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Rapid convergence of time-averaged frequency in phase synchronized systems
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Numerical and experimental evidences are presented to show that many phase synchronized systems of
nonidentical chaotic oscillators, where the chaotic state is reached through a period-doubling cascade, show
rapid convergence of the time-averaged frequency. The speed of convergence toward the natural frequency
scales as the inverse of the measurement period. The results also suggest an explanation for why such chaotic
oscillators can be phase synchronized.
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[. INTRODUCTION averaged frequency with the observation time. The results of
numerical simulations of globally coupled arrays ofsRier

The rich collective behavior, including mutual entrain- oscillators are presented in Sec. lll where features of the
ment and self-synchronization, in systems of coupled oscilchaotic attractor leading to rapid convergence of the time-
lators has been considered by several investigators in the pa&teraged frequency are identified. Section IV contains a de-
few years(see, for example, Ref§1-3], and references scription and analysis of experimental results on a globally
therein. Recently, a considerable amount of research hasoupled array of elect_rochemical oscillators where rapid fre-
been devoted to the study of coupleltoticoscillators and, guency convergence is observed.
in particular, to the phenomenon of phase synchronization.
Provided that the phase can be defid¢b], two coupled Il. THEORETICAL BACKGROUND
nonidentical chaotic oscillators are said to be phase synchro-
nized if their frequencies are locked but amplitudes are not
[1,6]. This appears to be a general phenomenon and it h
been observed in systems as diverse as electrically coupl

An appropriate definition of the phase for chaotic self-
stained oscillators can be obtained from the Poinceap

9 the flow. Such a map can be constructed if a surface of
section in the phase space of the autonomous continuous-

neurons(7,8], biomedical system¢9], chemical systems time chaotic system exists which is crossed transversally by
[10], and spatially extended ecological systefs]. More- all trajectories of the chaotic attractor. Then, for each piece

over, the potential role of phase synchronization in brain ; . .
functions has been exploréd2,13. of a trajectory between two crossings of this surface, we

The most common theoretical approach to phase synchrch-eflne the phase as a linear function of time:

nization of chaotic oscillators is based on an analogy with t—t
the evolution of the phase of a periodic oscillator in the pres- ¢(t)=2wﬁ +2mn, (oh)
ence of external noisgl]. This approach leads to the con- n+l 'n

clusion that the dynamics of the phase is generally diffusivqor t,<t<t,.,. Heret, is the time of thenth crossing of
and the phase performs a random walk. However, the effeGpe g rface of section. The definition is ambiguous because it

tive “noise” in such a description cannot be considered as Qjepends on the choice of the Poincamerface. Yet, any

Gaussiarp-correlated noise in all circumstances. In this pa-cpgice of a phase variable for chaotic oscillators investigated
per, we show that the effective noise exhibits strong temporg}, (g paper leads to the same macroscopic behdGior

correlations for a general class of chaotic attractors. In par- \nith this phase definition, the phase dynamics can be
ticular, we present evidence from simulations and experigyegcribed by ’

ments that many phase synchronized systems of chaotic os-

cillators, where the chaotic state is reached through a period- Ani1=M(A,), 2)
doubling cascade, show a rapid convergence of the time-
averaged frequency. The speed of convergence toward the dopldt=w(A)=we+ 7(A,), 3

natural frequency scales as the inverse of the measurement
period. This implies that short measurement times may sufwhere the amplitudd,, is the set of coordinates of the phase
fice for reliable determination of frequencies in those sys{oint on the Poincarsurface at the nth intersection and
tems. defines the Poincamap that take#, to A, ;. The “instan-
The outline of the paper is as follows. Section Il presentdaneous” frequencyw(A,)=2=/T, is determined by the
a sketch of the theoretical background of phase dynamics iRoincarereturn timeT,=t,.;—t,, and depends, in general,
chaotic systems and the expected scaling of the timeen the amplitude. Assuming chaotic behavior of the ampli-
tudes, we can consider the tem{A,) to be the sum of the
average(natura) frequencyw, and some effective “noise”
*Electronic address: davidsen@mpipks-dresden.mpg.de 7n(A,) with zero mean, although this stochastic term has a
TElectronic address: rkapral@chem.utoronto.ca purely deterministic origifnl]. Thus, Eq.(3) has the solution

