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Diffusiophoretically induced interactions between
chemically active and inert particles†

Shang Yik Reigh, *a Prabha Chuphal,*b Snigdha Thakur*b and

Raymond Kapral *c

In the presence of a chemically active particle, a nearby chemically inert particle can respond to a

concentration gradient and move by diffusiophoresis. The nature of the motion is studied for two cases:

first, a fixed reactive sphere and a moving inert sphere, and second, freely moving reactive and inert

spheres. The continuum reaction–diffusion and Stokes equations are solved analytically for these

systems and microscopic simulations of the dynamics are carried out. Although the relative velocities of

the spheres are very similar in the two systems, the local and global structures of streamlines and the

flow velocity fields are found to be quite different. For freely moving spheres, when the two spheres

approach each other the flow generated by the inert sphere through diffusiophoresis drags the reactive

sphere towards it. This leads to a self-assembled dimer motor that is able to propel itself in solution. The

fluid flow field at the moment of dimer formation changes direction. The ratio of sphere sizes in the

dimer influences the characteristics of the flow fields, and this feature suggests that active self-assembly

of spherical colloidal particles may be manipulated by sphere-size changes in such reactive systems.

1 Introduction

Both living organisms and inanimate objects can respond to

the presence of chemical gradients by moving either towards or

away from high concentrations of chemical species. In the

biological realm organisms are observed to orient or move in

response to chemical agents. For instance, E. coli bacteria are

found in glucose-rich regions indicating that they search for

food and tend to migrate toward it,1,2 sperm cells are known to

follow concentration gradients of chemoattractants secreted

by the oocyte for fertilization,3 and there are many other

examples.1,4 The ability to sense chemical gradients is not

restricted to living organisms. It is well known that colloidal

particles can respond to chemical gradients and move to higher

or lower concentration regions through diffusiophoretic

mechanisms.5–8 In this and other phoretic mechanisms, the

gradient of some field across the colloidal particle gives rise to

a body force, which, because of momentum conservation,

induces fluid flow in the surrounding medium that causes

the particle to move. The motions of motors propelled by self-

phoretic mechanisms9–12 have also been observed to be affected by

the presence of chemical gradients; for example, experiments have

shown that bimetallic-rod and Janus motors preferentially move

towards higher hydrogen peroxide concentrations.13,14 As well,

simulations of sphere-dimer motors in a microfluidic channel15

and in bulk solution16 show that these motors respond to

concentration gradients.

In this article, we investigate the dynamics of a pair of

small colloidal particles, one of which is chemically active

and converts fuel to product, while the other is nonreactive.

Further, we suppose that the interactions of the fuel and product

molecules with the colloidal particles are the same for the reactive

particle but different for the nonreactive particle, so that the

nonreactive particle can respond to the chemical gradient

produced by the catalytic particle as a result of diffusiophoresis.

We consider interactions such that diffusiophoresis causes

motion towards high product concentrations, and situations

where the reactive particle is either fixed or free to move.

These specific choices are only a few among several other

possibilities. For instance, the interaction potentials may be

chosen so that either or both colloidal particles may be diffusio-

phoretically active with different responses to gradients.17 Also,

either particle may be fixed or free to move, or their inter-

nuclear separation can be fixed as in a sphere-dimer motor.18–20

All of these situations are potentially interesting to study.

A study, based on a continuum description of the fluid, of

the dynamics of a pair of colloidal particles each of which could
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be Janus particles or active or inert is related to the work

presented here.21,22 In order to investigate the dynamical

properties of the spheres we use deterministic continuum

theory as well as coarse-grain microscopic simulations. The

particle-based simulations include fluctuations relevant for

experimental studies of small active colloidal particles in

solution,23 and automatically account for chemical-gradient,

hydrodynamic and direct intermolecular interactions between

the spheres without imposing specific boundary conditions.24

The diffusiophoretic mechanism for the motion of a

colloidal particle in an external concentration gradient is well

known.5–8 By choosing the fixed reactive particle in our study to

be diffusiophoretically inactive, it serves simply as reactive source

that produces concentration gradients in the system.13–16 The

nonreactive colloidal particle responds to this chemical gradient,

which is analogous to an external chemical gradient, but presents

some additional features as a result of pinning and reaction.

We may contrast this case with that when the reactive sphere is

free to move. The reactive particle again only generates concen-

tration gradients in the system but when the two spheres closely

approach we show that they form a self-assembled sphere-dimer

motor that moves autonomously in solution, and we find that

substantial changes in the flow fields occur at the moment of the

dimer formation.

On a basic level, investigations of the mechanisms that give

rise to the concentration and fluid flow fields that are respon-

sible for the dynamics provide insight into the relative roles

of chemical and hydrodynamic interactions, a topic that is

important for studies of the collective dynamics of active

particles.25–27 In this connection, recent experimental and

computational studies have considered mixtures of chemically

active and inactive spherical particles that exhibit interesting

self-assembly and emergent dynamics.28–30 As in the present

study, the dynamics of such mixtures will depend on both

hydrodynamic and chemical, temperature, or electric fields

that exist in the system.21,22,31–35

In Section 2 we present continuum solutions for the reaction–

diffusion and Stokes equations for this problem, and Section 3

describes the particle-based simulation method. Sections 4 and

5 discuss the physical phenomena that are observed for fixed

and freely moving catalytic spheres, respectively. The conclusions

of the investigation are given in Section 6.

2 Continuum theory

We consider two spheres, a catalytically active sphere S1 with

radius R1 and a catalytically inactive sphere S2 with radius R2.

These spheres, shown in Fig. 1, are taken to be separated by a

distance L in three dimensional space. Two solute species A

(reactant) and B (product) take part in the irreversible chemical

reaction A + S1 - B + S1 on the catalytic sphere. Since we

consider the case where catalytic sphere has no phoretic

mobility, the interaction potentials of these species with

the catalytic sphere are assumed to be the same, U1,A = U1,B,

while they are different for the noncatalytic sphere, U2,A a U2,B,

where Ui,I is the interaction potential between the sphere i and

the solute species I.

In this circumstance the concentration gradient in the

system arising from chemical activity on S1 will induce a body

force on the noncatalytic sphere S2. The diffusiophoretic

mechanism will then operate and lead to a mean velocity

component along the line of centers between the two spheres

due to the axial symmetry of the system. In the continuum

description our interest is in the value of the mean velocity that

results from this mechanism, as well as the forms of the

concentration and fluid velocity fields that accompany it.

The two-sphere system can be solved in a bispherical

coordinate system.20,36–39 The bispherical coordinates are

(y, Z, f), where 0 r y r p, �N r Z r N, and 0 r f r 2p

as shown in Fig. 2. In Cartesian coordinates (x, y, z), the relations,

x = x siny cosf/(coshZ � cos y), y = x siny sinf/(coshZ � cos y)

and z = x sinhZ/(coshZ � cosy) are satisfied with a scale factor x

(40).40 The surfaces of the S1 and S2 spheres are represented by

the parameters Z = Z1(40) and Z = Z2(o0), respectively. Inversely,

from the values of the radii of the S1 and S2 spheres, R1 and R2,

and any separation distance, L, which is greater than the sum of

their radii, the bispherical coordinate parameters, x, Z1 and Z2

are found by x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2 � R1
2 � R2

2ð Þ2 � 4R1
2R2

2

q

�

2L, Z1¼

ln x=R1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x=R1ð Þ2
q

� �

, and Z2¼� ln x=R2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x=R2ð Þ2
q

� �

.

