HTML AESTRACT * LINKEES

JOURNAL OF CHEMICAL PHYSICS VOLUME 120, NUMBER 17 1 MAY 2004

Mesoscopic model for diffusion-influenced reaction dynamics

Kay Tucci®
Max-Planck-Institut fu Physik Komplexer Systeme, tNoitzer Strasse 38, 01187 Dresden, Germany
and SUMA-CeSiMo, Universidad de Los Andesrit#e5101, Venezuela

Raymond Kapral”

Max-Planck-Institut fu Physik Komplexer Systeme, tNoitzer Strasse 38, 01187 Dresden, Germany
and Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto,
ON M5S 3H6, Canada

(Received 2 December 2003; accepted 4 February)2004

A hybrid mesoscopic multiparticle collision model is used to study diffusion-influenced reaction
kinetics. The mesoscopic particle dynamics conserves mass, momentum, and energy so that
hydrodynamic effects are fully taken into account. Reactive and nonreactive interactions with
catalytic solute particles are described by full molecular dynamics. Results are presented for
large-scale, three-dimensional simulations to study the influence of diffusion on the rate constants of
the A+ C=B+ C reaction. In the limit of a dilute solution of catalytic C particles, the simulation
results are compared with diffusion equation approaches for both the irreversible and reversible
reaction cases. Simulation results for systems where the volume fragtidrcatalytic spheres is

high are also presented, and collective interactions among reactions on catalytic spheres that
introduce volume fraction dependence in the rate constants are studie2ZD0O®American Institute

of Physics. [DOI: 10.1063/1.1690244

I. INTRODUCTION simulations! Such models allow one to investigate systems
of high complexity that cannot be studied by straightforward
The dynamics of large complex systems often occurs omolecular dynamics simulation schemes.
disparate time and space scales. A direct molecular dynamics In this article we show how diffusion-influenced reac-
simulation of the equations of motion for such systems isions can be studied using a multiparticle mesoscopic
difficult because of this scale separation and the large nundynamics>® In this dynamical scheme, particle positions and
bers of molecules such systems may contain. Consequenthyelocities are continuous variables and the dynamics consists
mesoscopic models play an important role in investigationsf free-streaming and multiparticle collisions. Multiparticle
of the dynamics of these systems. collisions are carried out by partitioning the system into cells
The use of Langevin and Fokker—Planck equations foland performing a specific type of random rotation of the
Brownian motion is well knowh” and these models have particle velocities in each cell that conserves mass, momen-
been used in much wider contexts—for example, in investitum, and energy. The hydrodynamic equations are obtained
gations of reaction dynamics in the condensed pﬁz&mh on long-distance and -time scdlesnd the model permits
stochastic models are useful when it is impossible or inapefficient simulation of hydrodynamic flows’ Since the dy-
propriate to simulate the full dynamics of the system, includ-namics is carried out at the particle level, it is straightforward
ing all solvent degrees of freedom. to construct hybrid schemes where solute molecules that un-
Suspensions of colloidal particles are also often treatedergo full molecular dynamics are embedded in the mesos-
using mesoscopic models of various types. While the dynameopic solvenf Hydrodynamic interactions among solute par-
ics of the colloidal particles may be accurately modeled usticles are automatically accounted for in the multiparticle
ing Langevin dynamics, hydrodynamic interactions play anmesoscopic dynamicsThe method has been generalized to
important role in dense colloidal suspensions. The frictiontreat phase-segregating fluids with surfactafits.
tensors that enter the Langevin equations depend on the col- Diffusion-influenced reaction dynamics is widely used to
loidal particle configuration. To compute the frictional prop- model processes like enzymatic turnover or collision-
erties of dense suspensions, the intervening solvent is ofteAnduced isomerization in complex systems. von Smolu-
approximated by the continuum equations of hydrodynamicghowski constructed a continuum theory for such reactions
to determine the hydrodynamic interactions among the colbased on a solution of the diffusion equatidrin this article
loidal particles. we focus on the reversibla+ C=B+ C reaction where a
Other approaches for constructing mesoscopic dynamicsonsiderable body of research has been concerned with the
of complex systems include construction of effective solventdevelopment of refined theoretical mod&s® Simulation
models to be used in the context of full molecular dynamicsscheme® =2 for three-dimensional diffusive reaction dy-
namics have been constructed. Diffusion-influenced reac-
3Electronic mail: kay@ula.ve tions taking place in a dense field of catalytic particles are
PElectronic mail: rkapral@chem.utoronto.ca strongly affected by perturbations of the diffusion field aris-
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ing from reactions at the different catalytic sif€s?° This  model is similar in spirit to the direct simulation Monte

