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A hybrid molecular dynamic$MD) algorithm which combines a full MD description of solute—
solute and solute—solvent interactions with a mesoscale treatment of solvent-solvent interactions is
developed. The solvent dynamics is modeled on a mesoscale level by coarse graining the system
into cells and updating the velocities of the solvent molecules by multiparticle collisions within each
cell. The solvent dynamics is such that the correct hydrodynamic equations are obtained in the
macroscopic limit and a Boltzmann distribution of velocities is established in equilibrium.
Discrete-time versions of the hydrodynamic equations and Green—Kubo autocorrelation functions
are derived. Between the discrete-time solvent—solvent collisions the system evolves by the
classical equations of motion. The hybrid MD scheme is illustrated by an application to the
Brownian motion of a nanocolloidal particle in the mesoscale solvent and concentrated
nanocolloidal suspensions. @000 American Institute of Physid$S0021-96060)50816-2

I. INTRODUCTION The features of this hybrid molecular dynamics are ex-
plored in this paper, which is organized as follows. In Sec. Il
When studying complex fluids it is often convenient to we sketch the properties of the mesoscale solvent model and
focus on the dynamics of a subsystem of interest and treafhow how it can be combined with a full MD description of
the remainder of the system at a less detailed level of dethe solute dynamics. In order to study the influence of the
SCfiptiOﬂ. For instance, in colloidal suspensions one is intersoh/ent dynamics on solute motions it is necessary to ana|yze
ested in the dynamics of the colloidal particles, while thethe pure solvent in some detail. Since the solvent dynamics is
details of the solvent dynamics that influences their motiongarried out at discrete time steps this necessitates a reexami-
are of less interest. The classical theories of Brownian monation of standard correlation function treatments. In Sec. IlI
tion recognized this distinction and reduced the influence ofhe derivations of linearized hydrodynamic equations and
the solvent on the Brownian particles to frictional forces andGreen_Kubo formulas for discrete time autocorrelation func-
random forces with simple statistical propertier many tions are given. In Sec. IV we illustrate the hybrid MD
applications such a simplified description does not sufficenethod by investigating the dynamics of a single solute
since one would like to account for specific features of thenanocolloidal particle and a concentrated suspension of

solute—solvent forces. In aqueous solutions, for examplenanocolloidal particles in the mesoscale solvent. Section V
these forces may be hydrophobic or hydl’OphI'lC and inﬂU-Contains the conclusions of the study.

ence the dynamics of the solute molecules in rather different
ways.

In this article we show how to combine a full molecular !I- HYBRID MOLECULAR DYNAMICS MODEL
dynamics(MD) description of the solute motions, including

o . X . ; We consider a system composed of a bath Nf
the specific nature of their interactions with the solvent, with

solvent molecules with phase space coordinats§))

a mesoscale treatment of the solvent dynamics. The soIverJ_I(Xl X, xy) and =VMN=(v, v, vy) and M
model was llntroduced ea_rl.?eand consists of pgrtlcles solute molecules with phase space coordinated
whose positions and velocities are treated as continuous vari- (Xns 10 XN 42 Xusn) and = (Vo 1,Viso Vi)

ables. The system is coarse grained into cells, with no restricre ‘gojute molecules interact with each other through an
tion on the number of particles that may reside in a cell, angntaraction potentiaM {X™) and with the solvent mol-
the solvent dynamics is carried out synchronously at discretgjjes through a potential (X X™). The solvent—

S ’ .

time steps. Particle streaming is treated exactly while theg)ent potential energy is zero and the total potential energy

cells are the collision volumes for a multiparticle collision is the sum of solute—solute and solute—solvent contributions
dynamics. Since the solvent is treated as a collection of par\—/(X(M) X(N)):V 4X(M))+V b(X(M) X(N)) ’
il S S| il .

ticles, collisional coupling to other microscopic solute de-

- ! : Time is partitioned into segments of lengthand the
grees of freedom is easily taken into account.

system is coarse grained into Wigner—Seitz cells. Within
each such time intervat all solute and solvent particles in
dElectronic mail: a.malevanets1@physics.ox.ac.uk the entire system evolve by Newton’s equations of motion,
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. . Vv - @ P(VN) XN 4+ yv(N) ¢4+ 1)=cp(VN XN ), (3)
Xi=vVvj, myv=——=F,
b o ax where the collision operatat has the form,

wherem; is the mass of particle Because of the nature of 1
the potential, within the time interval there are no solvent— cP(VN) XMN) t)= > f dvN PV XN t)
solvent interactions. 1" o

The interactions between solvent particles occur at each N
d_lscrete time step and take the f(_)rm of multlpartlcle_colll- X_H S(Vi— Vg &’g[\vli—Vg])- (4)
sions among solvent molecules in each coarse-grained cell. i=1

