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A hybrid mesoscopic multiparticle collision model is used to study diffusion-influenced reaction
kinetics. The mesoscopic particle dynamics conserves mass, momentum, and energy so that
hydrodynamic effects are fully taken into account. Reactive and nonreactive interactions with
catalytic solute particles are described by full molecular dynamics. Results are presented for
large-scale, three-dimensional simulations to study the influence of diffusion on the rate constants of
the A1C
B1C reaction. In the limit of a dilute solution of catalytic C particles, the simulation
results are compared with diffusion equation approaches for both the irreversible and reversible
reaction cases. Simulation results for systems where the volume fractionf of catalytic spheres is
high are also presented, and collective interactions among reactions on catalytic spheres that
introduce volume fraction dependence in the rate constants are studied. ©2004 American Institute
of Physics. @DOI: 10.1063/1.1690244#

I. INTRODUCTION

The dynamics of large complex systems often occurs on
disparate time and space scales. A direct molecular dynamics
simulation of the equations of motion for such systems is
difficult because of this scale separation and the large num-
bers of molecules such systems may contain. Consequently,
mesoscopic models play an important role in investigations
of the dynamics of these systems.

The use of Langevin and Fokker–Planck equations for
Brownian motion is well known1,2 and these models have
been used in much wider contexts—for example, in investi-
gations of reaction dynamics in the condensed phase.3 Such
stochastic models are useful when it is impossible or inap-
propriate to simulate the full dynamics of the system, includ-
ing all solvent degrees of freedom.

Suspensions of colloidal particles are also often treated
using mesoscopic models of various types. While the dynam-
ics of the colloidal particles may be accurately modeled us-
ing Langevin dynamics, hydrodynamic interactions play an
important role in dense colloidal suspensions. The friction
tensors that enter the Langevin equations depend on the col-
loidal particle configuration. To compute the frictional prop-
erties of dense suspensions, the intervening solvent is often
approximated by the continuum equations of hydrodynamics
to determine the hydrodynamic interactions among the col-
loidal particles.

Other approaches for constructing mesoscopic dynamics
of complex systems include construction of effective solvent
models to be used in the context of full molecular dynamics

simulations.4 Such models allow one to investigate systems
of high complexity that cannot be studied by straightforward
molecular dynamics simulation schemes.

In this article we show how diffusion-influenced reac-
tions can be studied using a multiparticle mesoscopic
dynamics.5,6 In this dynamical scheme, particle positions and
velocities are continuous variables and the dynamics consists
of free-streaming and multiparticle collisions. Multiparticle
collisions are carried out by partitioning the system into cells
and performing a specific type of random rotation of the
particle velocities in each cell that conserves mass, momen-
tum, and energy. The hydrodynamic equations are obtained
on long-distance and -time scales6 and the model permits
efficient simulation of hydrodynamic flows.6,7 Since the dy-
namics is carried out at the particle level, it is straightforward
to construct hybrid schemes where solute molecules that un-
dergo full molecular dynamics are embedded in the mesos-
copic solvent.8 Hydrodynamic interactions among solute par-
ticles are automatically accounted for in the multiparticle
mesoscopic dynamics.9 The method has been generalized to
treat phase-segregating fluids with surfactants.10

Diffusion-influenced reaction dynamics is widely used to
model processes like enzymatic turnover or collision-
induced isomerization in complex systems. von Smolu-
chowski constructed a continuum theory for such reactions
based on a solution of the diffusion equation.11 In this article
we focus on the reversibleA1C
B1C reaction where a
considerable body of research has been concerned with the
development of refined theoretical models.12–18 Simulation
schemes19–22 for three-dimensional diffusive reaction dy-
namics have been constructed. Diffusion-influenced reac-
tions taking place in a dense field of catalytic particles are
strongly affected by perturbations of the diffusion field aris-
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ing from reactions at the different catalytic sites.23–29 This
effect is similar to the hydrodynamic interactions that enter
colloidal suspension dynamics. We show how collective ef-
fects on diffusion-influenced reaction dynamics can be stud-
ied by simulations of a mesoscopic model for these systems.
The mesoscopic multiparticle collision model allows us to
simulate systems with tens of millions of particles for long
times in order to determine power-law decays and nonana-
lytic catalytic particle density effects on the reaction rates.