2.1 Concentration field

We assume the Péclet number is small so that fluid advection may

be neglected and the steady-state concentration field of species A,

cA, can be found from the solution of the diffusion equation,

r2cA = 0, (1)

Fig. 1 Two spheres, one catalytically active (S1) and the other catalytically

inactive (S2), are shown. The S1 sphere, as a source of concentration

gradients, converts species A (reactant) to B (product) in the reaction,

A + S1 - B + S1, which generates inhomogeneous concentration fields

around the S2 sphere. The S2 sphere moves by the diffusiophoretic

mechanisms due to the asymmetry of the concentration field in its vicinity.

The numbers in the color bar indicate the normalized concentration of

products (B). (The figure is constructed from simulation data described in

the text. The sphere separation distance is L/s = 3.5.)
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subject to the radiation and reflecting boundary conditions,

(J�ĝ)Z=Z1 = %k0cA(Z = Z1),

(J�ĝ)Z=Z2 = 0, (2)

on the S1 and S2 spheres, respectively. Here J = �DrcA is the

diffusion flux of species A, D is the common diffusion constant

of A and B, and %k0 = k0/(4pR1
2), where k0 is the intrinsic reaction

rate coefficient. There are only A particles infinitely far from the

spheres so that cA(r-N) = c0.

The total concentration c0 = cA + cB is conserved in the

reaction–diffusion system with the boundary conditions on the

surfaces of the spheres and infinity, and we can write cA = c0 � cB
locally; thus, we can eliminate cA and consider only cB.

In bispherical coordinates, the concentration of B is now given by

cBðy; ZÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosh Z� m
p

X

1

n¼0

Ane
nþ1

2

� �

Z þ Bne
� nþ1

2

� �

Z

� 	

PnðmÞ,

(3)

where Pn(m) is a Legendre function and m = cosy. The An and Bn
coefficients may obtained by following the same procedure used to

obtain the solution for sphere dimers.20

2.2 Particle velocity, streamlines and flow field

We examine two situations, the first where the catalytic sphere

is fixed in space by an external force and the second where it

free to move and the system is force-free. Different velocity

fields arise in these cases and give rise to dynamics corres-

ponding to physically different phenomena.

2.2.1 Fixed catalytic sphere. We suppose that the catalytic

sphere S1 is fixed in space by external force and the noncatalytic

sphere S2 is able to move in the solution. The concentration

field around the S1 is asymmetric as given by eqn (3); hence,

a flow is generated at the surface of the S2 sphere by the

diffusiophoretic mechanism.7,8 The slip velocity is the fluid

velocity at the outer edge of a boundary layer beyond which the

interaction potentials vanish, and is given in the body-fixed

frame of the sphere by

vs = �k(I � n̂n̂)�rcB, (4)

where I is the unit dyadic, n̂ the surface normal vector,

k ¼ kBT

�m

ð1

0

r e
�U2;BðrÞ= kBTð Þ � e

�U2;AðrÞ= kBTð Þ
h i

dr, (5)

is the diffusiophoretic factor, with �m the shear viscosity, kB the

Boltzmann constant, and T the temperature.8,12

The Reynolds number is assumed to be small so that viscous

forces dominate inertial forces and the fluid flow field outside

of the boundary layer is found by solving the Stokes equation

with the incompressibility condition,

rp = �mr2v, r�v = 0, (6)

subject to the boundary conditions in the laboratory frame of

reference,

vZ=Z1 = 0, vZ=Z2 = (V + vs)Z=Z2, (7)

where p is the pressure, v the fluid velocity field, and V the

velocity of the noncatalytic sphere.

Introducing the stream function c, which is related to the

flow velocity by v = /̂/r � rc, where r = x sin y/(cosh Z � m), one

may replace the Stokes equation with the incompressibility

condition in terms of stream functions by36,40

E4(c) = 0, (8)

where E4 = E2(E2) and E2 = (coshZ � m)/x2[q/qZ{(coshZ � m)q/qZ} +

(1 � m2)q/qm{(cosh Z � m)q/qm}]. This equation has an exact

solution given by36

c ¼ ðcosh Z� mÞ�
3

2

X

1

n¼1

WnðZÞVnðmÞ, (9)

whereWn(Z) = an cosh(n � 1
2)Z + bn sinh(n � 1

2)Z + cn cosh(n + 3

2
)Z +

dn sinh(n + 3

2
)Z and Vn(m) = Pn�1(m) � Pn+1(m). The unknown

coefficients an, bn, cn, and dn in eqn (9) are determined by

boundary conditions at the outer edges of the boundary layers

around the S1 and S2 spheres, i.e. eqn (7). In the laboratory

frame where the motor moves with velocity V, these boundary

conditions are given in terms of the stream function by

cjZ¼Z1
¼ 0, cþ 1

2
r2V


 ��

�

�

�

Z¼Z2

¼ 0,

@c

@Z

�

�

�

�

Z¼Z1

¼ 0,
@

@Z
cþ 1

2
r2V


 ��

�

�

�

Z¼Z2

¼ kr
@cB
@y

�

�

�

�

Z¼Z2

.

(10)

Fig. 2 Bispherical (y, Z, f) and Cartesian (x, y, z) coordinates for two

spheres. The catalytic sphere S1 (red) with radius R1 and noncatalytic

sphere S2 (blue) with radius R2, separated by a distance L, can be specified

by variables Z = Z1 and Z = Z2, respectively. The system is axisymmetric in

the angle f about the z axis that lies along the line connecting the centers

of the two spheres. The hat notation is used to indicate unit vectors.
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By writing w ¼
P

1

n¼1

WnðZÞVnðmÞ in eqn (9), we can replace the

boundary conditions, eqn (10) in terms of w by

wjZ¼Z1
¼ 0,

@w

@Z

�

�

�

�

Z¼Z1

¼ 0,

wjZ¼Z2
¼ � x2V 1� m2

� �

2ðcosh Z� mÞ1=2
�

�

�

�

Z¼Z2

,

@w

@Z

�

�

�

�

Z¼Z2

¼ x2V 1� m2
� �

sinh Z

4ðcosh Z� mÞ3=2
�

�

�

�

Z¼Z2

þ xk
X

1

n¼0

Ane
nþ1

2

� �

Z

�

þ Bne
� nþ1

2

� �

Z

	

� 1� m2
� �

Pn

2

�

þ ðcosh Z� mÞ 1� m2
� �dPn

dm

	�

�

�

�

Z¼Z2

.

(11)

Here, 1



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosh Z� m
p

can be expressed in a series of Legendre

function Pn, (1 � m2)Pn and mVn are rewritten by Gegenbauer

functions Vn�1 and Vn+1, and (1 � m2)dPn/dm is rewritten by

Vn.
20,36,41 Then, we may expand the right sides of eqn (11) for

Z = Z2 in a series of Vn as

wjZ¼Z2
¼ � x2V

ffiffiffi

2
p

X

1

n¼1

nðnþ 1Þ
2nþ 1

e
n�1

2

� �

Z2

2n� 1
� e

nþ3

2

� �

Z2

2nþ 3

2

4

3

5Vn,

@w

@Z

�

�

�

�

Z¼Z2

¼ � x2V

2
ffiffiffi

2
p
X

1

n¼1

nðnþ 1Þ
2nþ 1

e
n�1

2

� �

Z2 � e
nþ3

2

� �

Z2

� 	

Vn

þ xk
X

1

n¼1

FnVn.

