

2p\2b D nh/2

e~ i /\!2Pc~~2l2b!/b! R12e2 @2M /\2(b)# R12
2

3e2 @l(b2l)/b#2Pc
2/M

5S M

2p\2b D nh/2

f ~R12,Pc!e
2 @l(b2l)/b#~2Pc

2/M !, ~44!

where Pc5(P11P2)/2. The functionf (R12,Pc) still con-
tains quantum information since it is composed of a phase
factor and a Gaussian expressing quantum dispersion effects
in the heavy mass coordinates. We can obtain a classical bath
approximation if we representf (R12,Pc) in a multipole ex-
pansion and keep only the first-order term,f (R12,Pc)
'@*dR12f (R12,Pc)#d(R12), we have

f ~R12,Pc!'S p\2b

2M D nh/2

e2 ~Pc
2/2bM !(2l2b)2

d~R12!. ~45!

Combining terms we obtain a high-temperature, classical-
bath approximation toW:

Wa18a1a28a2~X1 ,X2,0;b,l!

'
1

~2p\!nhZQ
e2b ~P1

2/2M !e2(b2l)Ea18
(R1)e2lEa28

(R1)

3da
18a2

da
28a;R1

d~R12!d~P12!. ~46!

Thus the quantityW̄, defined in Eq.~40!, is given in the
high-temperature, classical-bath limit by

W̄a18a1a28a2~X1 ,X2 ;b!

5
1

~2p\!nhZQ
e2b[ ~P1

2/2M ! 1Ea18
(R1)]

3
eb[Ea18

(R1)2Ea28
(R1)]21

b@Ea
18
~R1!2Ea

28
~R1!#

da
18a2

da
28a;R1

d~R12!d~P12!.

~47!

Using similar manipulations, the high-temperature limit of
ZQ is

ZQ'
1

~2p\!nh (a E dRdPe2b[ ~P2/2M ! 1Ea(R)] . ~48!

If Eq. ~47! is used in the correlation function formula, Eq.
~38!, the result may be shown to correspond with the
quantum-classical linear response theory form29 to lowest or-
der in \.

VI. CONCLUSION

The expression for the quantum-classical limit of the
quantum correlation function derived in this paper provides a
route for the calculation of quantum transport properties in

condensed phase systems. Difficult many-body quantum dy-
namics is replaced by quantum-classical evolution which can
be carried out using surface-hopping schemes involving
probabilistic sampling of quantum transitions, with associ-
ated momentum changes in the bath, and classical trajectory
segments. The classical trajectory segments are accompanied
by phase factors that account for quantum coherence when
off-diagonal matrix elements appear.21 The full equilibrium
quantum structure of the entire system is retained. While the
equilibrium calculation is still a difficult problem it is more
tractable than the quantum dynamics needed to treat the
many-body system using full quantum dynamics. For ex-
ample, imaginary time Feynman path integral methods for
computing equilibrium properties are far more tractable than
their corresponding real time variants. Since quantum infor-
mation about the entire system is retained in the equilibrium
structure, the formula for the correlation function incorpo-
rates some aspects of nuclear bath quantum dispersion that is
missing in other quantum-classical schemes. The importance
of retaining the full quantum equilibrium structure has been
noted in Ref. 33.

The results also provide a framework for exploring and
extending the statistical mechanics of quantum-classical sys-
tems. The correlation functions for transport properties that
result from linear response theory in quantum-classical sys-
tems involve both quantum-classical evolution, like that de-
rived in this paper, as well as the equilibrium quantum-
classical density that is stationary under the quantum-
classical evolution.29,30One may construct approximations to
quantum transport properties by considering other approxi-
mate limiting forms of the equilibrium spectral density. We
also note that to establish a complete comparison with
quantum-classical linear response theory requires the reten-

tion of terms that were neglected in the calculations forW̄
presented in Sec. V. It should be fruitful to pursue extensions
of such calculations to obtain other approximations for quan-
tum transport properties.
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APPENDIX A: DERIVATION OF QUANTUM-
CLASSICAL EVOLUTION EQUATION FOR W

The equation of motion for the spectral density@Eq.
~21!# takes a similar form in scaled coordinates:
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]

]t
W8~x18 ,x28 ,X18 ,X28 ,t8;b8,l8!

52
1

2
@ iL 1

(0)8~x18 ,X18!2 iL 2
(0)8~x28 ,X28!#

3W8~x18 ,x28 ,X18 ,X28 ,t8;b8,l8!

1
1

2 E )
i 51

2

dsi8dSi8@v18~r 18 ,s18 ,R18 ,S18!d~s28!d~S28!