The outline of the paper is as follows. Section II
sketches the mesoscopic multiparticle collision model and
presents its generalization to multicomponent systems. The
evolution equations that encode the multiparticle mesoscopic
dynamics are presented in Sec. III. The computation of the
diffusion coefficient, a necessary ingredient for the analysis
of reaction dynamics, is given in Sec. IV. In Sec. V we show
how the model can be generalized to treat chemical reac-
tions. In particular, we study the reactionA1C
B1C,
which occurs upon collision with catalytic C particles. The
simulation algorithms and simulation results for dilute and
concentrated suspensions of catalytic spheres are presented
in Sec. VI. The conclusions of the investigation are contained
in Sec. VII.

II. MULTICOMPONENT MESOSCOPIC
MULTIPARTICLE DYNAMICS

The mesoscopic dynamics we consider comprises two
steps: multiparticle collisions among the particles and free
streaming between collisions.6 Suppose the system contains
N particles with positions and velocities given by
(X(N),V(N))5(x1 ,...,xN ,v1 ,...,vN). While the particle posi-
tions and velocities are continuous variables, for the purpose
of effecting collisions, the system is divided intoL cells la-
beled by the indexj. Collisions occur locally in the cells in
the following way: Rotation operatorsv̂, chosen randomly
from a set of rotation operatorsV5$v̂1 ,...,v̂k%, are as-
signed to each cellj of the system. If a cellj containsnj

particles at timet and the center-of-mass velocity in the cell
is Vj(t)5nj

21( i 51
nj vi(t), the post-collision values of the ve-

locities of the particles in the cell,vi* , are computed by
rotating the particle velocities relative toVj and addingVj to
the result

vi* ~ t !5Vj~ t !1v̂j@vi~ t !2Vj~ t !#. ~1!

After the collision events in each cell, the particles free
stream to their new positions at timet1t:

xi~ t1t!5xi~ t !1vi* ~ t !t. ~2!

This simple dynamics has been shown to conserve mass,
momentum, and energy. The exact hydrodynamic equations
are obtained on macroscopic scales, and the system relaxes
to an equilibrium Boltzmann distribution of velocities.6 Con-
sequently, the dynamics, although highly idealized, has cor-
rect behavior on macroscopic scales which are long com-
pared to the effective collision times in the model. Since the
dynamics is described at the particle level, it is a simple
matter to couple this mesoscopic dynamics to the full mo-
lecular dynamics of solute species embedded in it.8,30 The

model is similar in spirit to the direct simulation Monte
Carlo model,31 but with a different discrete-time collision
dynamics that simplifies the simulations and makes them
more efficient.

The mesoscopic dynamics for a multicomponent system
can be carried out in a similar way by generalizing the mul-
tiparticle collision rule. Suppose theN-particle system com-
prises different speciesa5A,B,... with massesma . In this
case it is useful to introduce the functionQ i

a that character-
izes the speciesa of a given particlei. This function has the
following properties:

Q i
aQ i

a85daa8 ; ~3!

i.e., particlei cannot be of different species at the same time.
Also,

(
a

Q i
a51, ~4!

so that particlei has to have some species type. The number
of particles of speciesa is given by

Na5(
i 51

N

Q i
a . ~5!

There are many ways in which the multiparticle collision
rule can be generalized for systems with several species, and
we consider one version that is consistent with the require-
ment that mass, momentum, and energy be conserved. Let
Vj

(a) be the center-of-mass velocity of particles of speciesa
that are in the cellj at time t:

Vj
~a!~ t !5

1

nj
~a!~ t ! (

i uxPV
Q i

avi~ t !, ~6!

wherenj
(a) is the number of particles of the speciesa in cell

j with volumeV at timet. The center-of-mass velocity of all
nj(t)5(anj

(a)(t) particles in the cellj at time t is given by

Vj~ t !5
(anj

~a!maVj
~a!~ t !

(anj
~a!ma

. ~7!