(12)

Since both sides of eqn (12) are expanded in a series of

Gegenbauer function Vn, we can determine the unknown

coefficients of Wn(Z) in eqn (9) from the following equations:

an cosh n�1

2


 �

Z1

� �

þbn sinh n�1

2


 �

Z1

� �

þ cn cosh nþ3

2


 �

Z1

� �

þdn sinh nþ3

2


 �

Z1

� �

¼ 0,

an cosh n�1

2


 �

Z2

� �

þbn sinh n�1

2


 �

Z2

� �

þ cn cosh nþ3

2


 �

Z2

� �

þdn sinh nþ3

2


 �

Z2

� �

¼�gn ð2nþ3Þe n�1

2

� �

Z2 �ð2n�1Þe nþ3

2

� �

Z2

� �

,

ð2n�1Þ an sinh n�1

2


 �

Z1

� �

þbn cosh n�1

2


 �

Z1

� �� 	

þð2nþ3Þ cn sinh nþ3

2


 �

Z1

� �

þdn cosh nþ3

2


 �

Z1

� �� 	

¼ 0,

where gn = fnV and fn is given in Table 1 in the Appendix. The

solution of the above equations for the unknown coefficients

an, bn, cn, dn is expressed by

DnX ¼ gnY
ðeÞ�1

2
xkFnZ , (14)

where X = {an,bn,cn,dn}, Y(e) = {Y(2)n ,Y(4)n ,Y(6)n ,Y(8)n }, and

Z = {z(1)n ,z(2)n ,z(3)n ,z(4)n }. The elements of the vectors are given

in Table 1 in the Appendix. The solution for two inactive

spheres can be obtained easily by taking k = 0, which gives

X = gnY
(e)/Dn. In this case, one colloidal sphere (S2) with

constant velocity V moves to the other sphere (S1) fixed in space.

The forces (F1,F2) on the individual spheres (S1,S2) are given

by integrating the stress on the surface of the boundary layer,

Fi ¼
Ð

Si
Pi;z � n̂dSi (i = 1, 2), where Pi,z = ẑ�Pi and P is the stress

tensor. The system is symmetric around the azimuthal angle f

and only the force in the z-direction needs to be considered.

The analytic expressions for the force exerted on the spheres by

the fluid are given in Stimson and Jeffery36 as

F1 ¼ 2
ffiffiffi

2
p

p�m

x

X

1

n¼1

ð2nþ 1Þ an þ bn þ cn þ dnð Þ,

F2 ¼
2
ffiffiffi

2
p

p�m

x

X

1

n¼1

ð2nþ 1Þ an � bn þ cn � dnð Þ.
(15)

The velocity can be found from these force expressions.

Since no external force is applied to the S2 sphere, although

the S1 sphere is fixed in space by an external force, the total

force on the S2 sphere at the outer edge of the boundary layer is

zero, F2 = 0. Noting that gn = fnV, one can find the following

expression for velocity of the noncatalytic sphere,

V ¼ k
x

2

P

1

n¼1

ð2nþ 1ÞFnX
ð�Þ
n




Dn

P

1

n¼1

ð2nþ 1ÞfnGðþÞ
n




Dn

. (16)

Also, the force F1 exerted on the fixed catalytic sphere by the

fluid found here is used for the plots in Fig. 10.

2.2.2 Freely moving catalytic sphere. We now suppose that

both spheres are free to move and construct the solutions for

this force-free case. Letting the velocities of the S1 and S2
spheres be V(1) and V(2), respectively, one may replace the

boundary conditions in eqn (7) by

vZ=Z1 = (V(1))Z=Z1, vZ=Z2 = (V(2) + vs)Z=Z2. (17)

ð2n� 1Þ an sinh n� 1

2


 �

Z2

� �

þ bn cosh n� 1

2


 �

Z2

� �� 	

þ ð2nþ 3Þ cn sinh nþ 3

2


 �

Z2

� �

þ dn cosh nþ 3

2


 �

Z2

� �� 	

¼ �ð2n� 1Þð2nþ 3Þgn e
n�1

2

� �

Z2 � e
nþ3

2

� �

Z2

( )

þ 2xkFn,

(13)
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Then the boundary conditions for the stream function are

cþ 1

2
r2V ðiÞ


 ��

�

�

�

Z¼Zi

¼ 0,

@

@Z
cþ 1

2
r2VðiÞ


 ��

�

�

�

Z¼Zi

¼ kr
@cB
@y

�

�

�

�

Z¼Zi

Yi,

(18)

where Y1 = 0, Y2 = 1, and i = 1, 2.

In this case, the boundary conditions for streamlines in

eqn (18) are rewritten in terms of w ¼
P

1

n¼1

WnðZÞVnðmÞ by

wjZ¼Zi
¼ � x2V ðiÞ 1� m2

� �

2ðcosh Z� mÞ1=2

�

�

�

�

�

Z¼Zi

,

@w

@Z

�

�

�

�

Z¼Zi

¼ x2V ðiÞ
1� m2
� �

sinh Z

4ðcosh Z� mÞ3=2

�

�

�

�

�

Z¼Zi

þ xk
X

1

n¼0

Ane
nþ1

2

� �

Z

�

þ Bne
� nþ1

2

� �

Z

	

� 1� m2
� �

Pn

2
þ ðcosh Z� mÞ 1� m2

� �dPn

dm

� 	�

�

�

�

Z¼Zi

Yi.

(19)

As discussed previously, we may expand the right sides of

eqn (19) in a series of Gegenbauer function Vn as

wjZ¼Zi
¼ � x2V ðiÞ

ffiffiffi

2
p

X

1

n¼1

nðnþ 1Þ
2nþ 1

e
� n�1

2

� �

Zi

2n� 1
� e

� nþ3

2

� �

Zi

2nþ 3

2

4

3

5Vn,

@w

@Z

�

�

�

�

Z¼Zi

¼ � x2V ðiÞ

2
ffiffiffi

2
p

X

1

n¼1

nðnþ 1Þ
2nþ 1

e
� n�1

2

� �

Zi � e
� nþ3

2

� �

Zi

� 	

Vn

þ xk
X

1

n¼1

FnVn

 !

Yi,

(20)

where the upper and lower signs are taken for i = 1 and 2,

respectively.

Since both sides of eqn (20) are expanded in a series of Vn,

we can determine the unknown coefficients of Wn(Z) in eqn (9)

from the following equations:

an cosh n� 1

2


 �

Zi

� �

þ bn sinh n� 1

2


 �

Zi

� �

þ cn cosh nþ 3

2


 �

Zi

� �

þ dn sinh nþ 3

2


 �

Zi

� �

¼ �gðiÞn ð2nþ 3Þe� n�1

2

� �

Zi � ð2n� 1Þe� nþ3

2

� �

Zi

� �

,

where g(i)n = fnV
(i) and the upper and lower signs correspond to

i = 1 and 2, respectively.

