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Collections of chemically propelled nanomotors free to move in solution can form dynamic

clusters with diverse properties as a result of interactions through hydrodynamic flow and

concentration fields, as well as direct intermolecular interactions between motors. Here, we study

the collective rotational behavior of pinned sphere-dimer motors where direct motor-motor interac-

tions play no role. Since the centers of mass of the motors are pinned, they cannot execute directed

translational motion, but they can pump fluid and rotate; thus, the rotors remain coupled through

hydrodynamic and chemical fields. Using a microscopic simulation method that accounts for

coupling through both these fields, we show that different rotor configurations with a high degree

of correlation exist and their forms depend on the nature of the fluid-rotor interactions. The correla-

tions are greatly reduced or completely destroyed when the chemical interactions are removed,

indicating that hydrodynamic coupling, while present, plays a lesser role in determining the collec-

tive rotor dynamics. These conclusions are supported by Langevin dynamics simulations that

neglect hydrodynamics and include an approximate form of coupling through chemical fields.

Published by AIP Publishing. https://doi.org/10.1063/1.5018297

Active matter, where some of the constituent species are

self-propelled or externally forced, has properties that

differ from those of systems at equilibrium. These non-

equilibrium systems are the rule rather than the excep-

tion in nature, and biology provides many examples

where molecular machines or microorganisms move

autonomously. Active matter made from synthetic

motors is under active study since it may be used for

applications on small scales that are not possible for equi-

librium systems. This work focuses on one aspect of such

active systems: how collective orientational dynamics

occurs when synthetic chemically powered motors are

pinned to a substrate.

I. INTRODUCTION

Molecular machines and nanoscale motors operate in

nonequilibrium environments by converting energy sources

in their surroundings into useful work, often in the form of

directed motion.1 The physics underlying the dynamics of

such objects is fundamentally different from that of their

macroscopic counterparts; for example, these motors and

machines move in low Reynolds number environments

where viscous drag dominates inertia2 and random thermal

fluctuations must be taken into account. Many mechanisms

govern the operation of naturally occurring and synthetic

motors, giving rise to a large variety of active systems with

rich and complex dynamics.

This variety is most easily observed in Nature itself,

such as the motion of kinesin walking along microtubules

driven by adenosine triphosphate hydrolysis or microorgan-

ism swimming by asymmetrical flagellar motions.3 Such a

variety also exists within the realm of synthetic motors,

including motors that move through asymmetric, cyclic, con-

formational changes and rigid motors propelled by the expul-

sion of bubbles or phoretic mechanisms.4–7 Systems of such

motors are examples for active matter, which have been

shown to display diverse types of collective behavior, differ-

ent from that in equilibrium systems.8–12

Chemically self-propelled nanorod motors that operate

by self-electrophoresis were first synthesized over a decade

ago. Initial experiments observed motors that move in solu-

tion in a directed fashion and motors attached to a surface

that acted as fixed rotors.13,14 Current research centers on

understanding general aspects of directed motor motion

through experiment and theory.4 There have been several

experimental investigations of the collective dynamics of

chemically propelled motors.15–19 Theoretical models

including interactions through chemical gradients but

neglecting hydrodynamic interactions have been constructed

and studied.20–24 Microscopic simulations,25–27 as well as a

lattice-Boltzmann simulation,28 that include both the chemi-

cal gradient and hydrodynamic coupling effects have also

been carried out. Such studies have shown that these systems

may undergo active self-assembly to form diverse types of

dynamic clusters and other structures and segregate into

domains of high and low density motor states with distinc-

tive properties.

Our focus in this article is on the collective dynamics of

pinned synthetic chemically powered motors that operate by
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a self-diffusiophoretic mechanism. Section II describes the

diffusiophoretic mechanism for the dynamics of pinned and

unpinned sphere-dimer motors. The results of simulations of

the collective dynamics of pinned motors using a coarse-

grain microscopic dynamical method that combines molecu-

lar dynamics of motors with multiparticle collision dynamics

of the fluid are presented in Sec. III. Section IV compares

the results of the microscopic simulations with those of a

Langevin model for the dynamics that incorporates interac-

tions through chemical gradients but neglects hydrodynamic

interactions. The conclusions of this paper are given in

Sec. V.

II. PINNED SPHERE-DIMER MOTORS

A. Continuum description

Chemically powered motors that are propelled by diffu-

siophoresis make use of asymmetric catalysis on the motor

surface to drive propulsion.29 A chemical reaction A! B on

the catalytic portion of the motor produces inhomogeneous

concentration fields of fuel A and product B in its vicinity,

and this gives rise to a body force that generates fluid flows

in the surrounding medium which lead to propulsion of the

motor. In the continuum treatment of this mechanism, the

concentration and fluid velocity fields are determined by

the reaction-diffusion and Stokes equations, which can be

solved analytically for spherical Janus motors with catalytic

and noncatalytic hemispherical caps.