In the model we adopt, two different types of multipar-
ticle collisions occur. The first is a collision that involves
particles of all species. To perform this collision, we use a
rotation operatorv̂, which is applied to every particle in a
cell as for single-component system. The second type of
multiparticle collision involves only particles of the same
species. The rotation operatorv̂a effects this collision and is
applied to each particle of speciesa in the cell. Not only
does it change from cell to cell and with time likev̂, but it
also changes from species to species.

The multiparticle collision process can be divided into
these two independent steps. For the set of particles that are
in the cellj, first we perform the all-species collision as

vi95Vj1v̂j~vi2Vj!, ~8!

wherevi is the precollision velocity of the particlei andvi9 is
the velocity after this step. Second, we apply the one-species
rotation operator
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vi* 5(
a

Q i
a
„Vj9

~a!1v̂j
a~vi92Vj9

~a!!…, ~9!

where Vj9
(a) is the center-of-mass velocity of particles of

speciesa after the all-species collision step. Note thatv̂j is
applied to all particles in the cell, but thev̂j

a are applied only
on particles of speciesa.

From Eqs.~8! and ~9! the post-collision velocity of a
particle may be expressed as

vi* 5Vj1v̂j~Q i
aVj

~a!2Vj!1(
a

Q i
a
„v̂j

av̂j~vi2Vj
~a!!….

~10!

III. EVOLUTION EQUATIONS

The dynamics described above can be encoded in an
evolution equation for the phase space probability density:

P~V~N!,X~N!1V~N!t,t1t!5eL0 tP~V~N!,X~N!,t1t!

5 ĈP~V~N!,X~N!,t !, ~11!

where the free-streaming Liouville operator is

L05(
a

(
i 51

N

Q i
a~vi•“ i !, ~12!

andN5(aNa is the total number of particles in the system.
If we choose the rotation operatorsv̂ andv̂a randomly from
the setV, the collision operator may be written as

ĈP~V~N!,X~N!,t !5
1

iViL (
VL

E dV8~N!P~V8~N!,X~N!,t !

3)
a

)
i 51

N

Q i
ad„vi2Vj82v̂j~Vj8

~a!2Vj8!

2v̂j
av̂j~vi82Vj8

~a!!…, ~13!

whereL is the number of cells.
We may write the evolution equation in continuous time

by introducing ad-function collision term which accounts
for the fact that the multiparticle collisions occur at discrete
time intervals. We have

]

]t
P~V~N!,X~N!,t !5~2L01C!P~V~N!,X~N!,t !, ~14!

where the collision operatorC acts on the velocities of the
particles at discrete timesmt and is defined as

CP~V~N!,X~N!,t !5 (
m50

`

d~ t2mt!~ Ĉ21!P~V~n!,X~N!,t !.

~15!

If Eq. ~14! is integrated over a time intervalmt2e to (m
11)t2e, we recover Eq.~11! corresponding to multipar-
ticle collisions followed by free streaming. Instead, integra-
tion over the jump att5(m11)t yields an analogous dis-
crete time equation with free streaming followed by
collision.

Assuming that the system is ergodic, then, in view of the
conservation of mass, momentum, and energy, the stationary
distribution of the Markov chain in Eq.~11! is given by the
microcanonical ensemble expression

P0~V~N!,X~N!!5NdS 1

2N (
i 51

N

(
a

Q i
amaivi i22

d

2b D
3dS (

i 51

N

(
a

Q i
ama~vi2 v̄!D , ~16!

wherev̄ is the mean velocity of the system,d is the dimen-
sion, andN is a normalization constant. If we integrateP0

over the phase space of all particles except particlei, we
obtain the Maxwell–Boltzmann distribution in the limit of
largeN.

Figure 1 shows the results of a simulation of the velocity
probability distribution for a system with volumeV51003

cells of unit length andN5107 particles. The particles were
initially uniformly distributed in the volumeV and all par-
ticles had the same speeduvu51, but different random direc-
tions. To obtain the results in this figure we assumed that the
species were mechanically identical with massm51 and
used the multiparticle collision rule in Eq.~10! with rotations
v̂j andv̂j

a selected from the setV5$p/2,2p/2% about axes
whose directions were chosen uniformly on the surface of a
sphere~6p/2 collision rule!. This version of the collision
rule for mechanically identical particles will be used in all
calculations presented in this paper.