In a collision event, the velocities of all particles in a frame SN S o o
Here V"= (v{,v,, ... ,vy) denotes the set of precollision

moving with the velocity of the center of mass of the par- . : ) .

ticles in a cell are rotated in a randomly chosen directionY€l0Cities andg is the CO?L?'”?,E? of a coarse-grained cell of
These collision events are carried out independently in eac}pedsys;e,m. Ifettwjz(v_ . X™7) be a sholvent phasefpomht
cell. Thus, the multiparticle collisions transform thelvent andW(I"" —T') the transition operator that accounts for the

particle velocities according to strearr_1ing and qollision steps, we may write the discrete-time
R evolution equation formally as

Vi—V+o[v,— V], 2

where o is a random rotation from a s€ andV is the P(F’Hl):f dr I =PI, 1), ®)

average \I/eloc:ty OI t;e coII_|d|n_g pa;ﬂcles \;V'(tjhm ? c_eII. IT?_e where the integral sign implies summation over any discrete
mesoscale solvent dynamics IS a type ot direct SImulalion,, e in the stat€. The equilibrium distribution of this
Monte Carld with a modified collision rule. During colli-

. th " d di h ll\flarkov chain is denoted biPy(T").
sions the momentum and energy are conserved In each Cell. yyq g derive a set of evolution equations for the lo-

The phase space \_/qlume during the transforma_t!oq 'S prfacfally conserved variables, mass, momentum and energy, us-
served and the collision rule ensures that an equilibrium mi:

. s : ing projection operator methods and extract discrete-time
figonci?(ic')slcal ensemble distribution of the hybrid MD evOIU'Correlation function expressions for transport coefficients.

This constitutes the hybrid MD model for the dynamics The projection operator method we use follows the lines of

) . X . the well-known reduction of the classical evolution of a
of the system. Since the solute particles interact with thefﬂamiltonian system to a generalized Langevin equfion

solvent particles through intermolecular forces, solute—solut%ut is modified to account for the intrinsic stochasticity and
and solute—solvent interactions are treated microscopically, iscrete-time dynamics of the model

fgature which is crucial in many e_lpplication_s. However, We define a projection operatdt as
since the solvent—solvent dynamics is treated in a mesoscale
fashion through multiparticle collisions which act only at (PH)(I')=HpT)=a'(I")Py(I')(aa) 1
discrete time intervals, the evolution is efficient and large
numbers of solvent molecules can be considered. XJ dr’a(T")H(T"), (6)

We have shown that the mesoscale solvent model cor-
rectly describes the hydrodynamics of the velocity field.  whereais a set of dynamical variablesl,(I") is any function
the present applications, where one is interested in the solutsf the phase space variables and the angular brackets denote
molecule motions, it is first necessary to investigate thean average over the equilibrium distribution. The comple-
solvent—solvent correlation functions since these quantitiementary operato® is defined byQ=1—"7P. Often we shall
enter directly into theoretical descriptions of solute dynam-drop the argumenk when ambiguity is unlikely to arise.
ics. In view of the discrete nature of the solvent dynamics  Consider the Fourier transform of a locally conserved
and the multiparticle collision rule a reexamination of the dynamical variable defined as
calculation of these correlation functions is required. Conse-
quently, we first discuss the solvent correlations and then g (1(t))=>, (t)e'kx®.
return to the solute correlations using the hybrid molecular [

dynamics scheme. Here «(t) represents one of the collision invariants, mass,

momentum, or energy, and,(I'(t)) is the corresponding
density. Our main interest is in the smélldependence of
these locally conserved dynamical variables. Application of

In this section we derive Green—Kubo formulas for dis-the projection operator and it complement to E§) (the
crete systenfsn order to determine the time correlations and derivation is outlined in Appendix Aleads to

Ill. GREEN-KUBO FORMULAS FOR SOLVENT
DYNAMICS

transport properties of the pure mesoscale solvent with no ¢

solute molecules present. In the following .sectlon we _shaII Po(t+1)=PWP(t) + E K(7—1)Pp(t— 7). 7
use these results to analyze solute Brownian motion in the =1

solvent.

The starting point of the analysis is the evolution equa-For locally conserved dynamical variables the memory ker-

tion for phase space probability density of the multiparticle-neI In this equation s given by
collision modeP K(7)=P(W—-1)QWTQ(W—1)P+0(k?). (8)
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A. Evolution of locally conserved variables ac={pi,Mc,Sx}»

The average of the set of conserved quantdieser the  \where we introduced the notatic=e,—C ,Tpx with C,
projected probability distribution yields a set of equations forthe specific heat. For this set of variables the cross-
their average valuea(t). The derivation of this set of equa- correlation matrix is indeed diagonal and has the following
tions, starting from Eq(7), is presented in Appendix B and form:

the result in vector form is
1 0 0

azg<a(3(r,1))af(r)—a(r)aT(S(r,l))xaaT)*lE (a@l)=N| 0 ksTL 0 |, (15
0 0 CukgT?