In the continuum theory, the velocity of the motor is

given by V ¼ �hvðsÞiS, in terms of the surface average of the

slip velocity, vðsÞ. The slip velocity, which is the fluid veloc-

ity field at the outer edge of the boundary layer where the

intermolecular interactions between the motor and the solute

species vanish, is given by29 vðsÞ ¼ � kBT
g K$scB, where cB is

the concentration of species B, kB is Boltzmann’s constant, T
is the temperature, g is the fluid viscosity, and the gradient

is taken tangential to the surface. The factor K depends on

the intermolecular potentials and is given by K ¼
Ð1

0
dr r

�ðe�bWBN � e�bWAN Þ. The continuum calculation for the

sphere-dimer motor has been carried out, but the calculations

are more involved due to the lack of spherical symmetry and

require the use of a bispherical coordinate system.30,31 The

explicit forms of these solutions for the concentration and

fluid flow fields31 are not required here.

From a microscopic perspective, motor propulsion will

emerge naturally when the solution is treated at a molecular

level and interactions with the motor are fully accounted for by

intermolecular forces. Provided that the molecular dynamics of

the entire system satisfies the basic conservation laws of mass,

momentum, and energy, the coupling between the forces on

the motor and solvent reproduces the underlying molecular

mechanism of diffusiophoresis. Such a microscopic description

also naturally accounts for thermal fluctuations, a very impor-

tant aspect of the dynamics for nanoscale motors.

The sphere-dimer motors considered in this study con-

sist of catalytic C and noncatalytic N spheres linked by a

rigid bond of length R.32,33 The orientation of a rotor is given

by the unit vector pointing from the N to C spheres, û. A

chemical reaction Aþ C!kM
Bþ C taking place on the

catalytic sphere will produce inhomogeneous concentration

fields cAðrÞ and cBðrÞ of the fuel A and product B species in

the system. These species interact with the dimer spheres

through intermolecular potentials, WaH, (a ¼ A;B and

H ¼ C;N). For simplicity, here and below, we assume that

the interaction potentials have a finite range rS and satisfy

WAC ¼ WBC ¼ WAN 6¼ WBN so that the noncatalytic N sphere

experiences concentration-dependent forces which propel

the dimer, while the catalytic C sphere only serves to gener-

ate the concentration gradients in the system.

B. Collective dynamics of pinned dimers

If the center of mass of the dimer motor is fixed by a

force or constraint, its velocity will be zero and it will pump

fluid because the diffusiophoretic force still acts on the

motor. Since only the center of mass is fixed, the dimer is

free to rotate. However, since the concentration and fluid

velocity fields are mirror-symmetric about planes through

the sphere-dimer bond axis, the self-diffusiophoretic mecha-

nism will not cause rotation of an isolated pinned dimer. If

the time evolution of the dimer is governed by microscopic

dynamics, or stochastic dynamics that accounts for thermal

fluctuations, it will simply execute rotational Brownian

motion: it is a sphere-dimer rotor.

The situation changes markedly if the system contains

more than a single rotor. The concentration and hydrody-

namic flow fields due to other rotors in the system will inter-

act with the self-generated fields around a given rotor and

break the axial symmetry. Torques due to the diffusiopho-

retic coupling will be generated, and active rotational motion

will take place leading to interactions among the rotors. The

nature of these collective effects due to such coupling among

pinned sphere-dimers is studied in this paper using both

coarse-grain microscopic and Langevin methods.

III. MICROSCOPIC SIMULATIONS OF COLLECTIVE
DYNAMICS

A. Simulation method

The sphere-dimer rotors and fluid molecules are con-

tained in a simulation box with lengths Lx¼ 256, Ly¼ 64,

and Lz¼ 32, with periodic boundary conditions in the x- and

y-directions and impermeable walls with bounce-back

boundary conditions for the fluid particles in the z-direction.