The solution of the above equations for the unknown

coefficients an, bn, cn, dn is given by

DnX ¼ gð1Þn Y ðoÞ þ gð2Þn Y ðeÞ � 1

2
xkFnZ, (22)

where X = {an,bn,cn,dn}, Y(o) = {Y(1)n ,Y(3)n ,Y(5)n ,Y(7)n }, Y(e) =

{Y(2)n ,Y(4)n ,Y(6)n ,Y(8)n }, and Z = {z(1)n ,z(2)n ,z(3)n ,z(4)n }. The elements of the

vectors are given in Table 1 in the Appendix. Applying the force-

free conditions on both the spheres, F1 = F2 = 0 in eqn 15,

one can find the solution for the velocities of the S1 and S2
spheres as

V ð1Þ ¼ �A
ð0Þ
B

ð�Þ �A
ðþÞ

B
ðþÞ

AðþÞAð�Þ � Að0Þð Þ2
,

Vð2Þ ¼ A
ð�Þ

B
ð�Þ �A

ð0Þ
B

ðþÞ

AðþÞAð�Þ � Að0Þð Þ2
,

(23)

where

A
ð�;0Þ ¼

X

1

n¼1

ð2nþ 1ÞfnGð�;0Þ
n

.

Dn,

B
ð�Þ ¼ k

1

2
x
X

1

n¼1

ð2nþ 1ÞFnX
ð�Þ
n

.

Dn.

(24)

The solutions for two inactive spheres moving with constant

velocities V(1) and V(2) along the axisymmetric direction can be

obtained easily by setting k = 0, which gives X = (g(1)n Y(o) + g(2)n Y(e))/Dn.

Also, the solutions for the sphere-dimer can be obtained by setting

V(1) = V(2) = V, which gives DnX = gnY � 1
2xkFnZ, where Y = Y(o) + Y(e)

and gn = g
(1)
n = g(2)n . This expression is consistent with the formula

given earlier.20,42

3 Microscopic dynamics

The analytical results for continuum theory are exact given

the formulation of the problem on which they are based.

In particular, they rest on the deterministic continuum descrip-

tion of the fluid and solute concentration as described by the

Stokes and diffusion equations, supplemented with boundary

conditions on the fluid velocity and concentration fields. The

former boundary condition accounts for the fluid dynamics

and the latter boundary condition describes chemical reactions

ð2n� 1Þ an sinh n� 1

2


 �

Zi

� �

þ bn cosh n� 1

2


 �

Zi

� �� 	

þ ð2nþ 3Þ cn sinh nþ 3

2


 �

Zi

� �

þ dn cosh nþ 3

2


 �

Zi

� �� 	

¼ �ð2n� 1Þð2nþ 3ÞgðiÞn e
� n�1

2

� �

Zi � e
� nþ3

2

� �

Zi

� �

þ 2xkFnYi,

(21)
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on the sphere. The fluid viscosity, diffusion constant and reaction

rates of chemical species are specified as input parameters to

solve the equations. The Reynolds and Péclet numbers are

assumed to be small.8,9,20,37,38 This is an appropriate description

for a large macroscopic particle. However, in many experiments,

the active particles have micrometer or nanometer dimensions

and for such systems thermal fluctuations should be taken

into account.23,25–27,29,30 In addition, as one moves to small

nanometer23 or even Angstrom12 scales the assumptions of

continuum dynamics may no longer apply.

The coarse-grain particle-based simulations do not make

such assumptions. The input parameters are the inter-

molecular potentials and multiparticle collision parameters

for the solvent.24 The resulting dynamics then yields all other

properties such as the transport coefficients of the system,

and other dimensionless numbers that characterize the

system. One can show that on long distance and times scales

the continuum hydrodynamic and diffusion equations are

recovered,43 but the dynamics is not restricted to this limit.

Consequently, it is of interest to examine the extent to which

the continuum model can capture the active dynamics of

these small particles.20,44

The coarse-grain microscopic dynamics we employ com-

bines molecular dynamics (MD) with multiparticle collision

(MPC) dynamics.43,45 More specifically, the fluid is composed

of Ns point particles of mass m with positions ri and velocities

vi, where i = 1,. . .,Ns. There are no explicit intermolecular

potentials among these fluid particles and their interactions

are accounted for by multiparticle collisions. The dynamics

consists of two alternating steps: streaming and collision.

In the streaming steps of duration h, all particles in the system

move by Newton’s equations of motion with forces deter-

mined by the sphere–sphere and sphere–solvent intermolecular

potentials. At each collision time the solvent particles are

sorted into cubic cells of side length a, which is larger than

the mean free path, and their relative velocities are rotated

around a randomly oriented axis by a fixed angle a with respect to

the center-of-mass velocities of each cell. The velocity of particle i

after collision is given by vi(t + h) = vcm(t) + R(a)(vi(t) � vcm(t)),

where R(a) is the rotation matrix, vcm ¼
P

Nc

j¼1

vj



Nc is the center-of-

mass velocity of the particles in the cell to which the particle i

belongs, and Nc is the number of particles in that cell. A random

shift of the collision lattice is applied at every collision step to

ensure Galilean invariance.46 The dynamics locally conserves

mass, momentum and energy.24

The spheres interact with the fluid particles through repul-

sive Lennard-Jones (LJ) potentials, U = 4e[(s/r)12 � (s/r)6] + e for

r o 21/6s and U = 0 for r Z 21/6s with energy e and distance s

parameters. In addition, repulsive LJ potentials are employed to

take into account excluded volume interactions between the

two spheres with ss denoting the value of s in this case. In order

to make only the noncatalytic sphere hydrodynamically active,

we choose the interaction energies of the A and B molecules

with the S1 catalytic sphere to be the same (eA = eB = e) and those

with the S2 noncatalytic sphere to be different (eB o eA = e).

Setting eB o eA, so that the A particles are more strongly

repelled from the S2 sphere than the B particles, causes it to

move towards the S1 sphere; hence B plays the role of chemo-

attractant. An irreversible chemical reaction A- B takes place

on the S1 sphere with intrinsic reaction rate k0 whenever A

encounters S1. Collisions of A or B particles with the S2 sphere

do not lead to reaction. To maintain the system in a steady

state, the B particles are converted to A at a distance dp (= Lb/2)

far from the spheres.

All quantities are reported in dimensionless units where

length, energy, mass and time are measured in units of the

MPC cell length a = s/2, e, the solvent mass m, and a
ffiffiffiffiffiffiffiffi

m=e
p

,

respectively. The cubic simulation box with linear dimension

Lb = 50 and periodic boundary conditions in all dimensions is

divided into Lb
3 = 503 cubic cells. Multiparticle collisions are

carried out in each cell by performing velocity rotations by an

angle a = 1201 about a randomly chosen axis every collision

time h = 0.1. The average solvent number density is c0 = 10 and

the temperature is kBT = 1. The MD time step is Dt = 0.01.

The energy parameters for the S2 sphere-fluid repulsive LJ

potentials are eA = 1.0 and eB = 0.1 for A and B, respectively,

while eA = eB = 1.0 for the S1 sphere. The size parameters are

s = 2 and ss = 4 to give effective sphere radii of R1 = R2 = 21/6s.

The sphere mass is taken to be M = 4ps3c0/3 corresponding to

neutral buoyancy. The intrinsic reaction rate constant for the

A + S1 - B + S1 reaction can be estimated from simple

collision theory so that �k0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBT=2pm
p

� 0:4. The transport

properties of the fluid depend on h, a, and Nc. The fluid

viscosity is �m = mNcn = 7.9, where n is the kinematic viscosity,

and the common A and B diffusion constant is D = 0.0611. The

Schmidt number is Sc = n/D = 13 4 1, which ensures that

momentum transport dominates over mass transport, the

Reynolds number Re = c0Va/�m o 0.1, implying that viscosity

is dominant over inertia, and the Péclet number Pe = Va/D o 1,

diffusion being dominant over fluid advection.