_F<f(o)fT(o)>+2 <f(t)fT(0)> <aaf>—1g 9) where.CU=.3kB/2 in.three dimen§ions. The dissipation-free
2 =1 evolution is determined by the first term in E®) and one

In Eq. (9) we have introduced an operaté{I',t) which has

relates to the statE at the initial time the set of states after %(ak(S(l“,l))al(I‘)—ak(I‘)a,ﬁ(S(F,l)))
t steps of evolution, weighted with the probability of transi-

tion to the corresponding state. Using this notation we may 0 ikkgT 0
express equilibrium averages in the following form: =N| ikTkgT 1 ikT(kgT)? |. (16)
0 ik(kgT)? 0
dl’ | dI'"a(T)wW(I —T)b(I'")Py(T"")
From Eq.(10) we may explicity compute the expres-
=(a(S(T',1))b(T)), sions for the random forces to obtain,

where summation over states is implied. The quarttity
Eq. (9) is a random force defined by

f(t)y=a(S(I',t+1))—(a(S(I'",1))a’(I'"))
x(aa') " ta(S(I',1)). (10)

In Eq. (9) one finds the sum of the force—force time corre-
lation function and this corresponds to a trapezoid approxi-

mation of the time integral found in derivations for  fi(t)=ik- 2 [Aé(t)( vi(H)?=C T)
continuous-time systems. We will use the following alterna-

tive expression for the sum of the force—force time-

correlation function: “Vi(D(Cp=Cy)T

fﬁ(t)=ik-2 [x(t+1)—x(t)—vi(t)]+o(k), (17

+o(k),
(18

=3 (v«t)[ik-Afi(t)]—éikvimz

+o(k), (19

1 where we introduced the notatiaké (t) =& (t+1)— &(t).
- T t _ a tryr i i i
2<f(0)f (0)>+t§1 (f(OF(0)) T'[nsz . t,E<T (fOF()). It is convenient to rewrite the momentum force as a sum of
' (11) two terms; a term parallel t& and a perpendicular term
which defines the shear viscosity coefficient,

B. Linearized hydrodynamic equations fﬁ‘(t)=2 (vﬁ(t)ik-Agﬁ(t)
Application of Eq.(9) to a complete set of conserved !

guantities leads to the linearized hydrodynamic equations.

The system is partitioned into Wigner—Seitz cells with coor- +ik

dinates¢ as noted in Sec. Il. The momentum and energy

densities in a cell plus the particle density constitute the setvherev; andv;" are the parallel and perpendicular compo-

v!‘(t)A&'(t)—évi(o2 +o(k),

of locally conserved variables: nents of the velocity, respectively.

N Algebraic manipulations yield the following linearized
p(x):izl S(%—X), 12 hydrodynamic equations:

- Pk =Ky, (20

N

- ly— Sk
=3, vio(1/2- %~ &), (13) atﬂk:ik.{kBTpﬁ i Lien } e e
CU d p p’
N (21
1,

2(§=2 Fvi0(12=|x—4). (14) 5.

=1 atsk=kBTik-/uk+)\k2;. (22)

It is convenient to work with an orthogonal set of dynamical
variables. Ink space, wheré is restricted byk|<1/7, the  The viscosity coefficient is obtained from the autocorrelation
set of orthogonal dynamical variables is of the transverse component fff(t):
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6.0

= I|m

kJNZTT¢m+Zza'an)

T 1+r,
pB2( r)

where we have introduced the notation

(26)

(k,TV)'C(7) , n(1)

p(t)= < .EJ vxi(t)A§yi(t)vxj(t’)A§yj(t’)>

and
0 2 4 6 8 10 r,= (1) (0).

If we further assume that only particles at different
FIG. 1. The stress autocorrelation function and its running integral. Thengdes are uncorrelated and replaf‘&/i(t) by its expectation
circles on the solid line show computed valuesygt), the stress autocor- valueu (t) we may ertel,/f(l) as
relation function. The closed diamonds on the dotted line represent the vaI yi
ues of the partial summation of the autocorrelation function. The system size

is 32x 32x 32 and the parameter values are 10.0 andkgT= 3. Rotations Pp(l)= NJ dvo v La(fov yUx)- (27
by /2 in random directions were used in the collision operator.