1063-651X/2003/68)/0262176)/$20.00 68 026217-1 ©2003 The American Physical Society



DAVIDSEN et al. PHYSICAL REVIEW E 68, 026217 (2003

t E X "X X % x xTx x X % X % E
$(1)= o+ wot + fo n(r)dr. (@) b ]
The variance of the integrdly»(7)dr is given by
+L ]
t 2 t g 10
< f 7](7‘)d7‘> >=2j dr' (t—7")K(7") o L
0 0 ; 3
. 10°F q
~2tf dr'K(7")=2tD,,. (5) % Ko006 (0-10020.02)
0 + K=0.1(0=0.9910.07)
8 F | ¢ K=02(0=0.98+0.08) > ]
0 o i ]
Here, K(7')=(n(7)n(7+7')) and the averag€---) is 10" 1(')2 1(')3 1(')4 10°
taken over the invariant measure of the chaotic attractor. The /T,
approximate equality holds provided tha{7) has a finite N
correlation timet, such thatk(7')~0 for 7'>t, and one FIG. 1. Standard deviation(T) of the o(T) distribution in

considers time$>t.. This shows that the dynamics of the the phase synchronized state describing the speed of convergence
phase is diffusive and the phase performs a random walk dgward wo. The datapoints foK=0.2 are shifted down by one
long ast, is finite andD,#0. However, as pointed out by decade for clarity. Th(_a Poin_caemrface was chosen as the surface
Pikovsky and co-workerkl], the dynamics of the phase gen- spann_ed by the negatlw_a axis and thex; axis. The solid lines are
erally differs from stochastic Brownian motion because theP€St fits to the respective data and decay ds'.1Note thatT,
effective “noise” cannot be considered as a Gaussian whitg™ 27/ @o depends slightly oK.

noise process. This was recently confirmed for a system of } ) ,

locally coupled Resler oscillators where temporal correla- ~ The 17T scaling observed in the globally coupled $3ter
tions were shown to exi§t.4]. These correlations determine System follows from the fact that the local chaotic attractors,
the speed of convergence of the time averaEeT) although one banded in the phase synchronized s$tate

T U(T)-4(0)] toward w,. The speed of Fig. 2), have internal structure.

convergence—as measured by the standard deviation of t In the absence of couplind((=0), the local nonidentical
i}?dssler oscillators display a variety of banded chaotic attrac-

ensemble distribution ofv(T)—scales as T. This is in (515 hecause of period-doubling cascades and period-3 win-
contrast to what one would expect 4f was a white noise  gows in their vicinity. In the phase synchronized state for
process where one obtains\T/ scaling sinceo(T)—w,  K=0.06, the local chaotic attractors are very similar to one
=1/ngdt77(t) and the standard deviation oﬁgdtn(t) another and have an internal structure similar to that of a
scales with\T. Here, we provide further numerical and ex- merged two-banded attractor. Although this structure is not
perimental evidence that such a scaling generally occurs fasbvious in the left panel of Fig. 2, it can be seen clearly in
oscillators where the chaotic state is reached through the local next amplitude mapd-ig. 3) and in the density
period-doubling cascade. In particular, the type of couplingdistribution p(l) (inset in Fig. 3. The intersection point of
between the chaotic oscillators seems to be irrelevant. Morghe map with the bisectrix defines four regions in the map
over, we show that the temporal correlations induce an altersuch that the two bandedness of the attractor can be charac-
nating behavior oK (7'). This leads to an extremely small terized by the percentage of points in the upper left and

value of D, for these systems and suggests that they catower right quarter planes. Indeed, only very few points (1

generally be phase synchronized. — p=3%)—typically those for small, ;'s which are in the
lower left quarter plane of the amplitude map—stay in the
IIl. GLOBALLY COUPLED RO SSLER OSCILLATORS same region of the bimodal density distribution, implying

