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Solute molecular dynamics in a mesoscale solvent
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A hybrid molecular dynamics~MD! algorithm which combines a full MD description of solute–
solute and solute–solvent interactions with a mesoscale treatment of solvent-solvent interactions is
developed. The solvent dynamics is modeled on a mesoscale level by coarse graining the system
into cells and updating the velocities of the solvent molecules by multiparticle collisions within each
cell. The solvent dynamics is such that the correct hydrodynamic equations are obtained in the
macroscopic limit and a Boltzmann distribution of velocities is established in equilibrium.
Discrete-time versions of the hydrodynamic equations and Green–Kubo autocorrelation functions
are derived. Between the discrete-time solvent–solvent collisions the system evolves by the
classical equations of motion. The hybrid MD scheme is illustrated by an application to the
Brownian motion of a nanocolloidal particle in the mesoscale solvent and concentrated
nanocolloidal suspensions. ©2000 American Institute of Physics.@S0021-9606~00!50816-2#
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I. INTRODUCTION

When studying complex fluids it is often convenient
focus on the dynamics of a subsystem of interest and t
the remainder of the system at a less detailed level of
scription. For instance, in colloidal suspensions one is in
ested in the dynamics of the colloidal particles, while t
details of the solvent dynamics that influences their moti
are of less interest. The classical theories of Brownian m
tion recognized this distinction and reduced the influence
the solvent on the Brownian particles to frictional forces a
random forces with simple statistical properties.1 In many
applications such a simplified description does not suf
since one would like to account for specific features of
solute–solvent forces. In aqueous solutions, for exam
these forces may be hydrophobic or hydrophilic and infl
ence the dynamics of the solute molecules in rather diffe
ways.

In this article we show how to combine a full molecul
dynamics~MD! description of the solute motions, includin
the specific nature of their interactions with the solvent, w
a mesoscale treatment of the solvent dynamics. The sol
model was introduced earlier2 and consists of ‘‘particles’’
whose positions and velocities are treated as continuous
ables. The system is coarse grained into cells, with no res
tion on the number of particles that may reside in a cell, a
the solvent dynamics is carried out synchronously at disc
time steps. Particle streaming is treated exactly while
cells are the collision volumes for a multiparticle collisio
dynamics. Since the solvent is treated as a collection of
ticles, collisional coupling to other microscopic solute d
grees of freedom is easily taken into account.

a!Electronic mail: a.malevanets1@physics.ox.ac.uk
7260021-9606/2000/112(16)/7260/10/$17.00
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The features of this hybrid molecular dynamics are e
plored in this paper, which is organized as follows. In Sec
we sketch the properties of the mesoscale solvent model
show how it can be combined with a full MD description
the solute dynamics. In order to study the influence of
solvent dynamics on solute motions it is necessary to ana
the pure solvent in some detail. Since the solvent dynamic
carried out at discrete time steps this necessitates a reex
nation of standard correlation function treatments. In Sec
the derivations of linearized hydrodynamic equations a
Green–Kubo formulas for discrete time autocorrelation fu
tions are given. In Sec. IV we illustrate the hybrid M
method by investigating the dynamics of a single sol
nanocolloidal particle and a concentrated suspension
nanocolloidal particles in the mesoscale solvent. Section
contains the conclusions of the study.

II. HYBRID MOLECULAR DYNAMICS MODEL

We consider a system composed of a bath ofN
solvent molecules with phase space coordinates,X(N)

5(x1 ,x2 , . . . ,xN) and 5V(N)5(v1 ,v2 , . . . ,vN) and M
solute molecules with phase space coordinatesX(M )

5(xN11 ,xN12 , . . . ,xN1M) and 5(vN11 ,vN12 , . . . ,vN1M).
The solute molecules interact with each other through
interaction potentialVss(X

(M )) and with the solvent mol-
ecules through a potentialVsb(X

(M ),X(N)). The solvent–
solvent potential energy is zero and the total potential ene
is the sum of solute–solute and solute–solvent contributio
V(X(M ),X(N))5Vss(X

(M ))1Vsb(X
(M ),X(N)).

Time is partitioned into segments of lengtht and the
system is coarse grained into Wigner–Seitz cells. Wit
each such time intervalt all solute and solvent particles i
the entire system evolve by Newton’s equations of motio
0 © 2000 American Institute of Physics
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ẋi5vi , mi v̇i52
]V

]xi
5Fi , ~1!

wheremi is the mass of particlei. Because of the nature o
the potential, within the time intervalt there are no solvent–
solvent interactions.