effect is similar to the hydrodynamic interactions that enterCarlo modef! but with a different discrete-time collision

colloidal suspension dynamics. We show how collective ef-dynamics that simplifies the simulations and makes them

fects on diffusion-influenced reaction dynamics can be studmore efficient.

ied by simulations of a mesoscopic model for these systems. The mesoscopic dynamics for a multicomponent system

The mesoscopic multiparticle collision model allows us tocan be carried out in a similar way by generalizing the mul-

simulate systems with tens of millions of particles for long tiparticle collision rule. Suppose thé-particle system com-

times in order to determine power-law decays and nonangprises different speciegs=A,B,... with massesn,,. In this

lytic catalytic particle density effects on the reaction rates. case it is useful to introduce the functi@¥{* that character-

The outline of the paper is as follows. Section Il izes the speciea of a given particld. This function has the

sketches the mesoscopic multiparticle collision model andollowing properties:

presents its generalization to multicomponent systems. The .

evolution equations that encode the multiparticle mesoscopic  ©{'0{" =3J,,; (€)

dynamics are presented in Sec. lll. The computation of the _ . . .
e . N . : .1.e., particlei cannot be of different species at the same time.

diffusion coefficient, a necessary ingredient for the analysis

. R . Also,

of reaction dynamics, is given in Sec. IV. In Sec. V we show

how the model can be generalized to treat chemical reac-

tions. In particular, we study the reactioh+C=B+C, . =1, 4

which occurs upon collision with catalytic C particles. The

simulation algorithms and simulation results for dilute andso that particlé has to have some species type. The number

concentrated suspensions of catalytic spheres are presenifdparticles of specieg is given by

in Sec. VI. The conclusions of the investigation are contained

. N
in Sec. VII. Na=2 0. 5)
i=1
II. MULTICOMPONENT MESOSCOPIC There are many ways in which the multiparticle collision
MULTIPARTICLE DYNAMICS rule can be generalized for systems with several species, and

: . . : we consider one version that is consistent with the require-
The mesoscopic dynamics we consider comprises twQg

) S o . ment that mass, momentum, and energy be conserved. Let
steps: multiparticle collisions among the particles and fre

(@) _of- i i i

streaming between collisiofisSuppose the system contains‘i/'E be t.h e center-of mass .ve|o<:|ty of particles of species
. . o g : that are in the celk at timet:

N particles with positions and velocities given by
(XN VN =(x;,... Xn,V1,....vn). While the particle posi- 1
tions and velocities are continuous variables, for the purpose V(ga)(t):
of effecting collisions, the system is divided inttocells la-
beled by the index. Collisions occur locally in the cells in Wherenga) is the number of particles of the speciesj;n cell
the following way: Rotation operatoi®, chosen randomly ¢ with volumeV at timet. The center-of-mass velocity of all

from a set of rotation operator® ={a,,....o}, are as- ng(t)==3,n{*)(t) particles in the celk at timet is given by
signed to each celf of the system. If a cel€ containsn,

particles at timet and the center-of-mass velocity in the cell 2, nE0m V(1)