2v28~r 28 ,s28 ,R28 ,S28!d~s18!d~S18!#

3W8~x182p18 ,X182P18 ,x282p28 ,X282P28 ,t8;b8,l8!,

~A1!

where the scaled free streaming Liouville operator and inte-
gral kernel are defined in Eqs.~24! and ~25!, respectively.

Inserting Eq.~26! into the expression forv18 and retain-
ing only terms up to linear order inm we find

v18~r 18 ,s18 ,R18 ,S18!'
2

~p!n E dr̄18dR̋18V8~r 182 r̄ 18 ,R18!

3sin~2s18 r̄ 1812S18R̋18!2
2m

~p!n

3E dr̄18dR̋18
]V8~r 182 r̄ 18 ,R18!

]R18

3R̋18 sin~2s18 r̄ 1812S18R̋18!1O~m2!.

~A2!

We observe that

E dr̄18dR̋18V8~r 182 r̄ 18 ,R18!sin~2s18 r̄ 1812S18R̋18!

5E dr̄18dR̋18V8~r 182 r̄ 18 ,R18!@sin~2s18 r̄ 18!cos~2S18R̋18!

1cos~2s18 r̄ 18!sin~2S18R̋18!#, ~A3!

using the trigonometric identity for the sine of a sum of
arguments. Then, using the fact that*dR̋18 cos(2S18R̋18)
5pnhd(S18) we have

E dr̄18dR̋18V8~r 182 r̄ 18 ,R18!sin~2s18 r̄ 1812S18R̋18!

5pnhE dr̄18V8~r 182 r̄ 18 ,R18!sin~2s18 r̄ 18!d~S18!, ~A4!

where we have used*dR̋18 sin(2S18R̋18)50. In a similar manner

E dr̄18dR̋18
]V8~r 182 r̄ 18 ,R18!

]R18
R̋18 sin~2s18 r̄ 1812S18R̋18!

52
pnh

2 E dr̄18
]V8~r 182 r̄ 18 ,R18!

]R18
cos~2s18 r̄ 18!

dd~S18!

dS18
,

~A5!

where we have used the relations*dR̋18R̋18 cos(2S18R̋18)50 and
*dR̋18R̋18 sin(2S18R̋18)52(pnh/2)dd(S18)/dS18 . Then to order
O(m),

v18~r 18 ,s18 ,R18 ,S18!

5
2

pn,
E dq̄8V8~r 182 r̄ 18 ,R18!sin~2s18 r̄ 18!d~S18!

1mF 1

pn,
E dr̄18

]V8~r 182 r̄ 18 ,R18!

]R18
cos~2s18 r̄ 18!

dd~S18!

dS18
G .

~A6!

Using this expression we may compute the integral on
the right-hand side of Eq.~A1! involving v18 . The algebra
for the v28 term is similar. Given the expression~A6!, the
integral

E ds18dS18v18~r 18 ,s18 ,R18 ,S18!

3W8~x182p18 ,X182P18 ,x28 ,X28 ,t8;b,l! ~A7!

has two contributions. The first is

2

pn,
E ds18dS18W8~x182p18 ,X182P18 ,x28 ,X28 ,t8;b,l!

3E dr̄18V8~r 182 r̄ 18 ,R18!sin~2s18 r̄ 18!d~S18!

5
2

pn,
E ds18W8~x182p18 ,X18 ,x28 ,X28 ;t8,b,l!

3E dr̄18V8~r 182 r̄ 18 ,R18!sin~2s18 r̄ 18!, ~A8!

while the second is

m

pn,
E ds18dS18W8~x12p18 ,X18

2P18 ,x28 ,X28 ,t8;b,l!E dr̄18
]

]R18
V8~r 182 r̄ 18 ,R18!

3cos~2s18 r̄ 18!
dd~S18!

dS18
5

m

pn,
E ds18

]

]P18

3W8~x182p18 ,X18 ,x28 ,X28 ,t8;b,l!•E dr̄18
]

]R18

3V8~r 182 r̄ 18 ,R18!cos~2s18 r̄ 18!. ~A9!

Defining DFR
18 ,s

18
8 52 (]/]R18) @V8(R18)d(s18)2 (1/pn,)

*dr̄18 cos(2s18r̄18)V8(r182r̄18 ,R18)# and returning to unscaled coor-
dinates we obtain Eq.~27!, the desired quantum-classical
evolution equation for the full Wigner representation ofW.
The first term in the definition ofDF8 is compensated by the
introduction of the full classical propagator for the heavy
mass degrees of freedom. Written in this form,DF8 also
depends only on the interaction potential between the light
and heavy mass particles.
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APPENDIX B: EQUATION IN THE PARTIAL WIGNER
REPRESENTATION

In this Appendix we perform explicitly the calculations
that, starting from Eq.~27!, lead to Eq.~32!. This calculation
amounts to the evaluation of (T 21+K+T )+W(t). The vari-
ous terms inK, defined by Eq.~27!, are considered sepa-
rately.