The interactions between solvent particles occur at e
discrete time stept and take the form of multiparticle colli
sions among solvent molecules in each coarse-grained
In a collision event, the velocities of all particles in a fram
moving with the velocity of the center of mass of the pa
ticles in a cell are rotated in a randomly chosen directi
These collision events are carried out independently in e
cell. Thus, the multiparticle collisions transform thesolvent
particle velocities according to

vi→V1v̂@vi2V#, ~2!

where v̂ is a random rotation from a setV and V is the
average velocity of the colliding particles within a cell. Th
mesoscale solvent dynamics is a type of direct simula
Monte Carlo3 with a modified collision rule. During colli-
sions the momentum and energy are conserved in each
The phase space volume during the transformation is
served and the collision rule ensures that an equilibrium
crocanonical ensemble distribution of the hybrid MD evo
tion exists.

This constitutes the hybrid MD model for the dynami
of the system. Since the solute particles interact with
solvent particles through intermolecular forces, solute–so
and solute–solvent interactions are treated microscopical
feature which is crucial in many applications. Howev
since the solvent–solvent dynamics is treated in a mesos
fashion through multiparticle collisions which act only
discrete time intervals, the evolution is efficient and lar
numbers of solvent molecules can be considered.

We have shown that the mesoscale solvent model
rectly describes the hydrodynamics of the velocity field.2 In
the present applications, where one is interested in the so
molecule motions, it is first necessary to investigate
solvent–solvent correlation functions since these quant
enter directly into theoretical descriptions of solute dyna
ics. In view of the discrete nature of the solvent dynam
and the multiparticle collision rule a reexamination of t
calculation of these correlation functions is required. Con
quently, we first discuss the solvent correlations and t
return to the solute correlations using the hybrid molecu
dynamics scheme.

III. GREEN–KUBO FORMULAS FOR SOLVENT
DYNAMICS

In this section we derive Green–Kubo formulas for d
crete systems4 in order to determine the time correlations a
transport properties of the pure mesoscale solvent with
solute molecules present. In the following section we sh
use these results to analyze solute Brownian motion in
solvent.

The starting point of the analysis is the evolution equ
tion for phase space probability density of the multipartic
collision model,2
Downloaded 20 Mar 2002 to 142.150.225.29. Redistribution subject to A
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P~V(N),X(N)1V(N),t11!5CP~V(N),X(N),t !, ~3!

where the collision operatorC has the form,

CP~V(N),X(N),t !5
1

iViL (
VL

E dV̆(N)P~V̆(N),X(N),t !

3)
i 51

N

d~vi2Vj2v̂j@ v̆i2Vj# !. ~4!

Here V̆(N)5( v̆1 ,v̆2 , . . . ,v̆N) denotes the set of precollisio
velocities andj is the coordinate of a coarse-grained cell
the system. LettingG5(V(N),X(N)) be a solvent phase poin
andW(G8→G) the transition operator that accounts for t
streaming and collision steps, we may write the discrete-t
evolution equation formally as

P~G,t11!5E dG8W~G8→G!P~G8,t !, ~5!

where the integral sign implies summation over any discr
variables in the stateG. The equilibrium distribution of this
Markov chain is denoted byP0(G).

We shall derive a set of evolution equations for the
cally conserved variables, mass, momentum and energy
ing projection operator methods and extract discrete-t
correlation function expressions for transport coefficien
The projection operator method we use follows the lines
the well-known reduction of the classical evolution of
Hamiltonian system to a generalized Langevin equatio5,6

but is modified to account for the intrinsic stochasticity a
discrete-time dynamics of the model.

We define a projection operatorP as

~PH !~G!5HP~G!5a†~G!P0~G!^aa†&21

3E dG8a~G8!H~G8!, ~6!

wherea is a set of dynamical variables,H(G) is any function
of the phase space variables and the angular brackets de
an average over the equilibrium distribution. The comp
mentary operatorQ is defined byQ512P. Often we shall
drop the argumentG when ambiguity is unlikely to arise.

Consider the Fourier transform of a locally conserv
dynamical variable defined as

ak~G~ t !!5(
i

i i~ t !eik"xi (t).

Here i(t) represents one of the collision invariants, ma
momentum, or energy, andak(G(t)) is the corresponding
density. Our main interest is in the smallk dependence of
these locally conserved dynamical variables. Application
the projection operator and it complement to Eq.~5! ~the
derivation is outlined in Appendix A! leads to

PP~ t11!5PWPP~ t !1 (
t51

t

K~t21!PP~ t2t!. ~7!

For locally conserved dynamical variables the memory k
nel in this equation is given by

K~t!5P~W21!QW tQ~W21!P1o~k2!. ~8!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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A. Evolution of locally conserved variables

The average of the set of conserved quantitiesa over the
projected probability distribution yields a set of equations
their average valuesā(t). The derivation of this set of equa
tions, starting from Eq.~7!, is presented in Appendix B an
the result in vector form is

āt5
1

2
^a~S~G,1!!a†~G!2a~G!a†~S~G,1!!&^aa†&21ā

2F1

2
^f~0!f†~0!&1(

t51

`

^f~ t !f†~0!&G ^aa†&21ā. ~9!

In Eq. ~9! we have introduced an operatorS(G,t) which
relates to the stateG at the initial time the set of states afte
t steps of evolution, weighted with the probability of trans
tion to the corresponding state. Using this notation we m
express equilibrium averages in the following form:

E dGE dG8a~G!W~G8→G!b~G8!P0~G8!