The system evolves in time through a concatenation of

streaming and collision steps. The streaming steps involve

Newtonian evolution through intermolecular interactions in

the system, while the collision steps occur at discrete time

intervals and account for multiparticle collisions (MPCs)

among the fluid molecules.34

Each rotor sphere has a radius of rS ¼ 2 and a mass of

mS ¼ 4pr3
Sn=3, where n¼ 10 is the average fluid particle

density in the system. The rotor spheres interact with fluid

particles of types A and B, with mass m¼ 1, through repul-

sive Lennard-Jones potentials given by WHaðrÞ
¼ 4�ab½ðrS=rÞ12 � ðrS=rÞ6 þ 1=4� for r � rS, and zero other-

wise. The H and a indices take the values H ¼ C;N, and

a ¼ A;B. The cutoff radii rS ¼ 2
1
6rS define boundary layers
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around the spheres within which sphere-fluid interactions

take place. The interaction energies are chosen such that the

propulsion force due to self-diffusiophoresis only occurs on

the N sphere. Consequently, the C sphere interaction ener-

gies are equal, �CA ¼ �CB ¼ 1, while for the N sphere, we

consider two cases: �NB ¼ 0:1 < �NA ¼ 1 and �NB ¼ 1 > �NA

¼ 0:1, which lead to different dynamics. The K parameter

for these two potential parameter choices has the value

KB<A ¼ �KB>A ¼ 0:3070. The rotor spheres are constrained

by a rigid bond of length d¼ 5, and their centers of mass are

fixed to a distance of dW ¼ rS þ 1 above one of the walls by

holonomic constraints. The orientational motions of the

rotors are strongly confined to a plane parallel to the wall

through stiff harmonic potentials on each rotor sphere with

force constant kz¼ 1000 acting perpendicular to the wall.

The positions of the rotors are fixed so that a fluid particle

cannot simultaneously interact with more than a single

sphere; thus, the only interactions among motors are through

collective solvent-mediated effects.

The interactions among fluid particles are accounted for

by multiparticle collisions instead of intermolecular potentials.

In multiparticle collision dynamics, particles are sorted into

collision cells n with linear dimension a0. At discrete times s,

using rotation operators for each cell, effective collisions

among the particles change their velocities to postcollision val-

ues so as to conserve mass, momentum, and energy.34–36

There are chemical reactions, Aþ C!kM
Bþ C, on the

catalytic spheres of each dimer which drive propulsion, as

well as nonequilibrium reactions in the fluid phase, B!k A,

which maintain the system in a nonequilibrium steady state.

The reactions on the rotor catalytic spheres are carried out as

follows: whenever a particle of species A reaches a distance

rþC infinitesimally outside the boundary layer of the sphere,

its identity is changed to B with probability pþ. Below, we

always choose pþ ¼ 1. Reactions B! A in the fluid phase

are carried out by reactive multiparticle collision dynam-

ics.37 In this method, at the discrete times s for multiparticle

collisions, reactions in each collision cell are carried out by a

birth-death Markov process. In particular, the probability

that the reaction B!k A occurs first in the time interval s in

collision cell n, followed by any other event, is pR ¼ 1

�e�an
Rs, with an

R ¼ kNn
B, where Nn

B is the number of B par-

ticles in cell n. The fluid phase reaction rate constants varied

in the range of k ¼ 10�4 � 10�2.

All the results are expressed in dimensionless units of

energy �, mass m, distance r, and time t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mr2=�

p
. In the

simulations reported below, the MPC cell size and collision

times are a0 ¼ 1 and s ¼ 0:1, respectively, using a rotation

angle of p=2. The temperature of the system is given by

kBT ¼ 0:2. For these system parameters, self-diffusion coef-

ficients and viscosity of the fluid are given by DA ¼ DB

¼ D ¼ 0:0233 and g ¼ 5:085, respectively. The velocity

Verlet algorithm with a time step of Dt ¼ 0:005 was used for

the Newtonian evolution in the streaming steps of the evolution.

B. Screening by bulk reaction

Below, we consider various configurations of pinned

sphere-dimer rotors, whereby a number of factors will

determine the nature of the collective dynamics. An obvi-

ously important factor is the distance between rotors since

this will determine how strongly they interact through both

hydrodynamic and chemical interactions. The fluid phase

reactions will play a role in the coupling through chemical

fields for a given rotor separation due to screening effects.38

For simplicity, consider a single catalytic sphere with reac-

tion Aþ C!kM
Bþ C in a medium with the bulk reaction

B!k A. The local steady state concentration of species B (or

A) may be determined from the solution of the reaction-

diffusion equation, Dr2cBðrÞ ¼ �kcBðrÞ subject to the

boundary condition kDRCn̂ � $cBðrÞjRþ
C
¼ k0

MðcðRþC Þ � c0Þ,
where RþC ¼ rC þ d is a distance infinitesimally outside the

interaction boundary layer around the C sphere, k0
M is an

intrinsic reaction rate constant, and kD ¼ 4pDRC is the

Smoluchowski diffusion controlled rate constant. An esti-

mate for the intrinsic rate constant may be obtained from

hard sphere collision theory, k0
M ¼ pþR2

C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8pkBT=m

p
. For our

system parameters k0
M ¼ 8:97 and kD ¼ 0:59 and since

k0
M � kD, the reaction is diffusion controlled. In the bound-

ary condition, we used cA þ cB ¼ c0. Far from the sphere,

limr!1cBðrÞ ¼ 0. The B concentration field obtained from

the solution of the reaction-diffusion equation is

cBðrÞ ¼
k0

MkD

kDð1þ jRCÞ þ k0
M

e�jðr�RCÞ

4pDr
c0; (1)