W”XZ«V 07vi(1), (6)

is Vg(t)=n; ' vi(t), the post-collision values of the ve- Vel)= 3,n'm, ™
locities of the particles in the cell;", are computed by . )
rotating the particle velocities relative t and adding/; to In the model we adopt, two different types of multipar-
the result ticle collisions occur. The first is a collision that involves
particles of all species. To perform this collision, we use a
Vi (1) =V(t) + @ vi(t) = V(D)]. (1) rotation operato, which is applied to every particle in a
After the collision events in each cell, the particles freeCell @s for single-component system. The second type of
stream to their new positions at tinte 7 multiparticle collision involves only particles of the same
. species. The rotation operatdf* effects this collision and is
Xi(t+7)=X(t) +Vvi (1) (2)  applied to each particle of speciesin the cell. Not only

This simple dynamics has been shown to conserve masd0€S it change from cell to cell and with time like but it
momentum, and energy. The exact hydrodynamic equation%lso changes from species to species. o

are obtained on macroscopic scales, and the system relaxes '€ multiparticle collision process can be divided into
to an equilibrium Boltzmann distribution of velocitiécon-  these two independent steps. For the set of particles that are
sequently, the dynamics, although highly idealized, has cor" the cell¢, first we perform the all-species collision as

rect behavior on macroqupic _scale's which are Io_ng com- V/=Vet (v~ V), ®)
pared to the effective collision times in the model. Since the

dynamics is described at the particle level, it is a simplewherey; is the precollision velocity of the particieandv;’ is
matter to couple this mesoscopic dynamics to the full mothe velocity after this step. Second, we apply the one-species
lecular dynamics of solute species embedded f#4tThe  rotation operator
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0.8
V=2 OF (Ve DE(v - V), )
a N
\
,,(a) . . . 06 [~ 'If \
where V;'* is the center-of-mass velocity of particles of p
speciesw after the all-species collision step. Note tlagtis (Vm) ;1 \
applied to all particles in the cell, but tli are applied only 0.4}
on particles of species.
From Egs.(8) and (9) the post-collision velocity of a
particle may be expressed as 02
VE =Vt a)g(fvgw—vgw; OM(@f b (vi— V™). o —+ _'1 " i —

(10

lll. EVOLUTION EQUATIONS FIG. 1. Comparison of the simulated velocity distributigmstogram with

. . . the Maxwell-Boltzmann distribution functiogsolid line) for kg T=1/3.
The dynamics described above can be encoded in an ofs ) B

evolution equation for the phase space probability density:

Assuming that the system is ergodic, then, in view of the
conservation of mass, momentum, and energy, the stationary
=CP(VN) XN ¢y, (11)  distribution of the Markov chain in Eq11) is given by the
microcanonical ensemble expression

P(VN XN 4+ v(N 7 ¢4 7) =gloP(VN XN 1+ 7)

where the free-streaming Liouville operator is LN g
(N) %(N)y — il amally.2— —
Po(VN, X M) Ns(z,\,;l; O "'me]v| 23)

N
Lo=2 > O7(v;- V), (12
a i=1 N
andN=2% N, is the total number of particles in the system. X ;1 % ®i“m“(vi—Vj), (16)
If we choose the rotation operatabsand® randomly from . _ _ .
the set(, the collision operator may be written as wherev is the mean velocity of the system,is the dimen-
sion, and\ is a normalization constant. If we integreg
1 over the phase space of all particles except pariiche

CP(VN XN 1) = > | dv NPy N XN 1y

obtain the Maxwell—-Boltzmann distribution in the limit of
largeN.

Figure 1 shows the results of a simulation of the velocity
probability distribution for a system with volumé=100°
cells of unit length andN=10" particles. The particles were
— a0 v = Vi), (13 initially uniformly distributed in the volumé/ and all par-
ticles had the same spebd=1, but different random direc-

. X o , . tions. To obtain the results in this figure we assumed that the
We may write the evolution equation in continuous t'mespecies were mechanically identical with mass=1 and