5^a~S~G,1!!b~G!&,

where summation over states is implied. The quantityf in
Eq. ~9! is a random force defined by

f~ t !5a~S~G,t11!!2^a~S~G8,1!!a†~G8!&

3^aa†&21a~S~G,t !!. ~10!

In Eq. ~9! one finds the sum of the force–force time corr
lation function and this corresponds to a trapezoid appro
mation of the time integral found in derivations fo
continuous-time systems. We will use the following altern
tive expression for the sum of the force–force tim
correlation function:

1

2
^f~0!f†~0!&1(

t51

`

^f~ t !f†~0!&5 lim
T→`

1

2T (
t,t8,T

^f~ t !f†~ t8!&.

~11!

B. Linearized hydrodynamic equations

Application of Eq. ~9! to a complete set of conserve
quantities leads to the linearized hydrodynamic equatio
The system is partitioned into Wigner–Seitz cells with co
dinatesj as noted in Sec. II. The momentum and ene
densities in a cell plus the particle density constitute the
of locally conserved variables:

r~x!5(
i 51

N

d~xi2x!, ~12!

m~j!5(
i 51

N

viu~1/22uxi2ju!, ~13!

«~j!5(
i 51

N
1

2
v i

2u~1/22uxi2ju!. ~14!

It is convenient to work with an orthogonal set of dynamic
variables. Ink space, wherek is restricted byuku,1/p, the
set of orthogonal dynamical variables is
Downloaded 20 Mar 2002 to 142.150.225.29. Redistribution subject to A
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where we introduced the notationsk5ek2CvTrk with Cv
the specific heat. For this set of variables the cro
correlation matrix is indeed diagonal and has the followi
form:

^akak
†&5NS 1 0 0

0 kBT1 0

0 0 CvkBT2
D , ~15!

whereCv53kB/2 in three dimensions. The dissipation-fre
evolution is determined by the first term in Eq.~9! and one
has

1
2 ^ak~S~G,1!!ak

†~G!2ak~G!ak
†~S~G,1!!&

5NS 0 ikkBT 0

ikTkBT 1 ikT~kBT!2

0 ik~kBT!2 0
D . ~16!

From Eq. ~10! we may explicitly compute the expres
sions for the random forces to obtain,

f k
r~ t !5 ik"(

i
@xi~ t11!2xi~ t !2vi~ t !#1o~k!, ~17!

f k
m~ t !5(

i
S vi~ t !@ ik•Dji~ t !#2

1

d
ikv i~ t !2D1o~k!,

~18!

f k
«~ t !5 ik"(

i
FDji~ t !S 1

2
v i~ t !22CvTD

2vi~ t !~Cp2Cv!TG1o~k!, ~19!

where we introduced the notationDji(t)5ji(t11)2ji(t).
It is convenient to rewrite the momentum force as a sum
two terms; a term parallel tok and a perpendicular term
which defines the shear viscosity coefficient,

f k
m~ t !5(

i
S vi

'~ t !ik"Dji
'~ t !

1 ikFvi
i
~ t !Dji

i
~ t !2

1

d
v i~ t !2G D1o~k!,

wherevi
i and vi

' are the parallel and perpendicular comp
nents of the velocity, respectively.

Algebraic manipulations yield the following linearize
hydrodynamic equations:

] trk5 ik"mk , ~20!

] tmk5 ik"FkBTrk1
sk

cv
G1hFkk2

1

d
k21G : mk

r
1kkk :

mk

r
,

~21!

] tsk5kBTik"mk1lk2
sk

r
. ~22!

The viscosity coefficient is obtained from the autocorrelat
of the transverse component off k

m(t):
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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h5 lim
T→`

r

2kBTNT (
t,t8,T

(
i , j

vxi~ t !Djyi~ t !vx j~ t8!Djy j~ t8!.

~23!

The bulk viscosityk and heat conductivityl transport
coefficients are given by the following relations:

k5 lim
T→`

r

2kBTNT (
t,t8,T

(
i , j

Fvi
i
~ t !Dji

i
~ t !2

1

d
v i~ t !2G

3Fvj
i
~ t8!Djj

i
~ t8!2

1

d
v j~ t8!2G , ~24!

l5 lim
T→`

r

4CvkBT2NT
(

t,t8,T
f k

«~ t ! f k
«~ t8!. ~25!

C. Solvent viscosity and stress autocorrelations

The solvent viscosity and the stress autocorrelation fu
tions are two especially important solvent properties that
fluence the nature of solute dynamics. We now comp
these quantities by direct numerical simulation of the me
scopic solvent model and show how simple analytical
proximate values for these quantities may be obtained.