The operatoC; is defined as

[o4]

Tnm ZkBTNT“ZG ; Uxi(DAEi(Dvy(tAE, (). Cl(fohl)(v)_‘DeQZn_ |Q|n, fdv[(n)]
(23 n n
The bulk viscosityx and heat conductivit\ transport X Zl 5(V_Vj)Pm(V[(n)])i:21 h1(vi),
coefficients are given by the following relations: .
28
— i z E ! 1 2 29
k= lim o —— ZkBTNT = )Aﬁ(t)—avi(ﬂ wherev,=V+ a[v;— V] andP,,(V[(n)]) is the product of
i L <T single-particle Maxwell distributions. Computation ¢{0)
| g 1 2} 2 from the equilibrium average yields
Vi(t)AE (L") — zvi(t)7], 24
SR dd #(0)=N(kgT)?.
p e The resulting value for the viscosity coefficient is
=lim ———— > fOft). (25)
T—» 4C kBT NT ¢t/ <7 _ pkBT 3(1_eip)+2P

= . 29
T8 (er—(1-p) 29
The simulation value isp=1.97 while Eq.(29) yields 7

The solvent viscosity and the stress autocorrelation func=1.42. The deviation is due to the strong correlations be-
tions are two especially important solvent properties that intween colliding particles at the temperatigl = 1/3.
fluence the nature of solute dynamics. We now compute For completeness we also give the results for the thermal
these quantities by direct numerical simulation of the mesoconductivity. The thermal conductivity coefficient can be
scopic solvent model and show how simple analytical apcomputed in the same way yielding
proximate values for these quantities may be obtained.

In Fig. 1 we present the results of numerical simulations X\ = pkBT
of the stress—stress autocorrelation function and shear vis- '
cosity. A scattering rule was used where the velocity wasyith the following expression for the thermal conductivity
rotated bysr/2 in random directions. The simulations were damping constant:
carried out on a three-dimensional system of size 32

X 32 Iattiqe cells. Fi_gure 1 shoyvs bc_Jth thg stress—stress au- fx:f dVSza(f_osz)/ f dv(sz)zf_o
tocorrelation function and its time integral, whose

C. Solvent viscosity and stress autocorrelations

1+r,

(30

asymptotic value is the solvent viscosity. We note that the o o1
stress autocorrelation decays to zero in about two discrete 2 | ————(5n°+6n+4), (31)
time units, setting the time scale for solvent relaxation. n=1 15”

Under the assumption that the stress autocorrelatiogy after summation,
function decays in a geometrical progression with naje
from Eq.(23) we may derive an expression for the viscosity 16(1-e p)+5p 4e”? Ei(o)—
coefficient, =18 P 15 (Ei(p)—y

—Inp), (32
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where v is Euler's constant and Ei is the exponential inte-cally large one expects that both microscopic and hydrody-

gral. The quantitys, is defined as namic contributions will play a role in determining the
2 character of the dynamics.
c G
S,= ﬁ_cp Cas The system Hamiltonian is
1
with c=v—u,, whereu, is the mean velocity of the solvent H= Z EmiviznL Z:J Vij(|xi —xj|), (35

molecules. For the particle density used in simulatipns
=10 we findr,=0.38 and the corresponding thermal con-where the solute particle interactions are given by truncated

ductivity coefficientA =7.6. Lennard-Jone$lJ) potentials,
0_12 0_6
IV. BROWNIAN MOTION del ———+—|, r<2¥s
V(r)= ri2 (6 4 (36)
In this section we illustrate the use of the hybrid MD 0 26,

method on the study of the diffusion of a single nanocolloi-
dal particle and a dense nanoparticle suspension in the mé&he solute—solute interaction parameters aye=6.0 and
soscale solvent. For a large colloidal particle, the frictione.=1.0 and the corresponding values for the solvent—solute
may be computed by assuming that the solvent is a viscousteractions arer=3.0 ande=1.0.

continuum which couples to the Brownian particle through ~ The dynamics of colloidal and nanocolloidal systems is
boundary conditions. The friction coefficiefiis given by its  characterized by a separation between the time scales that
hydrodynamic valug,,, {,=6m 7R or {,=47 7R, for stick  determine microscopic relaxation processes and hydrody-
or slip boundary conditions, respectively, withthe radius namic flows. The hybrid MD algorithm exploits this time-

of the particle’ In the classical theory of Brownian motion scale separation and partitions the dynamics into MD and
the velocity of the Brownian particle evolves by the Lange-multiparticle solvent collision steps applied consecutively to
vin equatior} (we letvy,,;=u to distinguish the Brownian the system. During the MD step the system evolves accord-
particle velocity, ing to Newton’s equation of motion. We have used the ve-
locity Verlet algorithmt!

du(t)
mST:_gu(t)'f'R(t), (33) (At)2
Xi(t+ At) = Xi(t) + AtVl(t) + W Fi(xi(t))!
wheremy is the mass of the Brownian particle. The random !
force R(t) is assumed to be a Gaussian random process with At (37

white noise spectrum and is related to the friction by the ~ Vi(t+AD=Vi(D)+ 5 —[F(x (1) +Fi(xi(t+AD)],
fluctuation-dissipation  theorem, kgTZs(t—t")=(R(t) o ' N

-R(t"))/3. The velocity correlation functionC,(t)=(u(t) with time step ofAt=0.02r to evolve the positions and ve-
-u(0))/3 may be computed from the Langevin equation. itlocities in the MD step. Since solvent—solvent interactions
decays exponentiallyC,(t) = (kg T/ms)exp(—/m) and its ~ are absent within the time intervals, the number of force
infinite time integral, the diffusion coefficient, is given by the computations needed in the full MD stages is proportional to
Einstein formulaD =kgT/¢.® the number of solute particles.