?y |rk1]trofducn;lg aﬁfunctlpn c.oI|I|S|on".te.rm which accounts ;s the multiparticle collision rule in E4LO) with rotations
or t e act'T att ehmu tiparticle collisions occur at dlscrete&)§ and? selected from the s€={m/2,~ m/2} about axes
time intervals. We have whose directions were chosen uniformly on the surface of a

sphere(=m/2 collision rulg. This version of the collision

1ol

ot
N
<11 .Hl O S(vi—Vi—d (VY=V}

whereL is the number of cells.

d
EP(V(N),X(N),t)=(—L0+C)P(V<N),X(N),t), (14)  rule for mechanically identical particles will be used in all
calculations presented in this paper.
where the collision operataf acts on the velocities of the The figure compares the histogram of theomponent
particles at discrete timasr and is defined as of the velocity with the Maxwell-Boltzmann distribution
) mg| 12 5
R N —Bmu /2
CP(VN XN t)= > s(t—m7)(C—1)P(V™W XN 1), Pr(vx) (277) e an

m=0
(150  whereg= (kgT) 1, and confirms that this initial distribution

o o evolves to the Maxwell-Boltzmann distribution under meso-
If Eq. (14) is integrated over a time intervah7— e to (m scopic dynamics.
+1)7—e€, we recover Eq(11) corresponding to multipar- We may also write an evolution equation for any dy-
ticle collisions followed by free streaming. Instead, integra-p,5mical variablea(V™, X)) as
tion over the jump at=(m+ 1)7 yields an analogous dis-
crete time equation with free streaming followed by ia(V(N) XN 1) = (Lo + C)a(VN XN 1) (18)
collision. dt A 0 A
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14 An approximate expression f@ can be derived by as-
suming a single relaxation time approximation. If we sup-
12 - pose the decay is given by a single relaxation time, we have
= v ox(€T v (1)) ¢
D 1 < U x( )>%(< UM )> E(I’D)e. 21)
08 <Uxe> <Uxe>
' The diffusion coefficient is then approximately given by
0.6 - o
1 (Vo) (1+T1p)
= Y — XY X
04 b D Z(UXUX)+<UXUX>ZO r'D 2(1_rD) . (22)
1 l 1 1 | 1 i
0 2 4 6 8 10 12 14 The relaxation rate may be computed in the Boltzmann
approximatiorf
p o N
P
FIG. 2. Comparison of the simulated diffusion coefficigat) with the (lev 1x( T)>:f dVU1x2 21 ||Q||n| e’
®w n= .

Boltzmann valuésolid line). The = 7/2 collision rule was used to obtain the
results. The volume wag=100° and the temperature wagT=1/3.

« f v sv—vp Il o(v)S, vk,
i=1 i=1

whereC has the same form asin Eq. (15) with C replaced (23
by C: wherev 1, is thex component velocity of the single particle
1. Since cross correlations between different particles are not
Ca(vN) XN 1) present for self-diffusion, we have
1 N 1 * ple . n
= WEL f dV’(N>a(V’(N),X(N),t)H |1_[1 @ia <lele(7)>: mzw: n§=:1 nl J dV(n)lelei];[l d(vy).
. o (24)

T\ . _ " (a) _ _~an ()
X oW =Vg= bV =V = 0 ovi= V™). (19 The x component of the post-collision velocityf, may

X . N - 2
This equation is the starting point for the generalization tobe written using Eq(10) for the =f2 collision rule dis

. . cussed above as
reacting systems in Sec. V.
1
UIXZEJ dn{VX+nX[n-(V(“)—V)]}

IV. DIFFUSION 1
o L +— f dﬁ(“>J dhfl® (A A)
Knowledge of the value of the diffusion coefficient is (4)
essential for the analysis of diffusion-influenced reaction ki-
netics. In this section we determine the diffusion coefficient
as a function of the density from simulations of the mesoswherefi andi(®) are the normal vectors associated with the
copic multiparticle dynamics and derive an approximate anarotation operatoré& and®®, respectively. As a result of this