The parameter values given above are used as input to

obtain the analytic solutions in the continuum theory. For

example, the factor k in eqn (5) is obtained from the repulsive

cut-off LJ potentials with the energy parameters eA and eB

given in simulations, along with the viscosity from the micro-

scopic model. Using the analytical continuum solutions and

simulations of the microscopic equations of motion, we can

discuss the physics underlying dynamics of these two-sphere

systems. Since the phenomena depend on whether the catalytic

sphere is fixed or free to move, we discuss these two cases

separately.

4 Dynamics with a fixed catalytic
sphere

The process by which a noncatalytic sphere responds to the

chemical gradient produced by a fixed catalytic sphere and is

captured by it has been studied earlier.47,48 Here we reexamine

this process by making use of analytical solutions and exten-

sive simulations of the microscopic model. The dynamical
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processes that enter this seemingly simple process involve

effects that govern the velocity of the noncatalytic sphere and

lead to its eventual capture. At large radial distances between

the spheres the concentration of product B in the vicinity of S2
is low and so is its velocity. As the distance decreases the

concentration of B increases leading to an increased velocity

but as the spheres approach closely more complex interactions

lead to the capture event. We are able to probe the details of

the mechanism responsible for the capture process through

an analysis of the concentration and fluid flow fields that

accompany the dynamics.

The velocity of the S2 sphere, V, is plotted in Fig. 3 as a

function of the distance L separating the centers of the two

spheres. The figure shows the expected increase in velocity as

the S2 sphere approaches the S1 sphere until, at a short

distance, it begins to decrease as the capture event takes

place. The figure compares the simulation results with the

exact analytical continuum theory result in eqn (16). The

results are also compared with an approximate theory where

the two spheres are assumed to be separated by a large

distance. In this case, the concentration field may be approxi-

mated by calculating it in the absence of the S2 sphere
47,48 as

follows. Taking the origin of a spherical polar coordinate

(r1,y1,f1) at the center of the S1 sphere in Fig. 2, the B species

concentration field may be obtained from the solution of the

diffusion eqn (1) subject to the radiation boundary condition

in eqn (2) as

cB r1ð Þ ¼ c0k0

k0 þ kDð Þ
R1

r1
, (25)

where kD = 4pR1D is the Smoluchowski rate coefficient. This

far-field concentration field can be also obtained from the

approximation of the exact solution of the two spheres in large

distance, cB ¼ �
ffiffiffi

2
p

x
P

1

n¼0

An þ Bnð Þ



rþ O 1=r2
� �

,20 where a new

spherical polar coordinate (r, W, f) in Fig. 2 is chosen sharing

the origin, by taking the limit of Z2 - �N (R2 - 0) and

L-N and noting that the n = 0 term is sufficient.

The approximation to the propulsion velocity of the S2
sphere may be then found by averaging the slip velocity like

eqn (4) at the edge of the boundary layer of the S2 sphere
8,12,49

in a coordinate system (r2, y2, f2) where the origin is at the

center of the S2 sphere. The result is

Va ¼ � 1

4pR2
2

ð

S2

vs � ẑdS2. (26)

Here, ẑ is a unit vector along the line of centers of the two

spheres and defines the z-axis of the spherical polar coordinate

system. Using the relation r1
2 = r2

2 + L2 � 2r2L cos y2,

one obtains cB(r2) from eqn (25) and hence an approximate

expression for the sphere velocity for distances L c R2 given by

Va ¼
2kc0k0R1

3 k0 þ kDð ÞL2
. (27)

As expected, the approximate and exact theories agree for large

sphere separations where both have a L�2 power law behavior,

but significant deviations are seen a short distances. The

discrepancies between the microscopic simulations and exact

continuum theory may be due to the use of soft potential

functions and features of microscopic dynamics taking place

in the boundary layer which are not captured by the simple

boundary conditions in the continuum model, which likely

manifest themselves more strongly at large separations where

the product concentrations and gradients are small.

In the microscopic simulations the colloidal particles

undergo Brownian motion as a result of thermal fluctuations,

as well as directed motion due to diffusiophoresis. Fig. 4

shows some examples of noncatalytic sphere trajectories.

At large distances (L/s 4 8) the noncatalytic sphere exhibits

Fig. 3 The velocity V of the noncatalytic S2 sphere as a function of the

separation L between the S2 and S1 catalytic spheres. The black solid line is

the exact solution calculated from continuum hydrodynamic theory in

eqn (16) and the black dashed line is the approximate velocity Va from

eqn (27) that is valid for large L. The red circles with error bars are the

results of microscopic simulations. Averages were obtained from 80

realizations of the dynamics.

Fig. 4 Plot of the distance between the fixed catalytic and moving

noncatalytic spheres as a function of time. Five realizations of the

dynamics are shown, each with an initial separation L/s = 10. Contact

occurs at approximately L/s B 2.3. The time where the distance achieves

its minimum value is the capture time (see Fig. 5).
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small thermal fluctuations in its displacement which are

less than its radius, as well as larger random displacements.

When L/s o 6, diffusiophoretic interactions are stronger and

the deterministic component of the motion dominates. Thus,

fluctuations lead to a dispersion of capture times seen in

Fig. 4, and only the average in Fig. 5 can be compared to the

deterministic theory.

The capture time, t, which is defined by the time it takes

the S2 sphere, initially at L, to reach the S1 sphere, i.e., the

spheres are separated by a distance equal to the sum of their

radii, R1 + R2. The time t can be calculated easily by integrating

the velocity (eqn (27)) to obtain the simple expression,

t = (k0 + kD)(L
3 � (R1 + R2)

3)/(2kc0k0R1). Fig. 5 shows how t

varies with L. The exact continuum solutions agree well with

simulations, while here are discrepancies with the approximate

theory.

The concentration and fluid velocity fields vary during the

capture process, and these variations play a role in determining

the details of the capture mechanism. The B species concen-

tration fields and their gradients on the surface of the S2 sphere

are shown in Fig. 6. The concentration field decays as 1/r at

long distances20 but again there are discrepancies in the

magnitude of the field close to the S2 sphere. Such discrepan-

cies might be expected because the dynamics in the finite-size

boundary layer cannot be simply represented by the conti-

nuum boundary conditions. It is interesting that the tangen-

tial gradient of this field on the surface corresponds very

closely to that of the continuum model. Consequently, even

though the microscopic nature of the concentration fields is

manifest in the boundary layer, the gradient, which deter-

mines the propulsion, is accurately given by the continuum

theory. As a result many of the other observable properties are

accurately given.

The velocity fields generated by the moving S2 sphere present

a more interesting and complex structure as a function of L.

Fig. 7 shows the streamlines and flow fields in the laboratory

frame of reference. The streamlines are plotted by setting c

equal to a constant. At large separations, we see that the fluid

near the head of the S2 sphere (portion closest to the S1
sphere) is pushed to the lateral directions (in the xy plane)

with respect to the axisymmetric z axis, and executes broad

fluid circulation near the S1 sphere. Fluid also flows towards

the rear of the S2 sphere. The flow near the S2 sphere shows a

puller-like behavior; i.e., fluid enters from the front and back

and is expelled from the sides.32,50 (A pusher-like behavior can

be also seen in our system if eB 4 eA.) As the two spheres

approach each other (L/s B 3.5) the circulating flows between

and to the sides of the spheres reduce in size and disappear,

leaving a puller-like flow pattern. Near the contact distance

(L/s B 2.5), the fluid is pushed from the back to the front of

two spheres.