The diffusion coefficient of a single small solute mol-  The time ratioAt/7 is chosen based on the following
ecule possesses both microscopic and hydrodynamieonsiderations. The MD time steft is defined by the par-
components. The microscopic component arises from un-ticle motion in the potential fieldAt<o\(m/kgT). The
correlated collisions between the solute particle and solverftharacteristic hydrodynamic time is given by the time for
determined by the solute—solvent intermolecular forces. Th&omentum to propagate a distance equal to the sphere radius
hydrodynamic component is the result of hydrodynamic7< a?lv, wherev is the kinematic viscosity. For the same
flows that develop around a moving particle and influence itslegree of discretization error we have the following expres-
motion. To account for the dynamics of these interactionssion for the time step ratiat/7~ (v/o) y(m/kgT) =0.11.
one may introduce a generalized Langevin equation with a  The interactions between solvent particles occur at each

time-dependent friction kernél, discrete time step according to the multiparticle collision dy-
namics using the scattering rule discussed in Sec. IV: The
du(t) ‘ velocities of all solvent particles in a frame moving with the
ms =—| {tHu(t—t)Hdt' +R(t), (34) : P ne moving
dt 0 velocity of the center of mass of the particles in each cell are

rotated by=/2 along a randomly chosen direction indepen-

where the random force autocorrelations are related to thgently in each cell

time-dependent friction by ;T (t) =(R(t) - R)/3.

A. Simulation algorithm

We consider the diffusion of large, but not macroscopi—B' Heavy solute particle

cally large, solute particles that interact with the solvent  We first examine the velocity autocorrelation function
through continuous intermolecular forces. Using terminology(VACF) and diffusion coefficient for a heavy solute particle
introduced earliéf we refer to such particles as nanocolloi- with massmg= 250 in solvent of particles with masa=1,
dal particles. Since the solute particles are not macroscopirumber densityp=10, andkgT=1/3 in the dimensionless
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FIG. 2. Short-time behavior of the VACF for a heavy particle. The solid line C

shows the computed values of the VACF for particle of mags 250 and i 3. The running integral of the VACF of Fig. 2 \s=7 Y2 The dots
o=3.0. The solvent density is=10.0 and the temperatutgT= % The show the computed values of the integral and the solid line represents a fit of
excluded volume fraction of the colloidal particle ¢s=0.02. The dashed the formD(7)=D— 061/\/; to the simulated values. The asymptotic value
line shows the decay of the VACF for a hard sphere in the Boltzmanngf the diffusion coefficient iD =4.9x 10 3.

approximation. The dotted line shows the short time expansion of the VACF

to second order in time calculated using the simulated value of the force

autocorrelation functiorisee the tejt slip or stick boundary conditions one finds;=(2/3)
X (41 75) 3 (mgp)Y2 From this expressiona;=0.0114
while the simulation value is approximately 0.0104. The

units of Sec. IVA. The mass ratio of solvent and soluteSimulation and theoretical values of, are in good agree-
particles,r ,=m/ms, is r,,=0.004. Usingo as a rough es- ment.

timate of the size of the solute particle the volume of a solute ~ The existence of the™*? tail confirms that the mesos-
particle isVy=4mc?/3 and the solvent—solute mass densitycale solvent model yields correct hydrodynamic velocity
ratio, rq=mp/(mg/Vy), is rq=0.45. Since both ratios are flow fields in the solvent that are responsible for this phe-
less than unity one expects relatively simple dynanfics. ~ homenon.