where j ¼
ffiffiffiffiffiffiffiffiffi
k=D

p
corresponding to a screening length of

‘c ¼ j�1. Thus, for a given separation between rotors, j will

control the magnitude of the coupling through chemical gra-

dients and is an important variable to consider. For the range

of rate constant k values specified above, the screening

length varies in the range of 1:53 � ‘c � 15:27.

A system with many pinned sphere-dimer rotors

arranged randomly on a surface is expected to exhibit com-

plex dynamics. We first consider the simple configuration of

a periodic line of rotors for the two intermolecular potential

cases mentioned above, �NB < �NA and �NB > �NA, and study

how the rotor separation and screening length modify the

collective orientational dynamics of the chain. We then

extend the study by briefly describing the collective behavior

of two-dimensional arrays of pinned rotors.

C. Linear array of rotors

Consider a linear arrangement of Nr rotors along the x-

direction with periodic boundary conditions, whose centers

of mass are separated from each other by equal distances ‘s.

The separation distance ‘s ¼ Lx=Nr may be varied by chang-

ing the number of rotors. Letting ‘s ¼ d þ 2rS þ rsep, we

may define rsep as the smallest separation between the cutoff

radii rS of spheres of neighboring dimers, which is a useful

measure of the proximity of dimer spheres. The character of

the statistically stationary state depends on the relative mag-

nitudes of the potential parameters, as can be seen in Fig. 1

(Multimedia view), which shows the metastable configura-

tions that form during the dynamics. For �BN < �AN , the

rotors exist in predominantly head-to-tail configurations ori-

ented along the x axis although there are defects where the
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direction of the head-to-tail ordering reverses. By contrast,

when �BN > �AN , the rotors tend to align in stacks perpendic-

ular to the x axis with their orientation vectors pointing in

the same direction, again with defects where the orientations

change directions, as well as other disordered spatial regions.

In qualitative terms, one can understand the propensity

for motor systems with �BN < �AN to order head-to-tail and

motor systems with �BN > �AN to order in stacks. When

�BN < �AN , an isolated unpinned motor will move in the for-

ward direction with the catalytic sphere at its head where the

product concentration is higher. By contrast, when

�BN > �AN , the motor will move in a backward direction with

the noncatalytic sphere at its head where the product concen-

tration is lower. In our dimer model, only the noncatalytic

sphere experiences the diffusiophoretic forces due to concen-

tration gradients. The head-to-tail arrangements are favored

for forward-moving motors since deviations from this

arrangement will tend to be removed by chemotactic forces

that act on the N sphere which cause it to move towards

higher product concentrations. Since the N spheres of

backward-moving motors tend to move towards low product

concentrations, the stacked configurations are consistent

with the chemotactic forces in this case.

We now consider the quantitative aspects of the ordered

configurations. The formation of ordered domains can be

seen in the space-time plots in Fig. 2. Parts (a) for ‘s ¼ 9:85

and (b) for ‘s ¼ 12:80 show ûxðx; tÞ ¼ x̂ � ûðx; tÞ, where x̂ is

a unit vector along the positive x-direction, versus space and

time for �NB < �NA. For the discrete rotor system, the space

variable is defined by x ¼ j‘s, with j the motor index taking

the values j ¼ 1;…;Nr. The corresponding plots of ûyðx; tÞ
¼ ŷ � ûðx; tÞ, where ŷ is a unit vector along the positive

y-direction, are given in parts (c) and (d) of this figure for

�NB > �NA. Starting from random initial orientations, pro-

vided that ‘s is not too large and screening length ‘c is not

too small, one can observe the formation and persistence of

ordered domains for times longer than the average reorienta-

tion time for an isolated rotor. It performs orientational

Brownian motion with decorrelation time sR ¼ 1=DR ¼ 4:67

�103, where DR is the rotational diffusion coefficient. The

domains form very quickly from random orientations for

both potential energy parameter choices when ‘s ¼ 9:85

(rsep ¼ 0:36) is small for this value of ‘c [parts (a) and (c) of

the figure]. By contrast, if ‘s ¼ 12:80 (rsep ¼ 3:31) as in

parts (b) and (d) of the figure, the propensity to form ordered

domains is greatly reduced. The tendency to form the head-

to-tail configurations is stronger than that for stacks of rotors

since the N sphere is much closer to the C sphere of an adja-

cent rotor for head-to-tail configurations.