Consider the calculation of@T 21+ iL 1(X1)+T #+W
which is composed of two terms. The force term is
T 21+FR1

]/]P1T+W5FR1
]/]P1W, sinceT and its inverse

do not depend on P1 . The free streaming term
@T 21+ (P1 /M ) ]/]R1 +T #+W requires additional calcula-
tions sinceT depends onR1 . We have

S T 21+
P1

M

]

]R1
+TD +W5

P1

M (
b1b18b2b28

E )
j 51

2

dr jdzjfa
18

* S r 11
z1

2
,R1Dfa1S r 12

z1

2
,R1Dfa

28
* S q21

z2

2
;R2D

3fa2S r 22
z2

2
;R2Dfb

28S r 21
z2

2
;R2Dfb2

* S q22
z2

2
;R2D H F ]fb

18S r 11
z1

2
;R1D

]R1

3fb1
* S r 12

z1

2
;R1D1fb

18S r 11
z1

2
;R1D ]fb1

* S r 12
z1

2
;R1D

]R1

GWb18b1b28b2

1fb
18S r 11

z1

2
;R1Dfb1

* S r 12
z1

2
;R1D ]

]R1
Wb18b1b28b2J . ~B1!

The last term where]W/]R1 appears is simple to calculate and gives (P1 /M ) ]/]R1 Wa18a1a28a2. To calculate the other two
terms, we make the change of variablesq15r 12 (z1/2) , q25r 11 (z1/2) , q35r 22 (z2/2) , andq45r 21 (z2/2). Integrating
over q3 andq4 and using*dqfa(q,R)fb* (q,R)5dab , we obtain

P1

M (
b1b18

E dq1dq2fa
18

* ~q2 ;R1!fa1
~q1 ;R1!

3F ]fb
18
~q2 ;R1!

]R1
fb1

* ~q1 ;R1!1fb
18
~q2 ;R1!

]fb1
* ~q1 ;R1!

]R1
GWb18b1a28a2

5
P1

M (
b18

da
18b

18
Wb18a1a28a22

P1

M (
b1

db1a1
Wa18b1a28a2, ~B2!

where we have introduced the definition of the nonadiabatic coupling vector.
Consider the calculation of@T 21+ iL 1

(0)(x1)+T #+W. In this case one integration over the momentum, arising from the
definition of T 21, gives *dp1(p1 /m)e( i /\) p1(z12z3)5(2p\)n,( i\/m)]d(z12z3)/]z3 , while integration overp2 gives
(2p\)n,d(z22z4). One can then integrate by parts onz3 and obtain

S T 21+
p1

m

]

]r 1
+TD +W52

i\

m (
b1b18b2b28

E )
j 51

2

dr j )
k51

3

dzkd~z12z3!fa
18

* S r 11
z1

2
;R1Dfa1S r 12

z1

2
;R1D

3fa
28

* S r 21
z2

2
;R2Dfa2S r 22

z2

2
;R2Dfb

28S r 21
z2

2
;R2Dfb2

* S r 22
z2

2
;R2D

3
]2

]z3]r 1
Ffb

18S r 11
z3

2
;R1Dfb1

* S r 12
z3

2
;R1D GWb18b1b28b2. ~B3!
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Then use

]2

]z3]r 1
Ffb

18S r 11
z3

2
;R1Dfb1

* S r 12
z3

2
;R1D G

5
1

2F ]2fb
18S r 11

z3

2
;R1D

]S r 11
z3

2 D 2 fb1
* S r 12

z3

2
;R1D

2fb
18S r 11

z3

2
;R1D ]2fb1

* S r 12
z3

2
;R1D

]S r 12
z3

2 D 2 G , ~B4!

go back to the integral, perform the integration onz3 and
make the change of variables previously introduced. The in-
tegration overq3 and q4 can be performed using the com-
pleteness of the adiabatic basis and one gets

S T 21+
p1

m

]

]r 1
+TD +W

5
i

\ (
b18

^a18 ;R1u
p̂2

2m
ub18 ;R1&W

b18a1a28a2

2
i

\ (
b1

^b1 ;R1u
p̂2

2m
ua1 ;R1&W

a18b1a28a2, ~B5!

where we have used the identitŷa,Ru p̂2/2mub,R&
52(\2/2m)*dqfa* (q,R)]fb(q,R)/]q2.