) ) that the majority of the iterates map regions of high density
We consider ar. X L array ofglobally coupled, noniden-

tical chaotic Rssler oscillators: 10

axX(r,t) 3

=RX(r, )+ K/L2Y, [x(r,t)=x(r,t)], (6)
at FeN

where Rj=—w(r)X,—Xz, Ry=w(r)x;+0.2,, Rz3=X;X3
—5.%3+0.2. The sites of the lattice are labeled hyK is - 10 565 oy e e 0
the coupling constant, and is the set of all sites on the ' T

lattice. We takd. =64 and choose the(r)’s randomly from

a unlf(t)r:mt dlllstrlby”u(:n in the r|1ntetr_vaﬂ\;)v.9?,1d0%. TE'S en- d (if'ngle site of the lattice fok =0.06 in the phase synchronized state.
sures that all oscillators are chaotic. We find that the spee Il local attractors look similar to the one shown here. Right panel:

convergence ofo(T) toward wq in the phase synchronized A typical To=2m/w, histogramh(T,) of the nonidentical chaotic
state scales asTl/(see Fig. 1 This is also true for higher oscillators fork =0, i.e., the distribution of the natural periods. The
w(r) dispersion. exact shape of the distribution depends on dife) realization.

FIG. 2. Left panelx;—Xx, projection of the local attractor at a

026217-2



RAPID CONVERGENCE OF TIME-AVERAGED.. .. PHYSICAL REVIEW B8, 026217 (2003

10— 10 : : : : : :
. , ] ,
| - "I.‘ ;'_-
O & 8 B
8- 7% . /'
= T 4= : 3¢t T = A
E | - ) e . * ] E 6 L
< : 02 B e <
6 : & N 03
| 0.15] i H
5 2o A E 202
| < ! . 1 4 e e e a
0.05] j 0.1
i i _ v
| e g oo ; ] Ll
3 ey 1 ey 5 . ! L . 1 .
3 4 5 6 7 8 9 10 2 4 6 8 10
A A

n,1 n,1

FIG. 3. Superposition of eight local next amplitude maps for FIG. 5. Superposition of the next amplitude mapsKor 0.2 at
K=0.06. The amplitudé\,, ; chosen here is the negatixg coor-  the same sites as in Fig. 3. Inset: Normalized point density along the
dinate ofA, because th&; coordinate is almost constant and very curve formed by the next amplitude maps. Three regions of high
close to zero. The dashed lines correspond to the intersection poidensity can be identified.
of the bisectrix with the map. Inset: Density distributipfl) along

the curve formed by the next amplitude maps. and deviations from the strict alternations between bands. If

T is the time needed far oscillations, it follows from Eq(4)

on the left to regions of high density on the right and vicethat
versa. This nearly two-banded character is also seen in thg(T) — w,
series ofT,,’s (see Fig. 4. An alternation of long and short ~
return times can be observed with rare exceptions. This T (1)
shows the close relation between topological characteristics j dtT’
0

(next amplitude map and temporal evolution T(,, T, =
map and suggests the following explanation for the ob-
served scaling:

Assuming that each internal “band” of the attractor is
associated with a distinct mean frequeneyor w, such that ()

wo=2010y/(w1+ w,), and the system alternates betweenyhere «=1(2) corresponds to band(@) appearing first in
bands, the “random” force in the evolution equatit) for  he series. The term R w;— )/ (01+w,) T scales with

the phase of a single oscillator takes the form 1/T, while the termedt?y(t)/T scales with 14T provided

that 7(t) is 5-correlated noise. Since the amplitude of the
1/\/T term is very small, two scaling regimes can be identi-
fied for the maximal deviation fronmy; a 1/T scaling on
intermediate time scales which is dominated by the switch-
wherex=1(2) when the system is on band2l. The noise ing between the bands and ayT/ scaling on long time
term7(t) accounts for deviations of the period within a bandscales. The intermediate time scale scaling behavior can in-

deed be observed for each oscillator; the envelope (af)

n even,

2m(w1— wp)
(w1t )T

.
(=1t +j dtn_(l_t), n odd,
0

w(w;—wy) ~

n(t)=(—-1)<"* + (), ()

(w1t @3)
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—wq decays as T/. Note that the standard deviation of the

ensemble distribution ob(T) decays as MT for identical
chaotic Rssler oscillators and =0 — as expected from the
law of large numbers. In the case of nonidentical oscillators,
phase synchronization implies that the phases are synchro-

nized such that/((«(T) — w)?), where the average is taken
over the ensemble, adopts the scaling of a single oscillator
reproducing the observed scaling and explaining the results.
This result does not depend on the type of coupling of the
oscillators as confirmed by the numerical results presented
here[15] and in Ref.[14]. This explanation is based exclu-