Additional information concerning the orientational cor-

relations among different rotors can be obtained as follows:

The angle hi
j between the orientation vector of rotor i, ûi, and

the rotor iþ j, ûiþj, is defined by cos hi
j ¼ ûi � ûiþj. We may

then define the spatial correlation functions

SmðjÞ ¼
1

Nr

XNr

i¼1

hPmð cos hi
jÞi; (2)

where Pm is the Legendre polynomial of order m and the

angular brackets signify an average over time and realiza-

tions. Since the rotors tend to adopt orientations that are par-

allel or anti-parallel with respect to one another, S1ðjÞ and

S2ðjÞ can be used to gauge the degree of alignment as a func-

tion of j for a given value of ‘s. For reference, the values

S2 ¼ 1; 0:25 correspond to perfectly aligned (either parallel

or antiparallel) and uncorrelated rotors, respectively. The

quantity S1, which takes the values S1ðjÞ ¼ �1; 1; 0 for

chains with antiparallel, parallel, and uncorrelated neigh-

bours, respectively, can be used to give additional informa-

tion about the alignment.

The values of S2ð1Þ and S1ð1Þ are given in Fig. 3 for dif-

ferent values of ‘s and ‘c. For both interaction potential

FIG. 1. The formation of metastable configurations of a segment of the peri-

odic line of rotors separated by ‘s ¼ 9:85 with ‘c ¼ 4:83 for (a) �AN ¼ 1;
�BN ¼ 0:1 and (b) �BN ¼ 1; �AN ¼ 0:1. Here and below, red will denote the

catalytic sphere and blue will denote the noncatalytic sphere in a rotor.

Multimedia view: https://doi.org/10.1063/1.5018297.1

FIG. 2. Space-time plots of ûxðx; tÞ for a line of rotors from single trajecto-

ries with �BN < �AN for (a) ‘s ¼ 9:85 and (b) ‘s ¼ 12:80 and plots of ûyðx; tÞ
with �BN > �AN for (c) ‘s ¼ 9:85 and (d) ‘s ¼ 12:80. The chemical screening

length is ‘c ¼ 4:83 for all plots.
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choices, the degree of alignment indicated by S2ð1Þ is high

when rotors are in close proximity, except for ‘c ¼ 1:53 for

�NB > �NA. As expected, S2ð1Þ decreases as ‘s increases and

increases as ‘c increases, consistent with changes in the com-

munication among the rotors as these lengths vary. The val-

ues of S1ð1Þ are large for small ‘s for �NB < �NA, confirming

the presence of large domains of head-to-tail configurations.

The variations of S2ðjÞ with j for ‘s ¼ 9:85 and various

values of ‘c are shown in Fig. 4 in (a) for �NB < �NA and in

(b) for �NB > �NA and show that the strong correlations per-

sist along the chain of rotors, again except for the smallest

value of ‘c ¼ 1:53 for �NB > �NA.

1. Fluid velocity and concentration fields

In addition to the coupling arising from concentration

gradients, pinned rotors pump fluid and induce velocity fields

in their vicinity, which can lead to hydrodynamic coupling

among the rotors. Visualization of these velocity and concen-

tration fields as a function of time in the simulations is diffi-

cult because of the extensive averaging that must be carried

out to account for the rotor configurational changes during

the temporal evolution of the system. However, if the rotor

positions are completely fixed in various configurations,

these fields are easily extracted from the simulations.

Figure 5 shows these fields in the xy-plane for

‘s ¼ 10:67 and ‘c ¼ 4:83 for both head-to-tail configurations

with �BN < �AN and stacked configurations with �BN > �AN .