In Fig. 1 we present the results of numerical simulatio
of the stress–stress autocorrelation function and shear
cosity. A scattering rule was used where the velocity w
rotated byp/2 in random directions. The simulations we
carried out on a three-dimensional system of size 32332
332 lattice cells. Figure 1 shows both the stress–stress
tocorrelation function and its time integral, whos
asymptotic value is the solvent viscosity. We note that
stress autocorrelation decays to zero in about two disc
time units, setting the time scale for solvent relaxation.

Under the assumption that the stress autocorrela
function decays in a geometrical progression with rater h ,
from Eq. ~23! we may derive an expression for the viscos
coefficient,

FIG. 1. The stress autocorrelation function and its running integral.
circles on the solid line show computed values ofc(t), the stress autocor
relation function. The closed diamonds on the dotted line represent the
ues of the partial summation of the autocorrelation function. The system

is 32332332 and the parameter values arer510.0 andkBT5
1
3. Rotations

by p/2 in random directions were used in the collision operator.
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h5 lim
T→`

r

kBTN

1

2T S Tc~0!1(
t51

T

2~T2t !c~ t !D
5rkBT

11r h

2~12r h!
, ~26!

where we have introduced the notation

c~ t !5K (
i , j

vxi~ t !Djyi~ t !vx j~ t8!Djy j~ t8!L
and

r h5c~1!/c~0!.

If we further assume that only particles at differe
nodes are uncorrelated and replaceDjyi(t) by its expectation
valuevyi(t) we may writec(1) as

c~1!5NE dvv yvxC̄1~ f̄ 0vyvx!. ~27!

The operatorC̄1 is defined as

C̄1~ f̄ 0h1!~v!5 (
vPV,n51

`
rn

uVun!
e2rE dV@~n!#

3(
j 51

n

d~v2vj !Pm~V@~n!# !(
i 51

n

h1~ v̆i !,

~28!

wherev̆i5V1v̂@vi2V# andPm(V@(n)#) is the product ofn
single-particle Maxwell distributions. Computation ofc(0)
from the equilibrium average yields

c~0!5N~kBT!2.

The resulting value for the viscosity coefficient is

h5
rkBT

6

3~12e2r!12r

~e2r2~12r!!
. ~29!

The simulation value ish51.97 while Eq.~29! yields h
51.42. The deviation is due to the strong correlations
tween colliding particles at the temperaturekBT51/3.

For completeness we also give the results for the ther
conductivity. The thermal conductivity coefficient can b
computed in the same way yielding

l5rkBT
11r l

12r l
, ~30!

with the following expression for the thermal conductivi
damping constant:

r l5E dvs2C̄1~ f̄ 0s2!Y E dv~s2!2 f̄ 0

5 (
n51

`
e2rrn21

15nn!
~5n216n14!, ~31!

or, after summation,

r l5
1

15

6~12e2r!15r

r
1

4e2r

15r
~Ei~r!2g2 ln r!, ~32!
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whereg is Euler’s constant and Ei is the exponential in
gral. The quantitys2 is defined as

s25F c2

2T
2CpGca ,

with cÄv2ub , whereub is the mean velocity of the solven
molecules. For the particle density used in simulationsr
510 we find r l50.38 and the corresponding thermal co
ductivity coefficientl57.6.

IV. BROWNIAN MOTION

In this section we illustrate the use of the hybrid M
method on the study of the diffusion of a single nanocoll
dal particle and a dense nanoparticle suspension in the
soscale solvent. For a large colloidal particle, the fricti
may be computed by assuming that the solvent is a visc
continuum which couples to the Brownian particle throu
boundary conditions. The friction coefficientz is given by its
hydrodynamic valuezh , zh56phR or zh54phR, for stick
or slip boundary conditions, respectively, withR the radius
of the particle.7 In the classical theory of Brownian motio
the velocity of the Brownian particle evolves by the Lang
vin equation1 ~we let vN115u to distinguish the Brownian
particle velocity!,

ms

du~ t !

dt
52zu~ t !1R~ t !, ~33!

wherems is the mass of the Brownian particle. The rando
forceR(t) is assumed to be a Gaussian random process
white noise spectrum and is related to the friction by
fluctuation-dissipation theorem, 2kBTzd(t2t8)5^R(t)
•R(t8)&/3. The velocity correlation function,Cu(t)5^u(t)
•u(0)&/3 may be computed from the Langevin equation.
decays exponentially,Cu(t)5(kBT/ms)exp(2zt/ms) and its
infinite time integral, the diffusion coefficient, is given by th
Einstein formula:D5kBT/z.8

The diffusion coefficient of a single small solute mo
ecule possesses both microscopic and hydrodyna
components.9 The microscopic component arises from u
correlated collisions between the solute particle and solv
determined by the solute–solvent intermolecular forces.
hydrodynamic component is the result of hydrodynam
flows that develop around a moving particle and influence
motion. To account for the dynamics of these interactio
one may introduce a generalized Langevin equation wit
time-dependent friction kernel,8

ms

du~ t !

dt
52E

0

t

z~ t8!u~ t2t8!dt81R~ t !, ~34!

where the random force autocorrelations are related to
time-dependent friction by 2kBTz(t)5^R(t)•R&/3.