FIG. 4. Time series of,, for K=0.06 (left pane) and the cor- A : .
respondingT,,, T, map (right pane). The arrow highlights a de- Sively on the fact that the series of the instantaneous frequen-

viation from the alternating behavior. These deviations occur withCies alternates with the exception of rare events and that the
1-p=2% at this particular site of the lattice which is the percent- System is phase synchronized.

age of points in the upper right and lower left quarter planes in the The above argument easily generalizes to attractors with
lower panel. Note that only a short segment of fheseries is  multiple internal bands which we observe in the phase syn-
shown. chronized state for higher coupling. Figure 5 shows that the
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deviations from a three-banded structure are rather small fo
K=0.2. Three band$, B, andC can be identified such that
Ais mapped td andC to A. However, bandB is mapped to

C and Z, and Z back toB such that a pure three-banded
structure does not exist. The invariant measure of the map ir
areaZ is very low (approximately 10%).

The alternation of positive and negative values #t)
implies thatK(7') alternates as well. Henc® , is very , :
small, i.e., a high degree of phase coherence persists. oulf+0-15) (mA)
findings suggest that this should be generally expected for

. . : FIG. 6. Experiment. Chaotic dynamics of a single element at
oscillators where the chaotic state is reached through 8-0.1. (a) Reconstructed attractor using time delay coordinates.

period-doubling cascade. Thus, these oscillators would b@)) Two-dimensional phase space reconstruction using the Hilbert

phase coherent suggesting that they can generically be phaggnsform. The solid circle represents the origin used for phase cal-
synchronized. culations.

The change in the structure of the local attractors as the
coupling strength is changed is the analog of the bifurcation The population of chaotic oscillators is characterized by
structure seen in homogeneous locally coupledsRay oscil-  certain amount of heterogeneifg0]. Without added cou-
lators where one finds period doubling different from thepjing, there is a distribution of frequencies of the oscillators

isolated Rssler oscillatof16]. with a mean of 1.219 Hz and a standard deviation of
18 mHz. With weak added global coupling:€0.1), a

IV. GLOBALLY COUPLED ELECTROCHEMICAL nearly phase synchronized state occurs in which 63 of 64

OSCILLATORS oscillators have a frequency of 1.230 Hz, and that of the

We now study the convergence of the time-averaged fre[emaining element has a frequency of 1.237 Hz. The results
. ; are shown for this region of high phase synchrony.

qguency in an array of globally coupled electrochemical os-
cillators. A standard three electrode electrochemical cell con-
sisting of a nickel working electrode arrag64 1-mm
diameter electrodes in anx8 geometry with 2 mm spac- The chaotic attractor of a representative single element of
ing), a Hg/HeSO,/K,SO, reference electrode, and a Pt the coupled system is shown in Fig. 6. The chaotic state is
mesh counter electrode were used. The potentials of all ciidjacent to a period-three window and a period doubling
the electrodes in the array were held at the same value (sequence. The reconstructed attra¢téig. 6(a)] is low di-
=1.310 V) with a potentiostatEG&G Princeton Applied mensional(correlation dimension 2:80.1). To obtain the
Research, model 273Experiments were carried out in 4.5 phase, the Hilbert transform approach is appliéfl The
M H,SO, solution at a temperature of 11 °C. The working two-dimensional embedding using Hilbert transform is
electrodes were embedded in epoxy and reaction takes plaseown in Fig. €b). As in the case of globally coupled
only at the ends. The currents of the electrodes were medassler oscillators, it is difficult to distinguish the banded
sured independently at a sampling rate of 100 Hz and thusharacter of the attractor.
the rate of reaction as a function of position and time was The merged banded structure is more clearly seen in re-
obtained. turn maps obtained from the series of return tinigs The

The electrodes were connected to the potentiostat througberies of the return time clearly shows an alternation of long
64 individual parallel resistorsR;;) and through one series and short oscillationfFig. 7(a)]. The map constructed using
collective resistor R). We employed a method of altering T, exhibits an approximately one-dimensioriaD) charac-
the strength of global coupling while holding all other pa- ter [Fig. 7(b)].
rameters constant. The total external resistance was held con-
stant while the fraction dedicated to individual currents, as
opposed to the total current, was varied. A total resistance
can be defined as