The corresponding fields for the xz-plane are shown in Fig. 6

for the head-to-tail configurations. The configurations have

single defects to show how the velocity and concentration

fields are altered in these regions. In both cases, the strongest

fluid flow occurs around the N sphere in regions where the

concentration gradients are greatest, consistent with the dif-

fusiophoretic mechanism; this corresponds to a region in

which the magnitude of the slip velocity reaches a maxi-

mum. In the case of the head-to-tail configurations, the fluid

pumps inward toward the C sphere and outwards from the N
sphere of each rotor, and due to the close proximity of adja-

cent rotors, the C-to-N direction of the flow also occurs for

adjacent rotors in the same domain. Additionally, the fluid

pumps toward the wall near the C sphere and away from the

wall at the N sphere. At the rotor domain boundaries, the

FIG. 3. Plots of S2ð1Þ and S1ð1Þ for different separations ‘s and chemical

decay lengths ‘c for �BN < �AN (head-to-tail) (a) and (c) and �BN > �AN

(stacks) (b) and (d). The dotted line corresponds to the uncorrelated rotors.

FIG. 4. Plots of S2ðjÞ versus j for ‘s ¼ 9:85 and several values of ‘c for (a)

�BN < �AN (head-to-tail) and (b) �BN > �AN (stacks). The dotted line corre-

sponds to the uncorrelated rotors.

FIG. 5. Hydrodynamic flow (a) and (c) and concentration (b) and (d) fields in

the xy-plane for a periodic line of six rotors with two defects for ‘c ¼ 4:83 and

‘s ¼ 10:67 with �BN < �AN (a) and (b) and �BN > �AN (c) and (d).

FIG. 6. Hydrodynamic flow (a) and concentration (b) fields in the xz-plane

for a periodic line of six rotors with two defects for ‘c ¼ 4:83; ‘s ¼ 10:67,

and �BN < �AN .
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flow changes such that a reduced flow occurs at C–C defects

and an increased flow occurs at N–N defects; fluid pumping

is strongest for rotors at N–N domain boundaries. For the

stack configuration, the fluid flows in the opposite direction

from the N to C spheres of each rotor. Adjacent rotors in the

same domain produce fluid flows that reinforce one another,

leading to an increase in the overall magnitude of the fluid

flow, while at defects, the velocity is greatly reduced since

the flow fields oppose one another. In contrast to the rotors

in head-to-tail configurations, the fluid flow is not strongest

at the boundary but in regions within a domain. Overall, in

both cases, the presence of defects introduces regions of

increased or decreased fluid flow relative to a single, isolated

stationary rotor.

2. Exclusion of chemical interactions

In order to gauge the magnitude of interactions among

the rotors arising from concentration fields, this coupling can

be removed by altering the dynamical model.39 In the full

dynamical model, the catalytic spheres on each rotor produce

product B molecules which may then interact with the N
spheres of rotors in the chain. These concentration fields are

responsible for both self- and cooperative-diffusiophoretic

effects. The model may be changed so that the C sphere of a

rotor i catalyzes the reaction A! Bi, where Bi is a product

molecule specific to that rotor. It interacts with the N sphere

of rotor i through an interaction potential with energy param-

eter �BN but interacts with the N spheres of other motors j 6¼ i
with interaction energy �AN. Thus, in this dynamical model,

self-diffusiophoresis at each rotor is maintained, but a rotor

j 6¼ i will see the species Bi as another A particle, effectively

eliminating coupling through chemical gradients along the

chain. The fluid chemical reaction does not discriminate

between the different Bi product species, and the Bi ! A
reactions are carried out as in the full model without regard

to the index i.
The results of simulations of this model are compared

with those of the full reactive dynamics in Fig. 7 where S2ðjÞ
is shown for ‘s ¼ 9:85 and ‘c ¼ 4:83 for the two potential

energy selections (a) �BN < �AN and (b) �BN > �AN . One can

see that where chemical coupling is excluded, correlations

are almost completely eliminated. Hydrodynamic interac-

tions alone are insufficient to maintain the correlations for

these parameter values.

D. Two-dimensional array of rotors

The configurations adopted by the simple linear array of

pinned rotors described above could be analyzed in some

detail. Of course, the rotors may be pinned in two-dimensional

random or regular arrays, and the variety of orientational con-

figurations they may adopt as a result of chemical and hydro-

dynamic coupling is very large. A full exploration of the

dynamics of these systems is beyond the scope of this study.

However, in order to provide an indication of the orientational

correlations that can arise in these systems, we show examples

of some of the states that regular two-dimensional pinned

rotors adopt.

Figure 8(a) shows that head-to-tail alignment occurs for

�BN < �AN , similar to that in the one-dimensional system. For

�BN > �AN in panel (b), conformations form in which the C
or N spheres of the rotors in 2� 2 subarrays are oriented

towards one another. In both cases, since the rotors have four

nearest neighbours instead of two as in the periodic line, the

structures that form are more dynamic and the rotors are able

to switch between multiple metastable configurations.