The figure compares the histogram of thex component
of the velocity with the Maxwell–Boltzmann distribution

Pm~vx!5S mb

2p D 1/2

e2bmvx
2/2, ~17!

whereb5(kBT)21, and confirms that this initial distribution
evolves to the Maxwell–Boltzmann distribution under meso-
scopic dynamics.

We may also write an evolution equation for any dy-
namical variablea(V(N),X(N)) as

d

dt
a~V~N!,X~N!,t !5~L01C!a~V~N!,X~N!,t !, ~18!

FIG. 1. Comparison of the simulated velocity distribution~histogram! with
the Maxwell–Boltzmann distribution function~solid line! for kBT51/3.
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whereC has the same form asC in Eq. ~15! with Ĉ replaced
by Ĉ:

Ĉa~V~N!,X~N!,t !

5
1

iViL (
VL

E dV8~N!a~V8~N!,X~N!,t !)
a

)
i 51

N

Q i
a

3d„vi82Vj2v̂j~Vj
~a!2Vj!2v̂j

av̂j~vi2Vj
~a!!…. ~19!

This equation is the starting point for the generalization to
reacting systems in Sec. V.

IV. DIFFUSION

Knowledge of the value of the diffusion coefficient is
essential for the analysis of diffusion-influenced reaction ki-
netics. In this section we determine the diffusion coefficient
as a function of the density from simulations of the mesos-
copic multiparticle dynamics and derive an approximate ana-
lytical expression for its value.

The diffusion coefficient is given by the time integral of
the velocity correlation function. For the discrete time dy-
namics of the model, the time integral is replaced by its
trapezoidal rule approximation, as shown by a discrete-time
Green–Kubo analysis.8,30 Thus the diffusion coefficientD is
given by

D5
1

2
^vxvx&1 (

,51

`

^vxvx~,t!&, ~20!

where vx is the x component of the velocity of a tagged
particle in the system.~We suppress the species indexa for
the case of mechanically identical particles since all species
have the same diffusion coefficient.! We have computedD
using this expression as well as the formula forD in terms of
the mean-square displacement as a function of the mean par-
ticle density per cell,r. The results are shown in Fig. 2.

An approximate expression forD can be derived by as-
suming a single relaxation time approximation. If we sup-
pose the decay is given by a single relaxation time, we have

^vxvx~,t!&

^vxvx&
'S ^vxvx~t!&

^vxvx&
D ,

[~r D!,. ~21!

The diffusion coefficient is then approximately given by

D'2
1

2
~vxvx!1^vxvx& (

,50

`

r D
, 5

^vxvx&~11r D!

2~12r D!
. ~22!

The relaxation rate may be computed in the Boltzmann
approximation:6

^v1xv1x~t!&5E dv v1x(
v

(
n51

`
rn

iVin!
e2r

3E dv~n!d~v2v1!)
i 51

n

f~vi !(
j 51

n

v jx* ,

~23!

wherev1x is thex component velocity of the single particle
1. Since cross correlations between different particles are not
present for self-diffusion, we have

^v1xv1x~t!&5
1

iVi (v (
n51

`
rne2r

n! E dv~n!v1xv1x* )
i 51

n

f~vi !.

~24!

The x component of the post-collision velocityv1x* may
be written using Eq.~10! for the 6p/2 collision rule dis-
cussed above as

v1x* 5
1

4p E dn̂$Vx1n̂x@ n̂•~V~a!2V!#%

1
1

~4p!2 E dn̂~a!E dn̂n̂x
~a!~ n̂~a!

•n̂!

3@ n̂•~v12V~a!!#, ~25!

wheren̂ and n̂(a) are the normal vectors associated with the
rotation operatorsv̂ andv̂a, respectively. As a result of this
integration we obtain

v1x* 5
1

3
~v1x12Vx!. ~26!

Assuming that particles of different species have the same
mass and substituting Eq.~26! into Eq. ~24!, we find

^v1xv1x~t!&5 (
n51

`
rne2r

n! E dv1~v1x!
2S n12

3n Df~v1!