X[A- (v = V)], (29

lytical expression for its value. integration we obtain

The diffusion coefficient is given by the time integral of 1
the yelocﬁy correlation func_t|0n. For the_dlscrete time dy- v’l‘x=§(v1x+ 2V,). (26)
namics of the model, the time integral is replaced by its

trapezoidal rule approximation, as shown by a discrete-time\ssyming that particles of different species have the same
Green—Kubo analysfs¥ Thus the diffusion coefficierD is  ass and substituting E66) into Eq. (24), we find

given by

oo n 7p
p'e n+2
1 * <lele(T)>:nZl n f dVl(le)z(g_n) b(vq)
D=5 (v + 2 (vaul€n), (20) )
/ _ (V10 1) p'e””? E+ 1 27)
where v, is the x component of the velocity of a tagged 3 4=1 onl o n '

particle in the systemWe suppress the species indexor = . . .
: . . . : . For large enouglp, we may approximate this expression b
the case of mechanically identical particles since all species ¢ g y app P y

have the same diffusion coefficient\e have computed®d (V1x0 1) Z ple P

using this expression as well as the formulaoin terms of (Vi 1x(7))~ 3 Z o (24n), (28)
the mean-square displacement as a function of the mean par- nt '

ticle density per cellp. The results are shown in Fig. 2. which yields

Downloaded 26 Apr 2004 to 141.14.151.158. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



8266 J. Chem. Phys., Vol. 120, No. 17, 1 May 2004

2(1—e P)+p
p=——.

3p (29

Substitutingrp into Eq.(22), the expression for the diffusion
coefficient is
kT )

2p+1—-e?
T

p—1l+e? (30

K. Tucci and R. Kapral

& 241 Vi Fij| O(F ;- Fij) 8(rij— o)

LtZE

M N
X(Bij_l)e)ia_l'pRE J_Zl ;1 Vi Byl O(Fvi - Fij)

X 8(r;— o) by (yP* —1)OF. (34)

Herefj;=(x;—x;)/rj; is a unit vector along the line of cen-

This analytic formula is compared with the simulation resultsters between particlé and the catalytic spherg i =|x;
in Fig. 2 where it is seen that it provides an excellent ap—_xj| is the magnitude of this vector, and the operaﬁqr

proximation to the simulation results over all of the physi-
cally interesting density range.

V. REACTIVE DYNAMICS

Next, we consider a reactive system withfinite-sized
catalytic spherical particle€C) and a total oN=N,+Ng A
and B particles which react with th€ particles through the
reactions

I
A+C=B+C.
kf

31)

The A andB particles undergo both nonreactive and reactive

collisions withC and the multiparticle collisions described in

converts the velocity of particleto its post-collision value
after collision with the catalytic spheje

Bij(vl,vz,...,vi,...,vN)=(v1,v2,...,vi* ,vy). (39

For bounce-back dynamics we have= —v;. The operator
P acts on the species labels to effect reactive collisions so

that P**' @%=0¢ , wherea' =B if a=A and vice versa.
The factory accounts for the possibility that the forward and
reverse reactions occur with different probabilities, leading
to an equilibrium constar .= v~ 1, which is different from

unity.
Rate law

The chemical rate law for this system my be derived by
taking the dynamical variabla to be the deviation of the

Sec. Il among themselves. The macroscopic mass action rasmber of particles of species from its average valug

law may be written as

¢ (D) = = (ki k) STIA(1) = — KSTA(D),

(32)
where dna(t) =na(t) —natis the deviation of mean number
density of A particles from its equilibrium value ankk=Kk;
+k, is the reciprocal of the chemical relaxation time. We
have incorporated the fixed number density of the cata(ytic
particles into the rate constants.

The microscopic evolution equation for this system may
be written by simply augmenting the free-streaming evolu-

tion operator in Eq.(12) with a Liouville operatorL that
describes the interactions of tlheandB particles with theC
particles. If the interactions o& and B with C are through
continuous potentiald, takes the standard forin=F-Vp,
whereF is the force between th& andB particles andC and
P is the vector of the momenta of the patrticles.