IV. LANGEVIN MODEL

In order to provide additional insight into the interactions

arising from chemical gradients in the system, we consider a

Brownian dynamics model that approximately accounts for

diffusiophoretic coupling among rotors while neglecting

hydrodynamic interactions. The overdamped Langevin equa-

tion for the orientation of rotor i may be written as

d

dt
ûi ¼ f�1

R � ðTdi þ TfiÞ
� �

� ûi; (3)

where Tdi is the torque acting on rotor i due to all other rotors

in the system and fR is the rotational friction tensor. The ran-

dom torque on this rotor arising from thermal fluctuations in

the environment, Tfi, is a Gaussian, while noise processes

with the zero mean and fluctuation dissipation relation

hTRiðtÞTRjðt0Þi ¼ 2kBTfRdijdðt� t0Þ: (4)

FIG. 7. Plot of S2ðjÞ versus j with hydrodynamic interaction (HI) and with

and without chemical interactions (CI) for ‘s ¼ 9:85 and ‘c ¼ 4:83 with (a)

�BN < �AN and (b) �BN > �AN . The dotted line corresponds to the uncorre-

lated rotors.

FIG. 8. Instantaneous configurations of the pinned rotors arranged in a peri-

odic square lattice with the rotor separated by ‘s ¼ 10:67 with ‘c ¼ 4:83 for

(a) �BN < �AN and (b) �BN > �AN .
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Since the rotors in our system are constrained by forces to

rotate in the xy plane, the orientation vector takes the form

ûi ¼ ðcos /i; sin /i; 0Þ, where /i is the polar angle of the

rotor in this plane and ûi � _̂u i ¼ ẑ _/i. In this case, Eq. (3)

reduces to

d

dt
/i ¼

1

fR
ðTdi þ TRiÞ; (5)

where the z component of the torque is denoted by T ¼ ẑ � T
with ẑ a unit vector along z. The zz-component of the rota-

tional friction tensor is simply denoted by fR, and its value

from simulation is fR ¼ 934.

The torque Tdi with contributions from all other rotors in

the system must now be determined to construct the evolu-

tion equations. We make several assumptions to find this tor-

que. The noncatalytic sphere of the i-th rotor will experience

a diffusiophoretic force Fdi from all other rotors, and we

assume that this force is given by a superposition of F
j
di, the

forces on the noncatalytic sphere of rotor i due to rotors j

Fdi ¼
X
j 6¼i

Fj
di: (6)

The resulting torque on rotor i is

Tdi ¼
d

2

X
j 6¼i

ẑ � ðûi � Fj
diÞ ¼

d

2

X
j6¼i

sin hijF
j
di: (7)

The second equality follows from the fact that the force Fj
di

acts in the direction of the unit vector from the C sphere of

rotor j to the N sphere of rotor i, r̂NC
ij , where rNC

ij ¼ rN
i � rC

j .

We may then write Fj
di � r̂NC

ij Fj
di and use ûi � r̂NC

ij ¼ sin hijẑ,

where hij is the angle between ûi and r̂NC
ij , to obtain the second

equality. The Langevin equation now reads

d

dt
/i ¼

1

fR

d

2

X
j 6¼i

sin hijF
j
di þ TRi

 !
: (8)

To complete the evolution equation, we must specify the

diffusiophoretic forces that enter Eq. (8). These quantities

may be estimated as follows: The diffusiophoretic force on a

sphere N in solution in a concentration gradient of B particles

is given by Fd ¼ fNVd, with fN ¼ 6pgRN being the friction

coefficient of the sphere and Vd its diffusiophoretic velocity

Vd ¼
kBT

g
Kð1� n̂n̂Þ � $rcBðrÞ

S
: (9)

Here, n̂ is a unit normal to the sphere and the overline indi-

cates an average over its surface S.

In our rotor system, F
j
di depends on the concentration

field generated by the C sphere of rotor j. Rewriting Eq. (9)

to take this effect into account, we obtain

F
j
di ¼ fN

kBT

g
Kð1� n̂in̂iÞ � $ri

cBðjri � rNC
ij jÞ

Si

: (10)

Since cB in Eq. (1) is defined with the C sphere as its origin,

its argument in Eq. (10) accounts for this change of origin.

The force component Fj
di ¼ r̂NC

ij � F
j
di is

Fj
di ¼ �6pkBTK sin hi@hi

cBðjRN r̂ i � rNC
ij jÞ

Si

;

¼ 6pkBTK
ð1

�1

dli licBðjRN r̂ i � rNC
ij jÞ; (11)

where li ¼ cos hi.