5
^v1xv1x&

3 (
n51

`
rne2r

n! S 2

n
11D . ~27!

For large enoughr, we may approximate this expression by

^v1xv1x~t!&'
^v1xv1x&

3 (
n51

`
rne2r

n!
~21n!, ~28!

which yields

FIG. 2. Comparison of the simulated diffusion coefficient~(! with the
Boltzmann value~solid line!. The6p/2 collision rule was used to obtain the
results. The volume wasV51003 and the temperature waskBT51/3.
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r D5
2~12e2r!1r

3r
. ~29!

Substitutingr D into Eq.~22!, the expression for the diffusion
coefficient is

D5
kbT

2m S 2r112e2r

r211e2r D . ~30!

This analytic formula is compared with the simulation results
in Fig. 2 where it is seen that it provides an excellent ap-
proximation to the simulation results over all of the physi-
cally interesting density range.

V. REACTIVE DYNAMICS

Next, we consider a reactive system withM finite-sized
catalytic spherical particles~C! and a total ofN5NA1NB A
andB particles which react with theC particles through the
reactions

A1C

kr

kf

B1C. ~31!

TheA andB particles undergo both nonreactive and reactive
collisions withC and the multiparticle collisions described in
Sec. II among themselves. The macroscopic mass action rate
law may be written as

d

dt
dn̄A~ t !52~kf1kr !dn̄A~ t ![2kdn̄A~ t !, ~32!

wheredn̄A(t)5n̄A(t)2n̄A
eq is the deviation of mean number

density ofA particles from its equilibrium value andk5kf

1kr is the reciprocal of the chemical relaxation time. We
have incorporated the fixed number density of the catalyticC
particles into the rate constants.

The microscopic evolution equation for this system may
be written by simply augmenting the free-streaming evolu-
tion operator in Eq.~12! with a Liouville operatorL that
describes the interactions of theA andB particles with theC
particles. If the interactions ofA and B with C are through
continuous potentials,L takes the standard formL5F•“P ,
whereF is the force between theA andB particles andC and
P is the vector of the momenta of the particles.

For the purposes of calculation and illustration, we adopt
a model where theC particles are fixed in space and have
radiuss. TheA andB particles either bounce back from the
catalytic spheres without changing their identity or react with
probability pR . In this case the evolution equation for any
dynamical variable in the system is given by

d

dt
a~X!~N!,V~N!,t)5~L06L61C!a~X~N!,V~N!,t !,

~33!

where the6 signs apply fort.0 andt,0, respectively. The
Liouville operatorsL6 describing the reactive and nonreac-
tive collisions with the catalytic particles are given by

L65(
a

(
j 51

M

(
i 51

N

uvi• r̂ i j uu~7vi• r̂ i j !d~r i j 2s!

3~ b̂i j 21!Q i
a1pR(

a
(
j 51

M

(
i 51

N

uvi• r̂ i j uu~7vi• r̂ i j !

3d~r i j 2s!b̂i j ~gPaa821!Q i
a . ~34!

Here r̂ i j 5(xi2xj )/r i j is a unit vector along the line of cen-
ters between particlei and the catalytic spherej, r i j 5uxi

2xj u is the magnitude of this vector, and the operatorb̂i j

converts the velocity of particlei to its post-collision value
after collision with the catalytic spherej:

b̂i j ~v1 ,v2 ,...,vi ,...,vN!5~v1 ,v2 ,...,vi* ,...,vN!. ~35!

For bounce-back dynamics we havevi* 52vi . The operator
Paa8 acts on the species labels to effect reactive collisions so

that Paa8Q i
a5Q i

a8 , wherea85B if a5A and vice versa.
The factorg accounts for the possibility that the forward and
reverse reactions occur with different probabilities, leading
to an equilibrium constantKeq5g21, which is different from
unity.

Rate law

The chemical rate law for this system my be derived by
taking the dynamical variablea to be the deviation of the
number of particles of speciesA from its average valuex
5NA2^NA&5dNA52dNB , where

NA5(
i 51

N

Q i
A . ~36!

