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Front explosion in a resonantly forced complex
Ginzburg–Landau system
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Abstract

Periodically forced oscillatory reaction–diffusion systems near the Hopf bifurcation can be modeled by the resonantly
forced complex Ginzburg–Landau equation. In the 3:1 resonant locking regime this equation has three stable fixed points
corresponding to the phase-locked states in the underlying reaction–diffusion system. Phase fronts separate spatial domains
containing the phase-locked states. When the Ginzburg–Landau equation parameters lie in the Benjamin–Feir-unstable regime,
the phase fronts have a turbulent internal spatio-temporal structure. As the forcing intensity is changed, the intrinsic width of
a front grows until, at a critical value, the front “explodes” and the turbulent interfacial zone expands to fill the entire domain.
The scaling properties of this transition are explored and it is shown that front width and spatial and temporal correlations
diverge as the critical forcing intensity is approached. These results are compared with similar behavior seen in a coupled
map model with period-3 local dynamics. The prospects for observation of these phenomena in experiments on periodically
forced reaction–diffusion systems are discussed.
© 2002 Published by Elsevier Science B.V.
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1. Introduction

If an oscillatory chemical reaction with oscillation frequencyω0 experiences a periodic external modulation of the
reaction kinetics, phase locking of the oscillations may occur when the forcing amplitude is sufficiently large and the
forcing frequencyωf is sufficiently close to a rational multiple of the natural oscillation frequency,ωf /ω0 ≈ n/m

(n, m are co-prime integers). In a system phase-locked at then:m resonance, a stable limit cycle exists but onlyn

different values of the phase of the oscillations are permitted. Given one such solution,c0(t), then − 1 remaining
solutions arec0(t +2πk/ωf ), k = 1,2, . . . , n−1; these are stable to phase perturbations as well as to perturbations
that displace the system from the limit cycle. In a spatially distributed reaction–diffusion system patterns typically
consist of spatially uniform domains locked to these solutions. The domain walls are “phase fronts” where the phase
of oscillations changes rapidly; typically the dynamics of these fronts plays a central role in the spatio-temporal
pattern dynamics of such systems. Spatio-temporal dynamics in resonantly forced systems has been the subject of
several experimental studies[1–5].
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The spatio-temporal behavior of unforced oscillatory reaction–diffusion systems and their description near the
Hopf bifurcation in terms of the associated complex Ginzburg–Landau (CGL) equation:

∂

∂t
A(r, t) = (µ + iν)A − (1 + iβ)|A|2A + (1 + iα)∇2A (1)

have been studied in some detail[6,7]. Here the complex amplitude describing the envelope of the oscillations is
denoted byA(r, t). The CGL parametersα andβ reflect the difference in diffusion coefficients of the chemical
species and the amplitude dependence of the oscillation frequency, respectively. The Benjamin–Feir-unstable regime
where plane wave solutions are linearly unstable is determined by the condition 1+αβ < 0. Since the parametersµ
andν may be eliminated fromEq. (1)by the rescalingt → t/µ, r → r/

√
µ, andA → √

µAeiνt/µ, this condition
is independent ofµ andν. In this Benjamin–Feir-unstable regime the system may develop complex dynamics
characterized by phase or amplitude turbulence. In such turbulent regimes the tendency is for the oscillation phase
at nearby spatial locations to become decorrelated in time.

The normal form of a spatially distributed system near a Hopf bifurcation withn:m resonant forcing (where
n ≤ 4) is the forced complex Ginzburg–Landau (FCGL) equation[8,9]:

∂

∂t
A(r, t) = (µ + iν)A − (1 + iβ)|A|2A + γ Ān−1 + (1 + iα)∇2A. (2)

The complex conjugate ofA(r, t) is denoted byĀ(r, t) while γ is the forcing amplitude. The parameterν =
ω0 −mωf /n indicates the extent of the detuning of the forcing from then:m resonance. This equation describes the
dynamics of the complex amplitude field in a stroboscopic representation determined by multiples of the driving
period 2πn/ωf . At intermediate forcing intensities, if the CGL parameters lie in the Benjamin–Feir-unstable regime,
interesting dynamics may arise from the competition between the turbulence and the forcing. We study the nature
of phase fronts under such conditions.