Using Eq. (11) in Eq. (8), the orientational dynamics of

the system of rotors may be computed. This model accounts

for thermal orientational fluctuations and neglects hydrody-

namic interactions. It accounts for the coupling among rotors

through chemical concentration fields but assumes that these

fields can be obtained by a superposition of contributions

from each rotor, which are in turn computed approximately.

It also neglects wall effects. Nevertheless, as we shall see, it

is able to capture some of the main features of the collective

dynamics. The parameters that enter this model are known

analytically or may be computed from single rotor dynamics

and are listed in Sec. III.

Space-time plots for the Langevin dynamics are pre-

sented in Fig. 9 for the same parameters used in Fig. 2 for

the corresponding microscopic simulations. The results show

the same qualitative features: domain formation is rapid for

‘s ¼ 9:85, especially for the head-to-tail configurations, and,

as expected, the rotors are less highly correlated for the

larger ‘s ¼ 12:80 separation. The effects of Langevin ther-

mal noise on the metastable rotor conformations are also evi-

dent in the space-time plots and suggest that the head-to-tail

configurations are more stable than the stacked configura-

tions. Thus, the Langevin model without hydrodynamic

FIG. 9. Space-time plots for the Langevin dynamics of ûxðx; tÞ for a line of

rotors from single trajectories with �BN < �AN for (a) ‘s ¼ 9:85 and (b)

‘s ¼ 12:80 and plots of ûyðx; tÞ with �BN > �AN for (c) ‘s ¼ 9:85 and (d)

‘s ¼ 12:80. The chemical screening length is ‘c ¼ 4:83 for all plots.

045109-7 Robertson, Stark, and Kapral Chaos 28, 045109 (2018)



interactions is able to capture qualitative features of the

space-time plots seen in the microscopic simulations.

Similarities between the Langevin model and the micro-

scopic simulation are also evident in the values of SmðjÞ.
Mirroring the same parameters as in Fig. 4, a plot of S2ðjÞ as

a function of j in Fig. 10 shows that correlations persist

throughout the chain, with the head-to-tail configurations

being far more correlated than the stack configuration for

arbitrary ‘c. However, there are differences. In the micro-

scopic simulation, the value of S2ðjÞ for the head-to-tail con-

figuration is higher for ‘c ¼ 4:83 than ‘c ¼ 15:27 but lower

in the Langevin model. Nevertheless, the Langevin model is

surprisingly excellent in capturing gross aspects of the col-

lective behavior despite its simplicity.

V. CONCLUSIONS

Like the many-body dynamics of chemically powered

motors in solution, such motors pinned to a surface also

organize into distinct types of collective states, but the col-

lective motions underlying these states are confined to orien-

tational degrees of freedom. Both hydrodynamic flows

arising from pinning of these active objects to the surface,

and chemical concentration fields, whose gradients lead to

active motion through the diffusiophoretic mechanism, can

be responsible for coupling among the rotors. The discussion

of the relative importance of these two effects is a common

theme in attempts to understand the basis for the observed

collective behavior in active matter comprising chemically

self-propelled objects. The same issues arise in the consider-

ation of the collective orientational dynamics of pinned self-

propelled motors.

In this paper, we showed that these nonequilibrium

active systems can self-organize into highly correlated orien-

tational states whose structure is determined by the nature of

the fluid interactions with the motor that determines whether

the motor will move “forward” or “backward” when free in

solution. The collective states also depend on the pinning

configuration and the manner in which the nonequilibrium

state is maintained. While both hydrodynamic flows and con-

centration fields are present, our results show that chemical

fields play the most important role in determining the

observed collective behavior. In other active rotor systems

where the active rotors are not chemically propelled, only

hydrodynamic effects operate and have been shown to lead

to collective orientational behavior.40

The collective dynamics of pinned sphere-dimer motor

systems can be studied experimentally. Sphere dimer motors

with micro- and nanometer dimensions have been con-

structed in the laboratory, and the dynamics of a single motor

in solution has been studied in some detail. The experiments

also showed that the dimer motors made from silica and plat-

inum components may become pinned to a glass substrate

due to strong interactions of the silica sphere with the sur-

face. These pinned dimers execute active rotational dynam-

ics with frequencies of several Hertz.33 In addition, one of

the first reports of synthetic nanorod motors described their

rotational dynamics when pinned to surfaces.14 The rota-

tional dynamics of pinned motors takes place in the same

parameter domains as the translational motion; thus, it

should be possible to construct arrays of such pinned motors

and observe their dynamics. The range of orientational col-

lective phenomena increases substantially when higher

dimensional arrays of pinned motors are considered. The rel-

ative importance of hydrodynamics and chemistry in these

more complicated active rotor systems merits further study.
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