We consider now the transformation of the potential
term in K+W equal to c1*ds1ds2d(s2)*dr̄V(r 1

2 r̄ )sin(2s1r̄/\)W(x12p1,x22p2,X1,X2,t;bl), where c1

52\21(p\)2n,; we may immediately perform the trivial
integrations onp1 , p2 , z3 , andz4 . We also make the change
of variables below Eq.~B1! so that the integrations onq3 and
q4 are also trivial. One is left with the integral

c1 (
b18b1

E dq1dq2E ds1dr̄VS q11q2

2
2 r̄ D

3sinS 2s1r̄

\ De~ i /\! s1(q22q1)fa
18

* ~q2 ;R1!fa1
~q1 ;R1!

3fb
18
~q2 ;R1!fb1

* ~q1 ;R1!Wb18b1a28a2. ~B6!

Using the fact that *ds1e( i /\) s1(q22q1) sin(2s1r̄/\)
5(2p\)n,@d(q22q112r̄)2d(q22q122r̄)#/2i , substituting into
Eq. ~B6! and making the change of variables52r̄ , the delta
functions can be integrated out and one obtains

1

i\ (
b18b1

F E dq1fa1
~q1 ;R1!fb1

* ~q1 ;R1!GF E dq2fa
18

* ~q2 ;R1!V~q2!fb
18
~q2 ;R1!GWb18b1a28a2

2
1

i\ (
b18b1

F E dq1fb1
* ~q1 ;R1!V~q1!fa1

~q1 ;R1!GF E dq2fa
18

* ~q2 ;R1!fb
18
~q2 ;R1!GWb18b1a28a2

5
1

i\ (
b18

^a18 ;R1uV̂ub18 ;R1&W
b18a1a28a22

1

i\ (
b1

^b1 ;R1uV̂ua1 ;R1&W
a18b1a28a2. ~B7!

The last term that must be worked out explicitly arises
from the transformation of the quantum-classical term
*ds1ds2d (s2)DF1(R1 ,s1) (]/]P1) W (x12p1 ,x22p2 ,X1 ,
X2 ,t;l,b). Recalling the expression forDF1 in Eq. ~29! one
sees that there are two contributions to transform. The trans-
formation of the term involving@]V(R1)/]R1# d(s1) is the
same as that for the force term iniL 1(X1) and yields

FR1
]Wa18a1a28a2/]P1 . The integral term inDF1(R1 ,s1) can

be computed by integrating overp1 , p2 , z3 , and z4 , per-
forming the change of variables below Eq.~B1! and integrat-
ing overq3 andq4 , to obtain

(
b18b1

1

~p\!n,
E dq1dq2fa

18
* ~q2 ;R1!fa1

~q1 ;R1!

3fb
18
~q2 ;R1!fb1

* ~q1 ;R1!

3E ds1E dr̄F ]

]R1
VS q11q2

2
2 r̄ ,R1D G

3cosS 2s1r̄

\ De~ i /\! s1(q22q1)
]

]P1
Wb18b1a28a2. ~B8!

Then one can use the integral*ds1 cos@2s1(r̄/\)#e(i/\) s1(q22q1)
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5(2p\)n,@d(q22q112r̄)1d(q22q122r̄)#/2, make the change
of variables52r̄ , and integrate out the delta functions to
find

1

2 F(
b18

^a18 ;R1u
]V̂~R1!

]R1
ub18 ;R1&

]

]P1
Wb18a1a28a2

1(
b1

^b1 ;R1u
]V̂~R1!

]R1
ua1 ;R1&

]

]P1
Wa18b1a28a2G . ~B9!

Analogous terms~but with opposite sign! are obtained
when considering the transformation of the terms depending
on x2 andX2 in Eq. ~27!.

Combining all terms and using the relationsFW
ab(R)

52^a;Ru¹RV̂(R)ub;R&5FW
a 1(Ea2Eb)dab ,

2
i

\ (
b18

^a18 ;R1uS p̂2

2m
1V̂D ub18 ;R1&W

b18a1a28a2

51
i

\ (
b1

^b1 ;R1uS p̂2

2m
1V̂D ua1 ;R1&W

a18b1a28a2

52
i

\
@Ea

18
~R1!2Ea1

~R1!#Wa18a1a28a2

52 iva
18a1

~R1!Wa18a1a28a2, ~B10!

and introducing the definitionSa ib i
5(Ea i

2Eb i
)da ib i

@(P/
M ) da ib i

#21, we find Eq.~32!.
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