That the flow patterns are affected by the pinning of the

catalytic sphere are clearly seen in the plots of the far field

streamlines in Fig. 8. The flow near the spheres resembles that

due to stresslet fields (similar to that for L/s B 3.5 and B5 in

Fig. 7), but at distances far from the spheres (see Fig. 8(b) and

(c)) the flow resembles a drift flow (Stokeslet).51 When the

separation between the spheres is large (Fig. 8(d), L/s B 7.5),

the flow circulation (stresslet fields) expands to occupy a larger

portion of space, but a drift flow (Stokeslet) again appears when

viewed at large distances from the spheres. These far-field flows

are characterized quantitatively by calculating the magnitude of

fluid velocity v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vy2 þ vZ2
p

, where v = vyĥ + vZĝ,
40 as shown in

Fig. 9. For example, at L/s = 7.5, one sees a 1/r2 decay,

characteristic of stresslets, for distances up to approximately

r/s B 20, but eventually the flow velocity decays asymptotically

as 1/r. As the separation distance decreases, it is notable that

the flow velocity increases, the stresslet contribution disappears,

and the Stokeslet contribution increases. The asymptotic

Fig. 5 Capture time t as a function of the initial separation L between the

spheres. The black solid line with squares is the exact continuum solution

and the dashed line is the approximate result. The red circles denote the

simulation results obtained from averages over 80 realizations.
Fig. 6 Normalized concentration fields cB/c0 and the tangential gradients

q(cB/c0)/qy2 on the surface of the noncatalytic S2 sphere (R2/s = 21/6) for

L/s = 2.5 (left column) and L/s = 5 (right column), respectively. The angle

y2 is the polar angle in spherical polar coordinates where the origin is at the

center of the S2 sphere.
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expressions are found by introducing the spherical polar

coordinates (r, W, f) in Fig. 2, where two coordinate systems

share the origin, and expanding the variables y and Z in terms

of 1/r. Then one may obtain asymptotic expressions for flow

velocity up to O(1/r2) as

vy �
ffiffiffi

2
p

sin W 3O1 cosW=ð2xrÞ � O2 1� 3 cos
2 W

� �


r2
� �

,

vZ �
ffiffiffi

2
p

2� 3 sin
2 W

� �

O1=ð2xrÞ þ O1 cosW



r2
� �

,
(28)

where O1 ¼
P

1

n¼1

ð2nþ 1Þ an þ cnð Þ and

O2 ¼
P

1

n¼1

ð2nþ 1Þ ðn� 1=2Þbn þ ðnþ 3=2Þdnf g. The details are

given in the Appendix.

Since the fluid between the spheres flows from the S1 to S2
spheres with a broad circulation pattern, one may expect

that the force the fluid exerts on the fixed catalytic sphere is

in the same direction; i.e., an attractive force. (If eB 4 eA then

the flow directions are reversed and one has a repulsive force.)

The force is given by eqn (15) and is plotted in Fig. 10, along

with the simulation result. In the microscopic simulations,

the force is calculated by summing the forces on the catalytic

sphere due to all of the fluid particles. The continuum theory

and simulations agree very well. The force is almost zero for

Fig. 7 Streamlines and flow fields in the laboratory frame of reference. In

the left column, streamlines are shown near the two spheres with flow

directions indicated (black arrows) and, in the right column, the flow fields

(white arrows) and their magnitudes (color maps), v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vy2 þ vZ2
p

, are

presented. The first, second, third rows are for L/s = 2.5, 3.5, 5. In the

color maps, the magnitude of the fluid velocity v is scaled by the sphere

velocity V, where V = 0.053, 0.023, 0.011 for L/s = 2.5, 3.5,5, respectively.

The red and blue circles indicate the S1 catalytic and S2 noncatalytic

spheres.

Fig. 8 Far-field streamlines for various sphere separations, (a) L/s = 2.5

(b) L/s = 3.5 (c) L/s = 5 (d) L/s = 7.5.

Fig. 9 The magnitude of fluid velocity, v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vy2 þ vZ2
p

, for W = p/2 as a

function of distance r, where the spherical polar coordinates (r, W, f) are

taken with a common origin in Fig. 2. The black, red, green, blue, brown,

magenta lines (from top to bottom) correspond to the separation

distances, L/s = 2.5, 3.5, 5, 7.5, 10, 15, respectively.
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large L, and becomes more negative (attractive) as L decreases,

reaching its largest negative value at L/s B 2.5, near the

contact distance, L/s B 2.25. If L decreases further, the force

take positive (repulsive) values.

5 Dynamics with a moving catalytic
sphere

We now consider the situation where both spheres are free to

move. The concentration fields produced by the catalytic

sphere are unchanged from the fixed-sphere case. Using the

continuum theory, the velocities of both spheres can be

computed from eqn (23) and they are plotted in Fig. 11, along

with the simulation results. The continuum theory and micro-

scopic simulation results are in good agreement. Now the S1
and S2 spheres move towards each other, but with different

velocities as shown in the figure. The velocity of the S2 sphere

is much larger than that of the S1 sphere, and the velocity

difference V(2) � V(1) is shown in the inset of the figure. For

comparison, this difference is compared with that for a fixed

S1 sphere, V = V(1) = 0, (dashed line in the inset). Although the

S2 sphere moves by the diffusiophoretic mechanism, the

motion of the S1 sphere is induced by the fluid flow generated

by the S2 sphere.

Note that although the velocities of the two spheres have

opposite signs (� for S1 and + for S2) as they approach, the sign

of the S1 velocity changes so that both sphere velocities are

positive (+z) as the two spheres meet to form a self-propelled

sphere-dimer that moves with the S1 sphere at its head (see

Movie 2, ESI†).19,20 In contrast to the sphere-dimer motors

previously studied that are made from spheres with a rigid

bond, this sphere-dimer motor self-assembles from isolated

spheres to form a bound pair with a bond length that may

fluctuate around a mean value depending on parameters used.

Once the sphere dimer is formed by self-assembly it behaves

like the sphere-dimer with a fixed bond length. Similar

motion of two spheres was observed in a numerical study of a

thermocapillary system consisting of a solid particle and a gas

bubble.52

The streamlines and flow field are shown in Fig. 12 (left two

columns) in the laboratory frame of reference. When L is

relatively large (L/s = 5), the streamlines are roughly similar

to those when the S1 sphere is fixed but there is no local fluid

circulations at small distances from the spheres and no drift

flow at large distances. The fluid flow near the S2 sphere

exhibits a puller-like pattern and near the S1 sphere fluid is

simply dragged to the S2 sphere. As discussed above, this

difference is attributed to the contributions of Stokeslets in

a forced system and these effects are pronounced at small

L (L/s = 2.3, 3.5). The streamlines in a force-free system do not

significantly change at small separations, while those in a

forced system are more distorted in the direction of the

applied external force (Fig. 7). The quantitative variations of

streamlines and flow fields can be seen by plotting the

magnitudes of flow velocity as displayed in Fig. 13 (left panel).

The flow velocity of force-free spheres decays as a r�2 (stress-

let) in a distance r/s B 5 for various values of L, and this

power-law behavior remains unchanged at long distances.

However, the flow velocity in a system with sphere S1 fixed

exhibits a r�2 decay for distances r/s B 5 when L/s = 5, and it

shows a r�1 decay (Stokeslet) for L/s = 2.5, although the

velocity in all cases eventually decays a r�1 at long distances

(Fig. 9).