A. Simulation algorithm

We consider the diffusion of large, but not macrosco
cally large, solute particles that interact with the solve
through continuous intermolecular forces. Using terminolo
introduced earlier10 we refer to such particles as nanocollo
dal particles. Since the solute particles are not macrosc
Downloaded 20 Mar 2002 to 142.150.225.29. Redistribution subject to A
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cally large one expects that both microscopic and hydro
namic contributions will play a role in determining th
character of the dynamics.

The system Hamiltonian is

H5(
i

1

2
mivi

21(
i , j

Vi j ~ uxi2xj u!, ~35!

where the solute particle interactions are given by trunca
Lennard-Jones~LJ! potentials,

V~r !5H 4eFs12

r 12
2

s6

r 6
1

1

4G , r ,21/6s

0, r .21/6s.

~36!

The solute–solute interaction parameters aresc56.0 and
ec51.0 and the corresponding values for the solvent–so
interactions ares53.0 ande51.0.

The dynamics of colloidal and nanocolloidal systems
characterized by a separation between the time scales
determine microscopic relaxation processes and hydro
namic flows. The hybrid MD algorithm exploits this time
scale separation and partitions the dynamics into MD a
multiparticle solvent collision steps applied consecutively
the system. During the MD step the system evolves acco
ing to Newton’s equation of motion. We have used the v
locity Verlet algorithm,11

xi~ t1Dt !5xi~ t !1Dtvi~ t !1
~Dt !2

2mi
Fi~xi~ t !!,

~37!

vi~ t1Dt !5vi~ t !1
Dt

2mi
@Fi~xi~ t !!1Fi~xi~ t1Dt !!#,

with time step ofDt50.02t to evolve the positions and ve
locities in the MD step. Since solvent–solvent interactio
are absent within thet time intervals, the number of force
computations needed in the full MD stages is proportiona
the number of solute particles.

The time ratioDt/t is chosen based on the followin
considerations. The MD time stepDt is defined by the par-
ticle motion in the potential fieldDt!sA(m/kBT). The
characteristic hydrodynamic time is given by the time f
momentum to propagate a distance equal to the sphere ra
t! s2/n, wheren is the kinematic viscosity. For the sam
degree of discretization error we have the following expr
sion for the time step ratioDt/t ' (n/s)A(m/kBT)50.11.

The interactions between solvent particles occur at e
discrete time step according to the multiparticle collision d
namics using the scattering rule discussed in Sec. IV: T
velocities of all solvent particles in a frame moving with th
velocity of the center of mass of the particles in each cell
rotated byp/2 along a randomly chosen direction indepe
dently in each cell.

B. Heavy solute particle

We first examine the velocity autocorrelation functio
~VACF! and diffusion coefficient for a heavy solute partic
with massms5250 in solvent of particles with massm51,
number densityr510, andkBT51/3 in the dimensionless
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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units of Sec. IV A. The mass ratio of solvent and solu
particles,r m5m/ms , is r m50.004. Usings as a rough es-
timate of the size of the solute particle the volume of a sol
particle isVs54ps3/3 and the solvent–solute mass dens
ratio, r d5mr/(ms /Vs), is r d50.45. Since both ratios ar
less than unity one expects relatively simple dynamics.12

The simulation results in Fig. 2 show the rapid sho
time decay ofCu(t) along with the early stages of the long
time tail. As expected for systems with continuous forc
the velocity autocorrelation function has zero initial slop
For comparison, we also show the short-time approxima
to Cu(t),

Cu~ t !;Cu~0!2
^F2&

3ms
2

t2

2
, ~38!

as well as the exponential decay predicted by a Boltzm
approximation to the friction coefficient, z'z0

5(8/3)rs2(2pmkBT)1/253.53102, wherem is the reduced
mass. The corresponding diffusion coefficient equals toD0

5kBT/z051.031023. Both of these approximations fail t
capture the major long-time contributions to the velocity c
relation decay.

The long time behavior of running time integral of th
velocity autocorrelation function gives the time-depend
diffusion coefficient,

D~ t !5E
0

t

dt8 Cu~ t8!. ~39!

Hydrodynamic contributions to the velocity autocorrelati
function give rise to at23/2 long time tail13 and consequently
D(t)'D2a1 /At. The results in Fig. 3 are in accord wit
this functional form, indicating the presence of a hydrod
namic component in the velocity correlation function.