The angular bracketŝ̄ & signify an average over an equi-
librium ensemble where the numbers ofA andB molecules
fluctuate, but their sum is fixed,NA1NB5N. Starting with
Eq. ~33! for t.0 and using standard projection operator
methods,32 we may write a generalized Langevin equation
for x(t) in the form

d

dt
x~ t !5 f x~ t !2

^~L2x!x&

^xx&
x~ t !

2E
0

t

dt8
^~L2x!eQL1t8QL1x&

^xx&
x~ t2t8!, ~37!

where we have introduced the projection operatorPa
5^ax&^xx&21x and its complementQ512P. The random
force is f x(t)5exp@QL1t#QL1x.

Averaging this equation over a nonequilibrium ensemble
wherex does not fluctuate yields the generalized chemical
rate law

d

dt
dnA~ t !52

^~L2x!x&

^xx&
dnA~ t !

2E
0

t

dt8
^~L2x!eQL1t8QL1x&

^xx&
dnA~ t2t8!.

~38!

The contribution
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^~L2x!x&

^xx&
5k0 f~11Keq

21! ~39!

determines the initial rate arising from direct collisions of the
A andB particles with the catalytic spheres. For bounce-back
collision dynamics of theA andB species with the catalytic
sphereC, we have

k0 f5pRs2S 8pkBT

m D 1/2

nC , ~40!

wherenC is the constant number density of catalytic spheres.
The memory term accounts for all diffusion-influenced ef-
fects arising from recollisions with the catalytic spheres.

VI. RESULTS

A. Simulation method

The simulation of the model is carried out in a cubic box
with sidesLB and periodic boundary conditions. The centers
of the spheres of radiuss are located in this box, taking care
to preserve periodic conditions on the edges when the
spheres lie partially outside the cube. Once the catalytic
spheres are placed in the box, the initial positions of the
particles are assigned values that are within the cube, but
outside the spheres. The velocities are chosen from a
Maxwell–Boltzmann distribution.

Given the initial distribution of particles and particle ve-
locities, the simulation begins by grouping the particles in
cubic cells of size 1 within which the multiparticle collision
operators act to change the velocities of all particles, preserv-
ing their positions. Then the displacement of each particle is
computed using the post-collision velocity, taking into ac-
count the periodic boundary conditions of the cube and the
bound-back collisions with the spheres. When a particle hits
a sphere it may react with probabilitypR , and the sign of its
velocity is changed. Collisions between particles and spheres
occur in continuous time in the interval@ t,t1t#. When
many catalytic spheres are present a particle may hit several
spheres in one unit timet.

Once all the particles have been moved, the time ad-
vances one unitt and the particles are regrouped to apply the
multiparticle collision rule again.

B. Single catalytic sphere

In order to test the utility of the mesoscopic model we
investigate a system that contains a dilute distribution of in-
dependent catalyticC particles so that the dynamics may be
described by considering a singleC particle~labeled 1! with
radiuss in a medium ofA andB particles. In the case where
A particles are converted irreversibly toB upon collision
with C the chemical rate law takes the formdn̄A(t)/dt
52kf(t)n̄A(t), wherekf(t) is the time-dependent rate coef-
ficient. If the dynamics of theA density field may be de-
scribed by a diffusion equation, we have the standard par-
tially absorbing sink problem first considered by von
Smoluchowski.11 To determine the rate constant we must
solve the diffusion equation

]nA~r ,t !

]t
5DAnA~r ,t !, ~41!

subject to the boundary condition33

4pDs̄2r̂•~“nA!~ r̂ s̄,t !5k0 fnA~ r̂s,t !. ~42!

This equation assumes that the continuum diffusion equation
is valid up to s̄.s, which accounts for the presence of a
boundary layer in the vicinity of the sphere surface where the
continuum diffusion description should fail. The resulting
expression for the time-dependent rate coefficient is34

kf~ t !5
k0 fkD

k0 f1kD
1

k0 f
2

k0 f1kD
expF S 11

k0 f

kD
D 2 D

s̄2 t G
3erfcF S 11

k0 f

kD
D S Dt

s̄2D 1/2G . ~43!

Here kD54ps̄D is the rate constant for a diffusion-
controlled reaction for a perfectly absorbing sphere.