Flow field comparison

It is interesting to compare the properties of the flow fields for

the freely moving catalytic and noncatalytic spheres separated

by a distance L with those for a sphere-dimer with a rigid bond

of length L. We refer to the spheres in the former case as

Fig. 10 The force on the catalytic sphere exerted by fluid. The black solid

line and red circles correspond to the continuum theory and simulations,

respectively. Negative values (�z direction in Fig. 2) imply the force is

attractive.

Fig. 11 Plot of the velocities V(1) and V(2) of the S1 and S2 spheres in a

force-free system. The solid blue and red lines denote the continuum

theoretical values of V(1) and V(2), respectively, while the circles with

error bars are the microscopic simulation results. The inset shows the

velocity difference V(2) � V(1) (solid lines) and, for comparison, the velocity

of the S2 sphere (dashed line) when the S1 sphere is fixed in space

(eqn (16)).
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unlinked spheres and those in the latter case as linked spheres.

We consider the unlinked spheres to be the linked when the

spheres form a dimer by self-assembly. The streamlines and

flow fields just before and after the spheres self-assemble to

form a sphere-dimer motor are shown in Fig. 12 (first row). It

is notable that the flow directions for the unlinked spheres

(first panel in this row) are completely reversed after the

spheres self-assemble to form a sphere-pair (third panel in

this row), although the detailed structure of the flow field

changes near the S2 sphere. This implies that a sudden change

in flow field occurs from a puller-like flow pattern to a pusher-

like pattern.

These puller and pusher flow patterns remain unchanged

as L increases (second and third rows in Fig. 12). The magni-

tudes of flow velocity for the unlinked and linked spheres are

compared quantitatively in Fig. 13. Both cases exhibit a r�2

decay in contrast to that for a fixed S1 sphere. For small

L (L/s o 3.5), the magnitudes of flow velocity for both linked

and unlinked spheres are very similar; only the flow directions

have opposite signs. The asymptotic expressions are given by

eqn (28) without O1 terms since O1 is zero by the force-free

condition.

Sphere size effects

Lastly, we consider how the flow fields depend on ratios of

the sizes of S1 and S2 spheres at the moment of dimer

formation. Fig. 14 presents the streamlines for the unlinked

and linked spheres near the contact distance, i.e. just before

and after a dimer formation. When the S1 sphere is larger

than the S2 sphere (Fig. 14(c) and (d)), the flow directions are

completely reversed, except for local variations near the S2
sphere, similar to that for spheres of equal size: a puller-like

flow pattern changes to a pusher-like pattern. By contrast, if

the radius of the S1 sphere is smaller than that of the S2
sphere (Fig. 14(a) and (b)), the character of the far-field flow

Fig. 12 The streamlines and flow fields for the unlinked two spheres (left two columns) and for the linked two spheres (right two columns) in the

laboratory frame of reference. The first, second, third rows correspond to the separation distances L/s = 2.3, 3.5, 5, respectively. In the color maps, the

flow velocity (v) is scaled by the velocity of noncatalytic spheres (V(2)) and dimers (VD), where V(2) = 0.039, 0.022, 0.011 and VD = 0.053, 0.019, 0.0084 in

L/s = 2.3, 3.5, 5, respectively. The red and blue circles indicate the catalytic and noncatalytic spheres.
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does not change and is puller-like before and after dimer

formation, although the detailed structure of flow near

the dimer becomes complex and exhibits several local flow

circulations, especially near the S1 sphere where fluid is

pushed in the direction of its head. It is interesting to note

that two separated spheres with either size ratio are initially

attracted and meet to form a dimer, and this dimer may have

one of two counter far-field flow characteristics: either a

puller or pusher depending on the size ratio.

6 Conclusions

Using continuum theory and particle-based simulations, a

detailed study of the chemical and hydrodynamic processes

that govern the dynamics of two spheres, one reactive and the

other nonreactive but able to move toward high product con-

centrations by a diffusiophoretic mechanism, was presented in

this paper. Through an analysis of the concentration and fluid

flow fields the roles played by these chemical and hydro-

dynamic interactions could be determined. For example, when

both spheres are free to move, they are attracted to each other;

the nonreactive sphere moves towards the reactive sphere by

diffusiophoresis while the reactive sphere is simply dragged

by the flow generated by the nonreactive sphere. When the

spheres are in close proximity this motion must cease; the

velocity of the reactive sphere changes its sign since the

nonreactive sphere now drives the pair forward by the same

diffusiophoretic mechanism that operates for a sphere-dimer

motor with a rigid bond. The flow field must reorganize to

accommodate this change and adopts a pusher character.

The characteristics of the flow fields depend on the sphere

sizes. Two separated spheres behave as a puller, regardless of

their sphere size ratio, while the sphere-dimer motor that is

formed can have either puller or pusher characteristics, and

this does depend on the size ratio. Consequently, it should be

possible to construct self-propelled dimers with either of these

flow characteristics by simply manipulating the sphere sizes.

This feature may be used to aid in the understanding of the

collective behavior of many-sphere systems, and to provide a

route to the construction of complex self-assembled structures

in the laboratory.25–27

The two-sphere dynamics studied in this paper may be

regarded as an elementary process that contributes to the

collective dynamics of mixtures of active and passive

particles28–30 and sphere dimers with non-rigid bonds. The

study provides insight into the mechanisms that could lead to

dynamic clusters of various types that not only move but may

also fragment and reassemble. In this connection, situations

not considered in this paper could be of considerable interest

to investigate further. If the interactions are such that the

nonreactive sphere moves to lower product concentrations, in

dilute solution the two sphere will simply avoid each other.

However, in more dense colloidal suspensions they will be

forced to interact and lead to different active collective states,

analogous to the different collective dynamics of forward and

backward moving sphere dimers.53
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Fig. 13 The magnitude of fluid velocity, v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vy2 þ vZ2
p

, along the side

direction (W = p/2) as a function of distance r for the unlinked two spheres

(left) and the linked dimer (right). The spherical polar coordinate (r, W, f) is

taken by setting the origin of the coordinate at the middle of two spheres

as in Fig. 2 and 9. The black, red, and blue lines correspond to the

separation distance, L/s = 2.3, 3.5, 5, respectively.

Fig. 14 Streamlines before and after dimer formation for different size

ratios of two spheres. The left column ((a) and (c)) shows the streamlines

for unlinked spheres and the right ((b) and (d)) for linked spheres. The first

row ((a) and (b)) and the second ((c) and (d)) correspond to the size ratio

between the S1 and S2 spheres R1/R2 = 0.5 and 2, respectively. The

separation distances between spheres are L/s = 3.5, where s is for the

small spheres, i.e. s/a = 2.
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Appendix
Continuum solution information

The table in this Appendix gives the definitions of functions that enter in the continuum solution.