If the time-dependent friction is determined from a h
drodynamic model for an incompressible fluid with eith

FIG. 2. Short-time behavior of the VACF for a heavy particle. The solid l
shows the computed values of the VACF for particle of massms5250 and

s53.0. The solvent density isr510.0 and the temperaturekBT5
1
3. The

excluded volume fraction of the colloidal particle isf50.02. The dashed
line shows the decay of the VACF for a hard sphere in the Boltzm
approximation. The dotted line shows the short time expansion of the VA
to second order in time calculated using the simulated value of the f
autocorrelation function~see the text!.
Downloaded 20 Mar 2002 to 142.150.225.29. Redistribution subject to A
e

-

,
.
n

n

-

t

-

slip or stick boundary conditions one findsa15(2/3)
3(4ph)23/2(msr)1/2. From this expressiona150.0114
while the simulation value is approximately 0.0104. T
simulation and theoretical values ofa1 are in good agree-
ment.

The existence of thet21/2 tail confirms that the mesos
cale solvent model yields correct hydrodynamic veloc
flow fields in the solvent that are responsible for this ph
nomenon.

The plot ofD(t) vs t is given in Fig. 4. The value of the
diffusion coefficient determined from an extrapolation of t
simulation data isD54.931023. If one assumes a Stoke
law form with slip boundary conditions~appropriate for this
system with central forces!, zh54phR, and takes for the
diffusion coefficient the following expression:

D5D01Dh , ~40!

one findsRh53.4, providing an estimate of the size of th
microscopic boundary layer around the solute particle.

n
F
e

FIG. 3. The running integral of the VACF of Fig. 2 vsz5t21/2. The dots
show the computed values of the integral and the solid line represents a
the formD(t)5D2a1 /At to the simulated values. The asymptotic valu
of the diffusion coefficient isD54.931023.

FIG. 4. The partial integrals of the VACFs for~from top to bottom! heavy
particlems5250, light particlems520 and 20 heavy particles of massms

5250 are plotted vs time.
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note that as we computeD by extrapolating the stress auto
correlation function we do not need to take into account
negative finite size correction;s/L, which is a result of
momentum conservation in finite volume simulations. T
finite size correction gives a significant contribution to t
value of the diffusion coefficient.14

C. Caging effects for a light solute particle

We next consider a solute particle of massms520 in the
same solvent so thatr m50.05 andr d55.56. Thus, while the
solute particle mass is large its mass density is not and
expects more complex dynamics.12 Figure 5 shows the ve
locity autocorrelation function and one observes strong
cillations as a result of the caging of the solute particle by
solvent. A simple model may be constructed for these os
lations. Consider the expression for the half-sided Fou
transform of the velocity autocorrelation function obtain
from the generalized Langevin equation. Multiplying E
~34! by u(0) and taking the Fourier transform of both sid
we arrive, after averaging, at the following expression:

C̃u~v!5
kBT

2msiv1 z̃~v!
. ~41!

We expect that at short times the solute particle experien
uncorrelated collisions with the solvent particles which a
exponentially distributed in time. We may then assume t
the friction coefficientz(t) decays exponentially for shor
times,

z~ t !5msv f
2e2vzt, ~42!

wherev f is defined by the force–force autocorrelationv f
2

5^Fx
2&/(mskBT) .

Using the Fourier transform of this time-dependent fr
tion coefficient in Eq.~41! and inverting the transform to
obtain the velocity autocorrelation function, we obtain

Cu~ t !5
kBT

ms
e2vzt/2S cosv0t1

vz

2v0
sinv0t D , ~43!

FIG. 5. Short-time behavior of the VACF for a particle of massms520.
The other parameters are the same as in Fig. 2. The solid and the dotted
show the simulation values of VACF and the values computed from
exponentially decaying memory function approximation, respectively.
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wherev0
25v f

22vz
2/4. In Fig. 5 we compare the short-tim

autocorrelation function obtained in simulations~solid line!
with a fit to Eq.~43! ~dotted line!. The parameters of the fi
are vz52.59 andv059.20. ~A single parameter enters th
fit sincev0 may be determined fromv f andvz .) This ex-
pression captures the main features of the short-time osc
tions.

The collision contribution to the diffusion coefficien
arising from this effect is given byD05C̃u(0),

D05
kBTvz

msv f
2

. ~44!

The theoretical value of the collision contribution to th
value of the diffusion coefficient given by Eq.~44! is D0

55.031024 and constitutes a few percent of the total diff
sion coefficient,D53.631023, which can be determined
from the simulation results in Fig. 4. Again assuming
Stokes law friction we findRh54.3, indicating larger micro-
scopic boundary layer effects in this light mass density ca

D. Concentrated nanocolloidal suspensions

To study self-diffusion in concentrated colloidal suspe
sions one must account for solute–solute interactions ari
from the direct intermolecular potentials as well as hydrod
namic interactions due to the perturbation of the flow fie
by other solute molecules. The Langevin equation must n
be replaced by a coupled set of Langevin equations for
velocities of all the solute molecules. The volume fracti
dependence of the self-diffusion coefficient in concentra
suspensions has been studied extensively, b
theoretically15–19 and experimentally.20