The simulation results in Fig. 2 show the rapid short-  The plot ofD(t) vstis given in Fig. 4. The value of the
time decay ofC,(t) along with the early stages of the long- diffusion coefficient determined from an extrapolation of the
time tail. As expected for systems with continuous forcessimulation data iD=4.9x10">. If one assumes a Stokes
the velocity autocorrelation function has zero initial slope.law form with slip boundary conditionG@ppropriate for this
For comparison, we also show the short-time approximatiosystem with central forcgs{,=4m 7R, and takes for the

to Cy(1), diffusion coefficient the following expression:
(F?) t? D=Dy+Dy, (40)
Cul)~Cu(0)~ =7, (38) , _ . : :
3m? 2 one findsR,,=3.4, providing an estimate of the size of the

. . microscopic boundary layer around the solute particle. We
as well as the exponential decay predicted by a Boltzmann P y 12y P

approximation to the friction coefficient, {~ ¢,
=(8/3)pa?(2mukgT)¥?=3.5x 107, whereu is the reduced 0.005
mass. The corresponding diffusion coefficient equal® go
=kgT/{,=1.0x10 3. Both of these approximations fail to
capture the major long-time contributions to the velocity cor-
relation decay.

The long time behavior of running time integral of the 0.003
velocity autocorrelation function gives the time-dependent
diffusion coefficient,

0.004

A an g A WA agmad

v 4
o worttr ™

D(t)

____________

0.002

t
D(t)=f dt’ Cy(t"). (39
0 0.001
Hydrodynamic contributions to the velocity autocorrelation
function give rise to 4~ %2 long time taif® and consequently
D(t)~D—a;/+t. The results in Fig. 3 are in accord with 0 50 100 150 200
this functional form, indicating the presence of a hydrody- T
hamic component in the Velpqty c;orrelatlon function. FIG. 4. The partial integrals of the VACFs fé¢irom top to bottom heavy
If the time-dependent friction is determined from a hy- particle m,= 250, light particlem,=20 and 20 heavy particles of masg
drodynamic model for an incompressible fluid with either =250 are plotted vs time.
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0.02
0.01
< 0.00

0 ‘
-0.01
-0.02

0.0 1.0 2.0 3.0 4.0
T
FIG. 5. Short-time behavior of the VACF for a particle of masg=20. FIG. 6. A snapshot of a configuration of solute and solvent molecules. Large

The other parameters are the same as in Fig. 2. The solid and the dotted linparticle radii arer =2°s. Solvent particles in a rectangular slab with co-

show the simulation values of VACF and the values computed from arordinates 9.5x<10.5 are drawn as light small balls. The excluded volume

exponentially decaying memory function approximation, respectively. fraction for the system igh=0.4. Due to periodic boundary conditions some
large particles are seen outside the system borders marked by the light wire
frame.

note that as we compuft@ by extrapolating the stress auto-

correlation function we do not need to take into account the"/vherewé:w?—wﬁm. In Fig. 5 we compare the short-time

negative finite size correctionro/L, which is a result of = 5, 15correlation function obtained in simulatiofslid line)
momentum conservation in finite volume simulations. The iy 4 fit to Eq.(43) (dotted ling. The parameters of the fit
Cg:hee S;ﬁhgoézﬁﬁgﬁ %l(\)/gfsﬁgeﬁgmflcant contribution to thea}re ;=2.59 andw,=9.20. (A single parameter enters the
' fit since wg may be determined frorw; andw,.) This ex-
pression captures the main features of the short-time oscilla-
C. Caging effects for a light solute particle tions.
The collision contribution to the diffusion coefficient

We next consider a solute particle of masg=20 in the arising from this effect is given bpy=C,(0),

same solvent so that,=0.05 andry=5.56. Thus, while the

solute particle mass is large its mass density is not and one kgTw,
expects more complex dynamit’sFigure 5 shows the ve- Do=——
locity autocorrelation function and one observes strong os-
cillations as a result of the caging of the solute particle by thelhe theoretical value of the collision contribution to the
solvent. A simple model may be constructed for these oscilvalue of the diffusion coefficient given by E@44) is Dy
lations. Consider the expression for the half-sided Fourier5.0x10 * and constitutes a few percent of the total diffu-
transform of the velocity autocorrelation function obtainedsion coefficient,D=3.6x10"3, which can be determined
from the generalized Langevin equation. Multiplying Eqg. from the simulation results in Fig. 4. Again assuming a
(34) by u(0) and taking the Fourier transform of both sides Stokes law friction we findR,=4.3, indicating larger micro-

;. (@4
Mswi

we arrive, after averaging, at the following expression: scopic boundary layer effects in this light mass density case.
= _ KeT D. Concentrated nanocolloidal suspensions
~Miw+{(w) To study self-diffusion in concentrated colloidal suspen-

We expect that at short times the solute particle experienceions one must account for solute—solute interactions arising
uncorrelated collisions with the solvent particles which arefrom the direct intermolecular potentials as well as hydrody-
exponentially distributed in time. We may then assume thapamic interactions due to the perturbation of the flow fields
the friction coefficient{(t) decays exponentially for short by other solute molecules. The Langevin equation must now
times, be replaced by a coupled set of Langevin equations for the
B 2wt 5 velocities of all the solute molecules. The volume fraction

{(H)=mswie ¢, (42) dependence of the self-diffusion coefficient in concentrated
where o is defined by the force—force autocorrelatiod ~ suspensions has been studied extensively, both
=(F2)/(mkgT) . theoretically®~*?and experimentally?