Studies of resonantly forced oscillatory systems in the Benjamin–Feir-unstable regime have generally employed
Eq. (2), which may be regarded as a generic model for systems of this type. Coullet and Emilsson[10,11]investigated
phase front dynamics in then = 2 case. In one spatial dimension, asγ was lowered, phase fronts with constant
velocityv, whose solutions may be written in the formA(x − vt), underwent a Hopf bifurcation to periodic motion
of the front position, followed by a period-doubling cascade to chaotic front motion. At still lowerγ , a finite-sized
turbulent domain formed at the phase front. In two spatial dimensions phase fronts exhibited front roughening. For
n = 1,2,3,4, stationary spatial patterns were found. Battogtokh and Browne[12] investigated front propagation
in the presence of such stationary patterns.

In this article, we examine the critical properties of fronts in 3:1 resonantly forced systems. Our earlier work[13]
has shown that in the Benjamin–Feir-unstable regime in two spatial dimensions regular phase fronts exist for large
values ofγ while rough fronts are found for lowerγ values. Asγ is decreased further the fronts develop turbulent
internal structure and eventually the fronts “explode” and the turbulent interfacial phase fills the entire domain. In
Section 2we describe this front explosion phenomenon in detail and compare it with an analogous phenomenon seen
in a coupled map lattice (CML) model.Section 3presents a quantitative study of the scaling properties of the front
width as well as the decay constants of spatial and temporal correlation functions for the FCGL system. This section
also outlines a description of the process in terms of a model of the dynamics involving two coupled interfacial profiles
introduced in the study of the CML front dynamics. The conclusions of the investigation are given inSection 4.

2. Turbulent phase fronts

We present an overview of the dynamics of phase fronts seen in the 3:1 FCGL system and compare the phase
front phenomenology with that observed in a CML model with period-3 local dynamics. In the simulations of
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Fig. 1. Interfaces in the 3:1 FCGL forγ = 0.475 (left frame) andγ = 0.459 (right frame). The system size transverse to the front isL = 800. In
this and subsequent figures the gray shade indicates the phaseφ of the complex fieldA = Reiφ . Simulations were conducted in a frame moving
with the front, with periodic boundary conditions on the top and bottom edges and no-flux boundary conditions on the other edges. The system
size in the direction of front motion was adjusted depending onγ to be sufficiently large to contain the interface.

the FCGL equation, we fixed the parametersµ = 1.0, ν = 1.55, α = −1.3 andβ = 1.5. For this choice of
parameters the system is obviously in the Benjamin–Feir-unstable regime forγ = 0 and supports spatially uniform
3:1 resonantly locked states for sufficiently largeγ . We have not investigated other values in the CGL parameter
space but phenomena similar to those described below are expected to exist where the these conditions are satisfied.
The forcing intensityγ was varied to explore the front explosion process.

2.1. Fronts in the 3:1 FCGL system

In the 3:1 FCGL model there are three fixed points, which we denote A, B and C, corresponding to the three
distinct resonantly locked phases in a stroboscopic representation of the dynamics in multiples of the driving period.
In the reaction–diffusion system whose stroboscopic dynamics is modeled by the FCGL equation, these three phases
cycle in the order A→ B → C → A. We consider two-dimensional geometries with the system infinitely extended
along thex-direction and periodic with lengthL in the y-direction. If we then suppose the left domainx < 0
contains phase A and the right domainx ≥ 0 contains phase B, a phase front AB separating the A and B phases
will develop and propagate from left to right. Letvf be the mean velocity of the front. Similar interfaces BC and
CA can be established between the (B,C) and (C,A) fixed-point pairs, and all such fronts propagate with the same
mean velocityvf since they are equivalent under the dynamics.

In a large parameter domain the front separating two phases is characterized by a steep but smooth variation of
the phase of the complex amplitude from one phase to the other. If the CGL parameters are chosen to lie in the
Benjamin–Feir-unstable regime, more complex dynamics is observed in the interfacial zone for sufficiently small
forcing intensities. Examples of the complex interfacial structure are shown inFig. 1.1 One can see in these figures
that there is no longer a smooth passage from one phase to the other as the interfacial zone is crossed; instead,
complicated dynamics is seen in this zone. The intrinsic thickness of the interfacial zone may be determined by
choosing left and right marker values of the complex amplitude field that delimit this zone. LethL(y, t) = min(x) at
coordinatey where|A(x, y, t)−AL

0 | ≥ ε. Similarly,hR(y, t) = max(x)at coordinatey where|A(x, y, t)−AR
0 | ≥ ε.