The time-dependent rate coefficientkf(t) may be deter-
mined directly from the simulation by monitoring theA spe-
cies density field and computing2@dn̄A(t)/dt#/n̄A(t). The
results of such a computation for irreversible reaction (g
50) with probabilitypR50.5 are shown in Fig. 3.

The system size is 1003 volume units and there is a
sphere of radiuss510 located in the center of the system.
The simulation starts withN(0)5NA(0)5107 particles of
speciesA with unit mass uniformly distributed in the space.
The initial velocities are Maxwell distributed withkBT/m
51/3. The time-dependent rate coefficient starts atk0 f and
decays to its asymptotic valuekf . In our mesoscopic model
the continuum theory cannot apply on the scale of one mul-
tiparticle collision cell, so we have takens̄5s11 to ap-
proximately account for the microscopic boundary layer.
One sees good agreement between the simulation and diffu-
sion theory results.

In Fig. 4~a! we plot the values ofkf extracted from the
simulation data in this way versus the radius of the catalytic
sphere.

The figure shows the increasing importance of diffusion-
influenced effects on the value of the rate constant ass in-

FIG. 3. Plot of the time dependent rate constantkf(t)/nC vs t for s510.
The solid line is theoretical value ofkf(t) using Eq.~43! and s̄5s11.

8267J. Chem. Phys., Vol. 120, No. 17, 1 May 2004 Mesoscopic model for diffusion-influenced reaction dynamics

Downloaded 26 Apr 2004 to 141.14.151.158. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



creases. Whilek0 f grows quadratically withs in accordance
with Eq. ~40!, we see thatkf grows more slowly and ap-
proaches the diffusion-limited value ofkD , which depends
linearly on s for large s. The theoretical estimatekf

21

5k0 f
211kD

21 is in good agreement with the simulation re-
sults.

A similar calculation can be carried out for the reversible
case (g51 andpR51). For reversible reactions the chemi-
cal relaxation ratek(t) is given by Eq.~43! with k0 f replaced
by k05k0 f1k0r5k0 f(11Keq

21) and, therefore,k215k0
21

1kD
21 ~Ref. 12!. For our simulation conditionsKeq51 so

that k052k0 f . Also kf5kr . In Fig. 4~b! we plot the simu-
lation values ofkf for the reversible reaction and compare
them with the diffusion equation formula. Once again, good
agreement is found. The effects of diffusion appear at some-
what smaller values ofs sincek0 is larger for the reversible
reaction and the diffusion-limited value of the rate constant
is reached at smaller values ofs.

C. Random distribution of catalytic spheres

If instead of a single catalytic sphere we have a random
distribution of M spheres of radiuss in the volumeV, the
rate constant will depend in a nontrivial way on the catalytic
sphere density or volume fractionf54ps3M /(3V). The

reactions at one sphere surface will alter theA andB particle
density fields there. From the perspective of a continuum
diffusion equation approach, since the diffusion Green func-
tion which couples the dynamics at the different spheres is
long ranged, the interactions from many catalytic spheres
determine the value of the rate constant. The problem is
analogous to the long-range interactions that determine hy-
drodynamic effects on the many-particle friction coefficient.
There have been a number of studies of the volume fraction
dependence of the rate constant.12,23–28 These derivations
rely on resummations of classes of interactions among the
reacting spheres or other techniques.

The chemical relaxation rate for a system with a random
distribution of catalytic spheres with volume fractionf is
given by12,23,24

k~f!5kF11S ~k0 f1k0r !
3

~k0 f1k0r1kD!3 3f D 1/2

1¯G , ~44!

where, as earlier,k215(k0 f1k0r)
211kD

21. The first finite-
density correction to the rate constant depends on the square
root of the volume fraction. This nonanalytic volume fraction
dependence arises from the fact that the diffusion Green
function acts like a screened Coulomb potential coupling the
diffusion fields around the catalytic spheres. As in the Debye
theory of electrolytes, one must sum an infinite series of
divergent terms to obtain the nonanalyticf dependence.