Using the Fourier transform of this time-dependent fric- ~ We have carried out a simulation of the dynamics of 20
tion coefficient in Eq.(41) and inverting the transform to solute particles of massis=250 in the mesoscale solvent

obtain the velocity autocorrelation function, we obtain with the same density and temperature as in the single par-
T ticle cases treated previously. The volume fractiondis
B

e~ 2| coswot+ Wy sinwt |, (43) .=0.4.' In Eig. 6 we show a configgration of the solute par-
Mg 2w ticles in this concentrated suspension. The solvent molecules

Cu(t)
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of the mesoscale solvent model are shown in a thin slicemplement numerically but presents some theoretical fea-
through the three-dimensional volume in order to avoid ob+ures that required the more detailed considerations given in
scuring the solute particles. From Fig. 6 one can see that thgec. .
interactions governing the motion of a tagged solute particle  The simulations of solute particle motion presented here
will involve both solute-solute interactions and the above-show that both microscopic and hydrodynamic effects are
described complex many-body hydrodynamic interactions. captured by the hybrid MD scheme and have served to dem-
The time-dependent diffusion coefficieDi(t) obtained onstrate the feasibility and utility of the method. The method
from the running integral of the velocity correlation function should find application in more complex problems such as
is shown in Fig. 4. One can see that the diffusion coefficienpolymer dynamics in solution or studies of solution-phase
is smaller than that for a single solute particle of the sameaeaction dynamics.
size and mass. In additioB®,(t) increases rapidly to a broad
maximum and then falls slowly on a long time scale before
reaching |ts_asymptot|c value. _ . _ ACKNOWLEDGMENT
A quantity that can be measured in experiments is the
short-time self-diffusion CoefficienDS. This diffusion co- This work was supported in part by a grant from the

efficient describes the dynamics on time scalesich that  Natural Sciences and Engineering Research Council of
T<t<7p, wherery is the hydrodynamic screening time Canada.

within which hydrodynamic interactions become important
and 7p is structural relaxation time of the suspenstorror
the system considered herg~30 while 75~1000. The
coefficientDq reflects the decay of the velocity autocorrela- APPENDIX A: EQUATIONS OF MOTION
tion function that occurs on time scales that are sufficiently Applying the projection operatof® and Q to Eq.(5) we
short that the solute particle configuration does not changgp:ain a system of two equations,
appreciably. The short-time diffusion coefficient can be ex-
tracted from the broad maximum B(t) in Fig. 4. From the Pp(t+1)=PWPp(t) + PONV—1)P (1), (A1)
data presented in Fig. 4 one may estimate the oD
~0.5,pwhereD is the giffusion coef)f/icient for a singlegsolute Po(t+1)=Q0V=1)Pp(t) + QWP,(1), (A2)
particle. While there are no theoretical estimates for this ratiavhereP(t) = PP(t) andP(t) = QP(t). A recursive appli-
for the Lennard-Jones system we study, we note that theation of Eq.(A2) yields the result,
theoretical estimates for hard-sphere sll;spensions yield ¢
D,/D~0.32 for a volume fraction of=0.4. _ t —1 a .

For long times the configuration of solute particles Polh=[W] PQ(O)*; LW QW=1)Pp(t=1),
changes and dynamical effects arising from a variety of (A3)

solute—golute interactions come into play leading to a de\'/vhich, after substitution into EA1), gives
crease in the diffusion coefficient.

t
V. CONCLUSION P(t+1)=PWPx(t)+ 21 K(r=1)Pp(t—7),  (A4)

When constructing hybrid MD schemes which treat sol-
vent motions on a mesoscale level it is essential that th
solvent dynamics exhibit the correct hydrodynamics onlong  C(7)=P(W—1)[ QW]"Q(W—1)P. (A5)

scales, yet couples to the solute molecules in a manner that

reflects specific features of solute—solvent intermoleculawe eliminated the first term on .the right-hand side of rela-
forces. The mesoscale solvent model constructed in Ref. téon (A3) by the use of a -sp-emally prepareq ensemble .Of
was shown to yield the correct hydrodynamic equations 0fnmal cc_)ndmons where deviations .only occur in the dynam|—
motion and exhibit flow fields with the correct features evenC@l variables. For slowly decaying dynamical variables,
on small scales where its particle nature is apparent. which are our main concerip(t—7) can be replaced by
The hybrid MD scheme discussed in this paper exploitéap(t)' ) .