We have carried out a simulation of the dynamics of
solute particles of massms5250 in the mesoscale solven
with the same density and temperature as in the single
ticle cases treated previously. The volume fraction isf
50.4. In Fig. 6 we show a configuration of the solute pa
ticles in this concentrated suspension. The solvent molec

nes
n

FIG. 6. A snapshot of a configuration of solute and solvent molecules. La
particle radii arer 521/6s. Solvent particles in a rectangular slab with c
ordinates 9.5,x,10.5 are drawn as light small balls. The excluded volum
fraction for the system isf50.4. Due to periodic boundary conditions som
large particles are seen outside the system borders marked by the light
frame.
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of the mesoscale solvent model are shown in a thin s
through the three-dimensional volume in order to avoid
scuring the solute particles. From Fig. 6 one can see tha
interactions governing the motion of a tagged solute part
will involve both solute-solute interactions and the abov
described complex many-body hydrodynamic interaction

The time-dependent diffusion coefficientD(t) obtained
from the running integral of the velocity correlation functio
is shown in Fig. 4. One can see that the diffusion coeffici
is smaller than that for a single solute particle of the sa
size and mass. In addition,D(t) increases rapidly to a broa
maximum and then falls slowly on a long time scale befo
reaching its asymptotic value.

A quantity that can be measured in experiments is
short-time self-diffusion coefficient,Ds . This diffusion co-
efficient describes the dynamics on time scalest such that
tH!t!tD , wheretH is the hydrodynamic screening tim
within which hydrodynamic interactions become importa
andtD is structural relaxation time of the suspension.19 For
the system considered heretH'30 while tD'1000. The
coefficientDs reflects the decay of the velocity autocorre
tion function that occurs on time scales that are sufficien
short that the solute particle configuration does not cha
appreciably. The short-time diffusion coefficient can be e
tracted from the broad maximum ofD(t) in Fig. 4. From the
data presented in Fig. 4 one may estimate the ratioDs /D
'0.5, whereD is the diffusion coefficient for a single solut
particle. While there are no theoretical estimates for this ra
for the Lennard-Jones system we study, we note that
theoretical estimates for hard-sphere suspensions y
Ds /D'0.32 for a volume fraction off50.4.19

For long times the configuration of solute particl
changes and dynamical effects arising from a variety
solute–solute interactions come into play leading to a
crease in the diffusion coefficient.

V. CONCLUSION

When constructing hybrid MD schemes which treat s
vent motions on a mesoscale level it is essential that
solvent dynamics exhibit the correct hydrodynamics on lo
scales, yet couples to the solute molecules in a manner
reflects specific features of solute–solvent intermolecu
forces. The mesoscale solvent model constructed in Re
was shown to yield the correct hydrodynamic equations
motion and exhibit flow fields with the correct features ev
on small scales where its particle nature is apparent.

The hybrid MD scheme discussed in this paper explo
the particle nature of the solvent to describe the solu
solvent interactions microscopically, rather than throu
boundary conditions imposed at the surface of solute m
ecules. As a result of these two features the hybrid M
scheme can be used to model solute dynamics when spe
features of solute–solvent interactions are important.

The efficiency of the scheme derives from the fact t
the solvent–solvent interactions are considered only at
crete time intervals and modeled by a multiparticle collisi
rule that accounts for the effects of all solvent–solvent c
lisions in the time interval. The combination of full MD with
discrete-time solvent–solvent collisions is straightforward
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implement numerically but presents some theoretical f
tures that required the more detailed considerations give
Sec. III.

The simulations of solute particle motion presented h
show that both microscopic and hydrodynamic effects
captured by the hybrid MD scheme and have served to d
onstrate the feasibility and utility of the method. The meth
should find application in more complex problems such
polymer dynamics in solution or studies of solution-pha
reaction dynamics.
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APPENDIX A: EQUATIONS OF MOTION

Applying the projection operatorsP andQ to Eq.~5! we
obtain a system of two equations,

PP~ t11!5PWPP~ t !1P~W21!PQ~ t !, ~A1!

PQ~ t11!5Q~W21!PP~ t !1QWPQ~ t !, ~A2!

wherePP(t)5PP(t) andPQ(t)5QP(t). A recursive appli-
cation of Eq.~A2! yields the result,

PQ~ t !5@QW# tPQ~0!1 (
t51

t

@QW#t21Q~W21!PP~ t2t!,

~A3!

which, after substitution into Eq.~A1!, gives

PP~ t11!5PWPP~ t !1 (
t51

t

K~t21!PP~ t2t!, ~A4!

where the memory kernel is defined by

K~t!5P~W21!@QW#tQ~W21!P. ~A5!

We eliminated the first term on the right-hand side of re
tion ~A3! by the use of a specially prepared ensemble
initial conditions where deviations only occur in the dynam
cal variables. For slowly decaying dynamical variable
which are our main concern,PP(t2t) can be replaced by
PP(t).

Equations~A4! and ~A5! hold for the projection onto
any set of dynamical variables. Next, we consider the for
they take for conserved variables for smallk. If the dynam-
ics given by a composition of streaming and collision in th
order, the following identity holds for conserved variables

(
i

i i~ t !eik"xi (t)5(
i

i i~ t21!eik"xi (t). ~A6!