Experimental Results

Rio=Rs+ R/64. 9)

In these experimentsRi,=14.2). The series resistor
couples the electrodes globally. The parametethe ratio of

series to total resistance, is a measure of the global coupling ~ ° % 10
e= & (10) FIG. 7. Experiment. Time series and maps of discretized chaotic
Rt dynamics of a single element at=0.1. (a) Time series of return

times T,, of the oscillations.(b) One-dimensional map using the
Fore=0, the external resistance furnishes no additional gloreturn time. The dashed lines correspond to the average period of
bal coupling; fore=1, maximal external global coupling is oscillations {T,=0.81 s) which in this case is identical to the inter-
achieved. section of the map with the bisectrix.
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I 5 V. CONCLUSION
0.6 1
s 1 " 0.6 0.8 y For many systems of coupled oscillators, the chaotic state

0.6 0
T (s) p is reached through a period-doubling cascade. This implies

that a Poincaresurface exists such that the next-amplitude

FIG. 8. Experiment. Characterization of the two-banded CharaCmap is similar to that in F|g 3 or 5. As |0ng as the corre-
ter of the popul_ation 64 oscilla_tors. 'I_'op row=0.1. Bottom row:  spondence between the next-amplitude map and the relation
¢=0. (@ Superimposed one-dimensional maps of the 64 sites. Thgt s psequent return times holds, this should lead to a small
dashed lines correspond to the average period of oscillatibns (yg|ye ofD77 and, in particular, to a T/ scaling in the phase
=0.815);=0.1. (b) The distribution of probabilityp of two-  synchronized state. The experimental results show that such
banded oscillationsy=0.1. (¢) Superimposed one-dimensional g strycture of the series of return times can exists even if no
maps of the 64 §|te_s::0. (d) The distribution of probabilityp of well-behaved next-amplitude map can be identified. Our
two-banded oscillations; =0. findings further suggest that chaotic oscillators where the

chaotic state is reached through a period-doubling cascade

The oscillators in the population are slightly different. can generally be phase synchronized due to the small value
Figure 8a) shows a superposition of the 1D maps of all theof D, , i.e., high degree of phase coherence. This is in accord
oscillators. Clearly, the majority of the phase points lie in thewith findings in Ref.[1] where different chaotic systems
upper left and lower right boxes indicating two-banded charwere analyzed with respect to their ability to be phase syn-
acter. The probability of two-banded oscillations varies fromchronized. There it was found that the Lorenz systeiere
one site to the othefFig. 8(b)] with a mean ofpyean the chaotic attractor is not reached th_rough aperlo_d-doubllng
=0.85 and a standard deviation of 0.05. We note that th&ascade cannot be phase synchronized. In particular, the
two-banded character of the uncoupled system of uncoupleeXt-amplitude map has a very different structure, i.e., a
oscillators[ e =0, pPmear=0.7, Figs. &) and 8d)] is smaller Ioga.nthlrlmc_ smgulantt))/_. logical and phvsical |
than that of the phase synchronized region. Therefore, duringh Finally, in many biological and physical systems, only

o o s . ort time series are available. Our results show that the
the transition to phase synchronization with increasing thedetermination of frequencies in weakly coupled oscillator
coupling strength, the two bandedness observed in the ti d y P y

. . ; rngystems may be obtainable from such short time series.
series of oscillations is more pronounced.

As expected from the numerical simulations and theoret-
ical considerations, the strong correlations in the phase dy-
namics have pronounced effects on the speed of convergence This work (J.L.H. and 1.Z.K) was supported in part by the
of frequencies. Figure 9 shows that the standard deviation dflational Science FoundatidiGrant No. CTS-0000483and
frequencies is proportional to T/at e=0.1. (The fluctua- the Office of Naval ResearckGrant No. N00014-01-1-
tions around the fitted line are caused by slowing down an®603. R.K. and J.D. were supported in part by a grant from
speeding up within a cycleSimilar scaling results are ob- the Natural Sciences and Engineering Research Council of
tained for other(largen coupling strengths. Canada. We thank Yumei Zhai for help with the experiments.
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