HereAL
0 andAR

0 are the complex amplitude fields in the two mode locked states that the front separates andε is
small numerical value. We shall callhL(y, t) andhR(y, t), respectively, the left and right profiles. The instantaneous
intrinsic thickness of the interfacial zone at positiony along the front is then given by∆(y, t) = hR(y, t)−hL(y, t).

1 Numerical integration of the FCGL equation was performed using explicit forward differencing with discretization step sizes�x = 0.25,
�t = 0.005. A nine point discrete Laplacian with fourth-order accuracy was used. Lengths and times are reported in the absolute space and
time units in whichEq. (2)is written, with the exception of system sizesL which are reported in lattice units.
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Fig. 2. The turbulent front for a larger system size,L = 1600, forγ = 0.462. The figure shows the variations in the shape of the front along
the transverse direction as well as the variations in the intrinsic thickness of the front. (The frame has been rotated by 90◦ compared toFig. 1to
accommodate the larger system size.)

Fig. 2shows the turbulent front for a larger system size. The variations in∆(y, t) with y are clearly visible in this
figure.

The spatial average〈∆〉(t) of the intrinsic thickness may be computed from

〈∆〉(t) = 1

L

∫ L

0
dy ∆(y, t), (3)

where, henceforth, the angle brackets will refer to an average alongy. After a transient time, the phase front dynamics
is observed to enter a statistically stationary regime where its average properties are independent of time, so that,
for example, for sufficiently largeL the average width〈∆〉(t) = ∆0 is independent of time and depends only on the
FCGL parameters. The evolution of the intrinsic width of the front starting from planar initial conditions is shown
in Fig. 3. One sees that the width grows and saturates at a finite value about which it fluctuates. While the saturated
width ∆0 is independent of time it is a function of the forcing amplitude and increases asγ decreases as can be
seen in the figure.

When the forcing amplitudeγ is sufficiently small, less than a critical valueγ ∗, a finite interfacial zone can no
longer be maintained and the front “explodes”. The dynamics of the front in this regime is shown inFig. 4: there are
now two counter-propagating fronts where the turbulent phase consumes the each of the two mode locked phases
so that asymptotically the turbulent phase fills the entire domain. The turbulent phase that exists forγ < γ ∗ is a
deterministically chaotic phase characterized by a positive Lyapunov exponent[13].

Fig. 3. Time evolution of the intrinsic width〈∆〉(t) starting from a planar front. Forcing intensity:γ = 0.468 (lower curve),γ = 0.46 (upper
curve). System size:L = 800.
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Fig. 4. Evolution of an exploding interface in the 3:1 FCGL forγ = 0.454,t = 1000 (left frame) andt = 3000 (right frame). The arrows denote
the directions in which the two fronts propagate. System size:L = 800.

2.2. Fronts in a period-3 CML

A qualitatively similar phenomenon, where there is a progression from regular fronts, to rough fronts, to an
interfacial zone with turbulent dynamics whose width diverges as parameters are tuned, has been observed in a
CML with period-3 local dynamics[14]. The CML system that exhibits this phenomenon is

zn+1(r) = (1 − 4ε)f (zn(r)) + ε
∑

r′∈Nr

f (zn(r′)), (4)

where

f (z) =
{

bz for 0 ≤ z ≤ 1/b,

a for 1/b < z ≤ 1
(5)

andNr is the von Neumann neighborhood ofr. The mapf (z) possesses the super-stable 3-cycle solution A=
a → B = ab → C = ab2 → A = a and thus the system may be regarded as an abstract model for a 3:1 resonantly
forced oscillatory reaction–diffusion system. The discrete points on the cycle are fixed points in a stroboscopic
representation taking every third iterate of the map.

Using a system geometry and boundary conditions similar to that for the FCGL model, one may choose initial
conditions to produce a front between any two of the three map fixed points as described earlier. Taking initial
conditions appropriate for an AB phase front between phases A and B of the cycle and viewing the dynamics every
third iterate of the CML yields a propagating front moving to the right where phase A consumes phase B. The
dynamics of the front may be studied as a function of the coupling strengthε and the map parametersa andb. In
particular, if one considers the behavior along the line(a = 0.1, ε = 0.173) in the (a, b, ε) space one observes
dynamics that resembles that seen in the FCGL system; asb increases the front separating the two phases shows
complex spatio-temporal structure (seeFig. 5); the intrinsic width of the interfacial zone increases until at a critical
value ofb = b∗ the width diverges and the turbulent phase fills the entire domain (seeFig. 6).