Equation~A6! follows from the conservation of the quant
ties i under collisions at timet11. Using identity~A6! and
expandinga in powers ofk, we write theP projection of
@W21#b, whereb is an arbitrary function, as
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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~P@W21#b!~G!5a†~G!P0~G!^aa†&21E dG8@a~S~G8,1!!2a~G8!#b~G8! ~A7!

5a†~G!P0~G!^aa†&21E dG8Feik"x~8/ i !(t)b~G8!(
i

~ ik•@xi8~1!2xi8~0!#i i8~0!1o~k!!G . ~A8!
r

us,

a

of
ari-
the

es
Along the same lines we may prove that@W21#P5O(k).
Next, we shall prove that

@QW#tQ5QW tQ1O~k!. ~A9!

For t50 relation~A9! holds. Let us assume that it holds fo
t5 l and prove the relation fort5 l 11. We write
@QW# l 11Q5@QW# lQWQ. Then

@QW# l 11Q5@QW# lQWQ5QW lQWQ1O~k!

5QW l@Q1~W21!1O~k!#Q1O~k!

5QW l 11Q1O~k!, ~A10!

where we reexpressedQW in the equivalent form

QW5Q1~W21!2P~W21!5Q1~W21!1O~k!.
~A11!
um

um

rn

Downloaded 20 Mar 2002 to 142.150.225.29. Redistribution subject to A
This proves the assertion of the recursion relation and, th
the formula~A9!.

From relation ~A7!, its dual expression, and formul
~A9! we may express the memory kernel equation as

K~t!5P~W21!QW tQ~W21!P1o~k2!,

which is Eq.~8! in Sec. III.

APPENDIX B: SIMPLIFICATION OF EQUATIONS OF
MOTION

In this Appendix we show how the formal equations
motion for the average values of conserved dynamical v
ables can be written in a convenient form. Computing
average ofa over the projected probability distribution~7!
yields the following set of equations for the average valu
ā(t):
ā~ t11!2ā~ t !5^~a~S~G,1!!2a~G!!a†~G!&^aa†&21ā~ t !1 (
t51

t

^a~W21!QW t21Q~W21!a†&^aa†&21ā~ t2t!. ~B1!

We rewrite the first term on the right-hand side of Eq.~B1! as a sum of symmetric and antisymmetric operators:

^~a~S~G,1!!2a~G!!a†~G!&5 1
2 ^a~S~G,1!!a†~G!2a~G!a†~S~G,1!!&2 1

2 ^~a~S~G,1!!2a~G!!~a†~S~G,1!!2a†~G!!&,
~B2!
ime
is
where we used time-translation invariance of the equilibri
probability distribution,

^a~S~G,1!!a†~S~G,1!!&5^a~G!a†~G!&.

For the memory kernel acting on̂aa†&21ā we write

^a~W21!QW t21Q~W21!a†&5^f~ t !f†~0!&, ~B3!

with

f~ t !5a~S~G,t11!!2^a~S~G8,1!!a†~G8!&

3^aa†&21a~S~G,t !!, ~B4!

where we used the time-translation invariance of equilibri
averages.

Letting b(G)5a(S(G,1))2a(G), we write the second
term of Eq.~B2! as

1
2 ^b~G!b†~G!&5 1

2 ^b~G!Qb†~G!&1 1
2 ^b~G!Pb†~G!&.

~B5!

First, we notice thatQb†(G)5f†(0) and, thus, the first term
has the same form as the summands of the memory ke

^ 1
2ff

†&. The second term in Eq.~B5! may be expressed as
el:

^b~G!Pb†~G!&52^~a~S~G,1!!2a~G!!a†~G!&

3^aa†&21^a~G!~a†~S~G,1!!2a†~G!!&.

Furthermore, we may show that

@ 1
2 ^a~S~G,1!!a†~G!2a~G!a†~S~G,1!!&^aa†&21#2

52^b~G!Pb†~G!&^aa†&211o~k2!.

Indeed,

1
2 ^a~S~G,1!!a†~G!2a~G!a†~S~G,1!!&

2^~a~S~G,1!!2a†~G!!a~G!&

5 1
2 ^@a~G!2a~S~G,1!!#@a†~G!2a†~S~G,1!!#&5o~k!,

with a similar expression for the second factor.
Next, we consider some general aspects of discrete-t

dynamics. Suppose that the time evolution of the system
given by the following Euler scheme:

ā~ t11!5ā~ t !1@A2B#ā~ t !,

whereA andB are of the first and second orders ink. In this
case we write the operator identity
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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expS ]

]t D511A2B,

or, by expanding the logarithm into a Taylor series up
second order ink we obtain

]

]t
5A2

1

2
A 22B. ~B6!

Combining Eqs.~B6!, ~B5!, ~B2!, and~B3! we find Eq.
~9! of Sec. III.
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