The mesoscopic multiparticle collision dynamics follows
the motions of all of the reacting species and their interac-
tions with the catalytic spheres. Consequently, all many-
sphere collective effects are automatically incorporated in
the dynamics. We have carried out simulations of the chemi-
cal relaxation rate constantk(f) as a function of the volume
fraction of the catalytic spheres for a reversible reaction with
g51 (Keq

2151) andpR50.25 as well as an irreversible re-
action withg50 (Keq

2150) andpR50.5. For this choice of
parameters the theoretical formula predicts thatk(f) for the
reversible reaction is equal tokf(f) for the irreversible re-
action. Our simulations were performed for systems with a
volume fractionf of catalytic spheres with radiuss53 in a
system of size 1003 multiparticle cells and an initial number
density ofA particles,nA(0)510 per cell. The results shown
in Fig. 5 were obtained from an average over five realiza-
tions of the random distribution of catalytic spheres.

We see that the simulation results confirm the existence
of a f1/2 dependence on the volume fraction for small vol-
ume fractions. As predicted by the theory for the chosen
parameter values, the reversible and irreversible data over-
lap, even in the high-volume-fraction regime.

For larger volume fractions the results deviate from the
predictions of Eq. ~44! and the rate constant depends
strongly on the volume fraction. An expression for the rate
constant that includes higher-order corrections has been de-
rived for the irreversible case23 and takes the following form:

FIG. 4. Plot ofkf /nC ~(! vs s, the radius of the catalytic sphere. The initial
value kf(t50)5k0 f ~)! is also plotted versuss in this figure. The solid
lines are the theoretical values of these quantities determined fromk21

5@k0 f(11Keq
21)#211kD

21. ~a! Irreversible reaction (Keq
2150) with pR

50.5. ~b! Reversible reaction (Keq
2151) with pR51.
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k~f!5kH 11~3fk3!1/213fk3F ln@~3fk3!1/2#11

22~k212k22!1gE1 ln~214k!

1JS 2k21,
k0 f12kD

k0 f2kD
k3D G1¯J , ~45!

where gE50.57721... is the Euler constant,k5k0 f /(k0 f

1kD), and

J~A,B!5E
A

`

du
u3

~u11!2~Bu312!
. ~46!

The dashed line in Fig. 5 is the value ofk(f)/nC given by
Eq. ~45!. We see that this formula describes the departure
from the f1/2 behavior that is seen in Fig. 5; however, the
deviation from thef1/2 form occurs at smallerf values than
indicated by the simulation results. The formula does not
provide a quantitative estimate of the rate constant at high
volume fractions, as might be expected in view of its series
character.

From these results we conclude that the mesoscopic mul-
tiparticle collision dynamics provides a powerful tool for the
exploration of concentration effects on diffusion-influenced
reaction kinetics. Such concentration dependence is often
difficult to explore by other means.

VII. CONCLUSION

We have demonstrated that large-scale simulations of
diffusion-influenced reaction kinetics are possible by using
the mesoscopic multiparticle collision model. With this
model the dynamics of tens of millions of particles interact-
ing with hundreds of catalytic spheres could be followed for
long times to obtain the rate constants characterizing the
population decay. Such simulations would be very costly us-
ing full molecular dynamics methods.

Since the dynamics is followed at the~mesoscopic! par-
ticle level, a number of noteworthy features of the dynamical
scheme are worth mentioning. From a technical point of

view the dynamics is stable and no difficulties like those
associated with discretizations of the diffusion equation or
boundary conditions arise. Reversible and irreversible reac-
tion kinetics may be treated in similar fashion. All details of
interactions arising from competition among the catalytic
spheres in a dense suspension are automatically taken into
account; thus, screening effects enter naturally in the dynam-
ics.

The model may be generalized to any reaction scheme
and is not restricted to the simpleA1C
B1C reaction
with catalyticC particles discussed in this paper. Since solute
molecules embedded in the mesoscopic solvent evolve by
full molecular dynamics~without solvent–solvent interac-
tions!, the model will be most efficient when solvent–solvent
interactions are a major time-limiting factor in the simula-
tion. This could be case for conformational changes of large
molecules in solution, reactions involving energy transfer in
solution, etc. Thus, the model should find applicability in a
variety of circumstances when diffusion-influenced reaction
kinetics is important.
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