= NA_<NA>: 6NA: - (SNB ’ Whel’e

N
Na=2, O (36)

=1

The angular bracket§--) signify an average over an equi-

librium ensemble where the numbers Adfand B molecules

fluctuate, but their sum is fixedy,+Ng=N. Starting with

Eq. (33) for t>0 and using standard projection operator

methods’?> we may write a generalized Langevin equation

for x(t) in the form

d o ((Lx)x)

th(t)_fX(t) <XX> X(t)
Co((Lype®oLy
fodt 0 x(t—=t"), (37

where we have introduced the projection operafea

For the purposes of calculation and illustration, we adopt= (ax){xx)~'x and its complemen@=1—P. The random

a model where th& particles are fixed in space and have
radiusc. The A andB particles either bounce back from the

force isf, (t) =exd QL t]OL, x.
Averaging this equation over a nonequilibrium ensemble

catalytic spheres without changing their identity or react withwhere y does not fluctuate yields the generalized chemical

probability pg. In this case the evolution equation for any
dynamical variable in the system is given by

%a(X)(N),V(N),t) =(Lo*xL.+C)a(X™N vV 1),
(33

where thex signs apply fot>0 andt<0, respectively. The
Liouville operatorsL.. describing the reactive and nonreac-
tive collisions with the catalytic particles are given by

rate law
— . x)—
gt ona(t)=— o Snp(t)
to(edtolg—
—fodt o Sna(t—t').

(38
The contribution
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(L-x)x) kos [
L k(1K (39
(xx) o & -
determines the initial rate arising from direct collisions of the s (8)
A andB particles with the catalytic spheres. For bounce-back oy
collision dynamics of thed andB species with the catalytic 100
sphereC, we have
87TkBT 1/2 75
Kor= pRUZ( - Nc, (40)
. . . 50
wherenc is the constant number density of catalytic spheres.
The memory term accounts for all diffusion-influenced ef- 5
fects arising from recollisions with the catalytic spheres. 0 00 400 p 600 800 1000
FIG. 3. Plot of the time dependent rate constiyft)/nc vst for o=10.
VI. RESULTS The solid line is theoretical value &f(t) using Eq.(43) ando=0o+1.
A. Simulation method
The simulation of the model is carried out in a cubic box
with sidesLg and periodic boundary conditions. The centers Ina(r,1) =D AnA(T1) (41)
of the spheres of radius are located in this box, taking care ot ATAL D

to preserve periodic conditions on the edges when th(gubject to the boundary conditiéh
spheres lie partially outside the cube. Once the catalytic
spheres are placed in the box, the initial positions of the 4wDo*f-(Vny)(fo,t)=Koha(fo,t). (42

partlples are assigned values thaj[.are within the cube, bl’\Ihis equation assumes that the continuum diffusion equation
outside the spheres._ The yelomhes are chosen from R valid up too> o, which accounts for the presence of a
Maxwell-Boltzmann distribution. boundary layer in the vicinity of the sphere surface where the

| _t_G|ve:1hthe_|n|t||alt_d|stgbut_|on gf partlcl_es a?hd part'{?'? V€ continuum diffusion description should fail. The resulting
ocities, he simulation begins by grouping the particies Inexpression for the time-dependent rate coefficietft is
cubic cells of size 1 within which the multiparticle collision
2
D

operators act to change the velocities of all particles, preserv- Kotkp ka

ing their positions. Then the displacement of each particle is ()= Kot Kp  Kos+Kp ex;{ ?2"
computed using the post-collision velocity, taking into ac-

count the periodic boundary conditions of the cube and the Xerf(:[
bound-back collisions with the spheres. When a particle hits Kp

a sphere it may react with probabilipg, and the sign of its Here ko=475D is the rate constant for a diffusion-

velocity is changed. Collisions between particles and spherecsOntrolled reaction for a perfectlv absorbing sohere
occur in continuous time in the intervdk,t+ 7]. When P y gsp ;

many catalytic spheres are present a particle may hit several inggzitrlgzi-dfergﬁqn?rfentsirritli;[?oer:fglérag[r)litrggz btewéjsetg-
spheres in one unit time. Yy y g p

Once all the particles have been moved, the time ad®'®s density field and computing [dna(t)/dt]/na(t). The

. . results of such a computation for irreversible reaction (
vances one unit and the particles are regrouped to apply the . - -
. . . . =0) with probability pg=0.5 are shown in Fig. 3.
multiparticle collision rule again.