Table 1 The coefficients for the sphere velocity in eqn (16) and (23), and the fluid stream functions in eqn (14) and (22). The coefficients

Y
(o) = {Y(1)n ,Y(3)n ,Y(5)n ,Y(7)n }, X(+)

n , G(+)
n have the upper signs and Y

(e) = {Y(2)n ,Y(4)n ,Y(6)n ,Y(8)n }, X(�)
n , G(�)

n have the lower signs in the equations

Fn ¼ � nðnþ 1Þ
2ð2nþ 1Þ e

n�1

2

� �

Z2An�1 � 2 cosh Z2ð Þe nþ1

2

� �

Z2An þ e
nþ3

2

� �

Z2Anþ1

�

þ e
� n�1

2

� �

Z2Bn�1 � 2 cosh Z2ð Þe� nþ1

2

� �

Z2Bn þ e
� nþ3

2

� �

Z2Bnþ1

�

Dn ¼ 4 sinh
2 nþ 1

2


 �

Z1 � Z2ð Þ
� �

� ð2nþ 1Þ2 sinh 2 Z1 � Z2ð Þ

fn ¼ x2nðnþ 1Þ
.

ffiffiffi

2
p

ð2n� 1Þð2nþ 1Þð2nþ 3Þ
n o

Y ð1Þ
n ;Y ð2Þ

n

� �

¼ ð2nþ 3Þ 1

2
ð2nþ 1Þ2e Z1�Z2ð Þ

sinh Z1 � Z2ð Þ
�

� 1

2
ð2n� 1Þð2nþ 1Þe� Z1þZ2ð Þ

sinh Z1 � Z2ð Þ þ 2e
� nþ1

2

� �

Z1�Z2ð Þ
sinh nþ 1

2


 �

Z1 � Z2ð Þ
� �

þ ð2n� 1Þe� nþ1

2

� �

Z1þZ2ð Þ
sinh nþ 1

2


 �

Z1 � Z2ð Þ
� �

� ð2nþ 1Þe� n�1

2

� �

Z1þZ2ð Þ
sinh nþ 3

2


 �

Z1 � Z2ð Þ
� �	

Y ð3Þ
n ;Y ð4Þ

n

� �

¼ � ð2nþ 3Þ 1

2
ð2nþ 1Þ2e Z1�Z2ð Þ

sinh Z1 � Z2ð Þ
�

� 1

2
ð2n� 1Þð2nþ 1Þe� Z1þZ2ð Þ

sinh Z1 � Z2ð Þ þ 2e
� nþ1

2

� �

Z1�Z2ð Þ
sinh nþ 1

2


 �

Z1 � Z2ð Þ
� �

� ð2n� 1Þe� nþ1

2

� �

Z1þZ2ð Þ
sinh nþ 1

2


 �

Z1 � Z2ð Þ
� �

þ ð2nþ 1Þe� n�1

2

� �

Z1þZ2ð Þ
sinh nþ 3

2


 �

Z1 � Z2ð Þ
� �	

Y ð5Þ
n ;Y ð6Þ

n

� �

¼ � ð2n� 1Þ �1

2
ð2nþ 1Þ2e� Z1�Z2ð Þ

sinh Z1 � Z2ð Þ
�

þ 1

2
ð2nþ 1Þð2nþ 3Þe� Z1þZ2ð Þ

sinh Z1 � Z2ð Þ þ 2e
� nþ1

2

� �

Z1�Z2ð Þ
sinh nþ 1

2


 �

Z1 � Z2ð Þ
� �

� ð2nþ 3Þe� nþ1

2

� �

Z1þZ2ð Þ
sinh nþ 1

2


 �

Z1 � Z2ð Þ
� �

þ ð2nþ 1Þe� nþ3

2

� �

Z1þZ2ð Þ
sinh n� 1

2


 �

Z1 � Z2ð Þ
� �	

Y ð7Þ
n ;Y ð8Þ

n

� �

¼ � ð2n� 1Þ �1

2
ð2nþ 1Þ2e� Z1�Z2ð Þ

sinh Z1 � Z2ð Þ
�

þ 1

2
ð2nþ 1Þð2nþ 3Þe� Z1þZ2ð Þ

sinh Z1 � Z2ð Þ þ 2e
� nþ1

2

� �

Z1�Z2ð Þ
sinh nþ 1

2


 �

Z1 � Z2ð Þ
� �

þ ð2nþ 3Þe� nþ1

2

� �

Z1þZ2ð Þ
sinh nþ 1

2


 �

Z1 � Z2ð Þ
� �

� ð2nþ 1Þe� nþ3

2

� �

Z1þZ2ð Þ
sinh n� 1

2


 �

Z1 � Z2ð Þ
� �	

zð1Þn ¼ � ð2nþ 3Þ sinh n� 1

2


 �

Z1

� �

cosh nþ 3

2


 �

Z1 � Z2ð Þ
� �

þ ð2nþ 3Þ sinh n� 1

2


 �

Z2

� �

þ ð2n� 1Þ cosh n� 1

2


 �

Z1

� �

sinh nþ 3

2


 �

Z1 � Z2ð Þ
� �

zð2Þn ¼ ð2nþ 3Þ cosh n� 1

2


 �

Z1

� �

cosh nþ 3

2


 �

Z1 � Z2ð Þ
� �

� ð2nþ 3Þ cosh n� 1

2


 �

Z2

� �

� ð2n� 1Þ sinh n� 1

2


 �

Z1

� �

sinh nþ 3

2


 �

Z1 � Z2ð Þ
� �

zð3Þn ¼ ð2nþ 3Þ sinh n� 1

2


 �

Z1 � Z2ð Þ
� �

cosh nþ 3

2


 �

Z1

� �

þ ð2n� 1Þ sinh nþ 3

2


 �

Z2

� �

� ð2n� 1Þ cosh n� 1

2


 �

Z1 � Z2ð Þ
� �

sinh nþ 3

2


 �

Z1

� �

zð4Þn ¼ � ð2nþ 3Þ sinh n� 1

2


 �

Z1 � Z2ð Þ
� �

sinh nþ 3

2


 �

Z1

� �

� ð2n� 1Þ cosh nþ 3

2


 �

Z2

� �

þ ð2n� 1Þ cosh n� 1

2


 �

Z1 � Z2ð Þ
� �

cosh nþ 3

2


 �

Z1

� �

Xð�Þ
n ¼ zð1Þn � zð2Þn þ zð3Þn � zð4Þn

Gð�Þ
n ¼ 2 �ð2n� 1Þð2nþ 1Þe� nþ3

2

� �

ÞðZ1þZ2Þ sinh

�


n� 1

2

�

ðZ1 � Z2Þ
��

þ 2ð2n� 1Þð2nþ 3Þe� nþ1

2

� �

Z1þZ2ð Þ
sinh nþ 1

2


 �

Z1 � Z2ð Þ
� �

� ð2nþ 1Þð2nþ 3Þe� n�1

2

� �

Z1þZ2ð Þ
sinh nþ 3

2


 �

Z1 � Z2ð Þ
� �	
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Asymptotics of fluid velocity field

Reminding the fluid velocity is given by the stream function

as v = /̂/r � rc, one gets the velocity components in y and Z,

(vy, vZ) = {(cosh Z � m)/(rx)}(�qc/qZ, qc/qy) leading to

vy ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosh Z� m
p

x2 sin y

X

1

n¼1

dWn

dZ
Vn �

3 sinh Z

2ðcosh Z� mÞ
X

1

n¼1

WnVn

" #

,

vZ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosh Z� m
p

x2

X

1

n¼1

ð2nþ 1ÞWnPn �
3

2ðcosh Z� mÞ
X

1

n¼1

WnVn

" #

.

(29)

From the relations between the bispherical and Cartesian

coordinates as shown in Section 2, one can show that y¼

tan
�1

2x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2þy2
p

.

x2þy2þ z2�x2
� �

n o

and Z = tanh�1{2xz/(x2 +

y2 + z2 + x2)}. In newly introduced spherical polar coordinates

(r, W, f) in Fig. 2, where the origin is shared, the variables y

and Z in large r are approximated by Taylor series as (y,Z) B

(2x/r)(sin W,cosW) + O(1/r3). Then all factors in eqn (29) are

expanded by Taylor series again for large r and the final forms

are expressed by eqn (28) in the main text.
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