the particle nature of the solvent to describe the solute— Equat|ons(A4) and (A5) hold for the projection onto
solvent interactions microscopically, rather than through2hy Set of dynamical variables. Next, we consider the forms
boundary conditions imposed at the surface of solute molfEhey _take for conserve_d_ variables for_ smallif the_d_yna_m-
ecules. As a result of these two features the hybrid MDICS given by a composition of streaming and collision in that

scheme can be used to model solute dynamics when speciﬁ’éder’ the following identity holds for conserved variables:
features of solute—solvent interactions are important. ) ,

The efficiency of the scheme derives from the fact that > ()€ = 4 (t—1)e'k, (A6)
the solvent—solvent interactions are considered only at dis- '
crete time intervals and modeled by a multiparticle collisionEquation(A6) follows from the conservation of the quanti-
rule that accounts for the effects of all solvent—solvent colties ¢ under collisions at time¢+ 1. Using identity(A6) and
lisions in the time interval. The combination of full MD with expandinga in powers ofk, we write the’P projection of
discrete-time solvent—solvent collisions is straightforward tof W— 1]b, whereb is an arbitrary function, as

g\vhere the memory kernel is defined by
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(AIW— 1]b)(F)=a*(F)Po(F)<aaT>‘1f dI''[a(S(r'",1))—al")]b(I'") (A7)
=a*(r)Po(r)<aaT>*1f dr| e XCMOT ) DT (ik-[x/ (1) =%/ (0)]¢/ (0)+0(k)) |- (A8)
I
|
Along the same lines we may prove thay—1]P=0(K). This proves the assertion of the recursion relation and, thus,
Next, we shall prove that the formula(A9).
[OW]70= QW7 O+ O(K). (A9) From relation (A7), its dual expression, and formula

(A9) we may express the memory kernel equation as

For 7=0 relation(A9) holds. Let us assume that it holds for K(7)=POW—1) QW Q(W— 1)P+o(Kk?),

r=| and prove the relation forr=I+1. We write

[OW]' *1o=[OW]'QWQ. Then which is Eq.(8) in Sec. lll.
[OW]*10=[ OW]'OWQ= W' QWO+ O(K) APPENDIX B: SIMPLIFICATION OF EQUATIONS OF
MOTION
= QW' Q+(W=1)+0(k)]Q+O(k) In this Appendix we show how the formal equations of
= oW'*19+0(k) (A10) motion for the average values of conserved dynamical vari-
) ] ables can be written in a convenient form. Computing the
where we reexpresseg)V in the equivalent form average ofa over the projected probability distributiofT)
OW= Q0+ (W—1)—P(W—1)= Q0+ (W—1)+0(K). yields the following set of equations for the average values
(A11)  a(t):

t
a(t+1)—at)=((a(S(T,1)-aT))a'(T))(aa") ta(t)+ >, (aW-1)QW™ *QW-1)a')(aa") *a(t-7).  (B1)
=1
We rewrite the first term on the right-hand side of E§1) as a sum of symmetric and antisymmetric operators:

((a(s(r,1)—a)a’(I)= 3¢S, n)a’(I)—al)a(S(I',1)) - 3((a(S(r,1) —al))(@'(S(T,1))—a'(T))),
(B2)

where we us_ed.timg—translation invariance of the equiIibrium(b(r)pr(r)): —<(a(S(F,1))—a(F))aT(F))
probability distribution, ><(aaT>‘1(a(F)(aT(S(F,1))— aT(F))>.
(@S D)l (ST 1) =(a(l)a(T). Furthermore, we may show that

For the memory kernel acting dma’) ~‘a we write [3(a(S(T"1))a" (1) — a(l)al (S(T'1)) ) aal)y~ 2

(aw-paw'tow-na’)=(f(Hf'(0), (B3 =—(b(I')Pb"(I"))(aa") "1+ o(k?).

with

Indeed,
ft)=a(S(I',t+1))— (a(S(F ! ,1))aT(1“’)) %(a(S(F,l))aT(F) _ a(F)aT(S(F,l))>
x(aa") ~*a(S(T\1), (B4) —((a(8(T', 1)) —al('))a(T))
where we used the time-translation invariance of equilibrium  _ Lal)—a(S(T,1)]al(T) —a'(S(T,1)])=o(k)
averages. 2 ' ’ '
Letting b(I')=a(S(I',1))—a(I'), we write the second with a similar expression for the second factor.
term of Eq.(B2) as Next, we consider some general aspects of discrete-time

N t N + N + dynamics. Suppose that the time evolution of the system is
2(b(D)bY(I")) = z(b(I") Qb™(I")) + 3 (b(I") Pb (F»(.BS) given by the following Euler scheme:

First, we notice tha@b'(I')=f'(0) and, thus, the firstterm &t =a(O+[A=BJa(t),
has the same form as the summands of the memory kernglihere 4 and2 are of the first and second orderskinin this
(3ff"). The second term in EqB5) may be expressed as  case we write the operator identity
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