The system size is 160volume units and there is a
sphere of radiugr=10 located in the center of the system.
The simulation starts wittN(0)=N,(0)=10" particles of
speciesA with unit mass uniformly distributed in the space.

In order to test the utility of the mesoscopic model we The initial velocities are Maxwell distributed witkgT/m
investigate a system that contains a dilute distribution of in=1/3. The time-dependent rate coefficient startkgatand
dependent catalyti€ particles so that the dynamics may be decays to its asymptotic vallg . In our mesoscopic model
described by considering a singleparticle (labeled 3 with  the continuum theory cannot apply on the scale of one mul-
radiuso in a medium ofA andB particles. In the case where tiparticle collision cell, so we have takem=oc+1 to ap-

A particles are converted irreversibly #® upon collision  proximately account for the microscopic boundary layer.
with C the chemical rate law takes the fordn,(t)/dt  One sees good agreement between the simulation and diffu-
= —k¢(t)na(t), wherek;(t) is the time-dependent rate coef- sion theory results.

ficient. If the dynamics of theA density field may be de- In Fig. 4(a) we plot the values ok; extracted from the
scribed by a diffusion equation, we have the standard parsimulation data in this way versus the radius of the catalytic
tially absorbing sink problem first considered by von sphere.

Smoluchowskt! To determine the rate constant we must  The figure shows the increasing importance of diffusion-
solve the diffusion equation influenced effects on the value of the rate constant &

Kot
ko

1+

Kot

1+

Dt 1/2
—) 43

52

B. Single catalytic sphere
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150 reactions at one sphere surface will alter endB particle
(a) density fields there. From the perspective of a continuum
125 1= diffusion equation approach, since the diffusion Green func-
100 b tion which couples the dynamics at the different spheres is
long ranged, the interactions from many catalytic spheres
ke b 9 determine the value of the rate constant. The problem is
ne analogous to the long-range interactions that determine hy-
50 |- drodynamic effects on the many-particle friction coefficient.
2 There have been a number of studies of the volume fraction
25 - dependence of the rate const&>~2% These derivations
0 ' | | | rely on resummations of classes of interactions among the
0 5 4 6 8 10 reacting spheres or other techniques.
o The chemical relaxation rate for a system with a random
distribution of catalytic spheres with volume fractiahis
300 given by12,23,24
(b)
250 |-
200 - (Kot +Kor)® )1/2
6ol k(¢)=k| 1+ (k0f+k0r+kD)33d) +ee, (44
nc A
100
where, as earliek = (ko;+ko,) “*+kp . The first finite-
50 = v » : density correction to the rate constant depends on the square
0 : | | | root of the volume fraction. This nonanalytic volume fraction
0 9 4 6 ] 10 dependence arises from the fact that the diffusion Green
o function acts like a screened Coulomb potential coupling the

_ _ .. diffusion fields around the catalytic spheres. As in the Debye
FIG. 4. Plot ofk; /n¢ (@)_vsm the radius of the c_atalytlc_sphere.Thelmtlal theory of electrolytes one must sum an infinite series of
value k¢(t=0)=Kkqs ([J) is also plotted versus in this figure. The solid !
lines are the theoretical values of these quantities determined krom  divergent terms to obtain the nonanalyéodependence.
=[kot(1+K D1 *+kp'. (8 Irreversible reaction K '=0) with pg The mesoscopic multiparticle collision dynamics follows
=0.5. (b) Reversible reactionKgq =1) with pg=1. the motions of all of the reacting species and their interac-
tions with the catalytic spheres. Consequently, all many-
creases. Whild, grows quadratically withr in accordance sphere col_lective effects are autom_atically incorporated il_’l
with Eq. (40), we see thak; grows more slowly and ap- the dynam_lcs. We have carried out S|mul_at|ons of the chemi-
proaches the diffusion-limited value &f,, which depends cal relaxation rate constak{¢) as a function of the volume
linearly on o for large . The theoretical estimaté; fraction of the catalytic spheres for a reversible reaction with
—kyt+ks? is in good agreement with the simulation re- ¥=1 (K¢q =1) andpr=0.25 as well as an irreversible re-
sults. action withy=0 (Kgql=0) andpgr=0.5. For this choice of
A similar calculation can be carried out for the reversibleparameters the theoretical formula predicts #(@t) for the
case (=1 andpg=1). For reversible reactions the chemi- reversible reaction is equal tq(¢) for the irreversible re-
cal relaxation raté(t) is given by Eq.(43) with ko; replaced  action. Our simulations were performed for systems with a
by ko=Kos+ Koy =Ko (1+ Ke‘ql) and, thereforek 1= kgl volume fractiong of catalytic spheres with radius=3 in a
+kp! (Ref. 12. For our simulation condition&,~=1 so  system of size 1G0multiparticle cells and an initial number
thatko=2kq; . Also ki=Kk; . In Fig. 4b) we plot the simu-  density ofA particles,n,(0)=10 per cell. The results shown
lation values ofk; for the reversible reaction and compare in Fig. 5 were obtained from an average over five realiza-
them with the diffusion equation formula. Once again, goodsions of the random distribution of catalytic spheres.
agreement is found. The effects of diffusion appear at some- e see that the simulation results confirm the existence
what_smaller value_s o:fr.singelfo is larger for the reversible of 5 #*2 dependence on the volume fraction for small vol-
reactlon and the diffusion-limited value of the rate constani; e fractions. As predicted by the theory for the chosen
is reached at smaller values of parameter values, the reversible and irreversible data over-
o _ lap, even in the high-volume-fraction regime.
C. Random distribution of catalytic spheres For larger volume fractions the results deviate from the
If instead of a single catalytic sphere we have a randonpredictions of Eq.(44) and the rate constant depends
distribution of M spheres of radiug in the volumeV, the  strongly on the volume fraction. An expression for the rate
rate constant will depend in a nontrivial way on the catalyticconstant that includes higher-order corrections has been de-
sphere density or volume fractioh=4mwo>M/(3V). The rived for the irreversible cad&and takes the following form:
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view the dynamics is stable and no difficulties like those
associated with discretizations of the diffusion equation or
boundary conditions arise. Reversible and irreversible reac-
tion kinetics may be treated in similar fashion. All details of
interactions arising from competition among the catalytic
spheres in a dense suspension are automatically taken into
account; thus, screening effects enter naturally in the dynam-
ics.

The model may be generalized to any reaction scheme
and is not restricted to the simplke+C=B+C reaction
with catalyticC particles discussed in this paper. Since solute
molecules embedded in the mesoscopic solvent evolve by
full molecular dynamics(without solvent—solvent interac-
tions), the model will be most efficient when solvent—solvent
interactions are a major time-limiting factor in the simula-
;'bc_m. This could be case for conformational changes of large

The solid line is determined using EG44). The dashed line is obtained Molecules in solution, reactions involving energy transfer in
using Eq.(45) which includes higher-order corrections in the volume frac- solution, etc. Thus, the model should find applicability in a

tion.

In[(3¢x3)Y?]+1

k(o)= k‘ 1+(3¢x) 2+ 3¢x3

—2(k" Y= k") + ye+In(2+4k)

Ko+ 2K
+3| 2671 uK3> +} (45)

" kot —kp

where ye=0.57721... is the Euler constank,=Kg¢/(Kos
+kp), and

u3

(u+1)%(Bu+2)"

J(A,B)= f:du (46)

The dashed line in Fig. 5 is the value lof¢)/n¢ given by

variety of circumstances when diffusion-influenced reaction
kinetics is important.
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