Fig. 5. Interfacial structure in the CML systemequation (4)for b = 2.45 (left frame),b = 2.545 (right frame). The gray scale indicates the
value of the order parameterzn(r). System size: 200× 200.
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Fig. 6. Exploding front in the CML systemequation (4)for b = 2.548 andn = 599, 1199, 1799 (left, middle and right frames). The gray scale
indicates the value of the order parameterzn(r). System size: 200× 200.

The CML model dynamics possesses some features that differ from those of the FCGL system. The complex
interfacial dynamics is transient in nature although the transient timeτtr depends super-exponentially on the system
size:τtr ∼ exp(cL3/2) for systems with two spatial dimensions[14]. In this transient regime the front structure shows
statistically stationary properties so that a statistical mechanical description can be carried out. Consequently, the
transient behavior is the relevant behavior to study for large system sizes since the asymptotic periodic attractor will
never be seen for the times of interest. The final periodic attracting state may have periods ranging from period-3
to very high periods and the attractor reached depends on the initial condition[14].

The other main difference concerns the nature of the turbulent phase. In the CML model one may show that
the turbulent phase which fills the entire domain after the front explodes is characterized by a negative Lyapunov
exponent even though it possesses many other characteristics of deterministic chaotic dynamics such as rapid decay
of correlations. This type of dynamics has been termedstable chaos [15] and its properties have been studied
[14–16].

As well as these differences in phenomenology, there are a number of points of difference between the two
models themselves that are worth noting. The CML, being a discrete time, discrete space system, does not possess
the neutral modes associated with continuous time evolution and spatial translation. The parameterε in the CML
represents a diffusive coupling strength, but the parameterb is not simply related to the parameters of a resonantly
forced system. Indeed, the CML is an abstract system which does not directly describe any physical 3:1 forced
system. Its use as a model arises from the presence of a discrete period-3 attractor, which reflects the broken time
translation symmetry of the resonantly forced system, and a nonlinearity which gives rise to complex dynamics
at the interface between the period-3 states. These common features may account for the similarity in the gross
phenomenology of the two systems.

We now turn to a quantitative analysis of the interfacial dynamics leading to the front explosion.

3. Analysis of the front explosion

The results presented above show that the phase fronts in the FGGL and CML systems contain a turbulent zone
where the dynamics of the complex amplitude field is not simply periodic. It is convenient to analyze the dynamics
of fronts with complex internal structure by supposing that the turbulent zone constitutes a distinct turbulent phase,
T, separated from the resonantly locked phases by the left and right profiles,hL andhR, respectively, defined earlier.
The essential elements of the structure of such phase fronts are shown inFig. 7. Consequently, one may consider the
phase front as a type of compound front composed of two interfacial profiles: one separating phase A from phase
T, and the other separating phase T from phase B.
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Fig. 7. Picture of the phase front in the FCGL system separating homogeneous domains of two resonantly locked phases. The turbulent zone T
is delimited by left and right profiles,hL andhR, respectively.

Given the structure of the front shown inFig. 7, if one wishes to study its scaling structure and determine to what
extent it behaves like a diffusively rough front, one may choose to examine the dynamics of the either the left or
right profiles, or the mean profile defined byhm = (hR + hL)/2. The widths of the left and right profiles (not to be
confused with the intrinsic width∆) are defined as

wL(R)(t) = 〈(hL(R)(y, t) − 〈hL(R)〉)2〉1/2, (6)

where, as earlier, the angle brackets denote a spatial average alongy. The width of the mean profilewm may be
defined in an analogous way by replacinghL(R) byhm. SincehL(R) = hm ±∆/2, the width functions are related by

w2
L(R)(t) = w2

m(t) ± 〈(hm(y, t) − 〈hm〉)(∆(y, t) − 〈∆〉)〉 + 〈(∆(y, t) − 〈∆〉)2〉. (7)

Because the fluctuations in the intrinsic width are independent of the system sizeL, if cross-correlations are neglected
(these should be small for largeL) one haswR(t) = wL(t) = wm(t). Our simulation studies of the dynamics of
hL(R) show that both of these profiles satisfy Kardar–Parisi–Zhang (KPZ) scaling, providedγ is sufficiently small
so that the fronts are not too thin[13]. More specifically, starting from a planar profile, the ensemble average width

w(t) grows asw(t) ∼ t β̂ , and saturates atwsat ∼ Lα̂. The scaled width functionw(t)/Lα̂ plotted versust/Lα̂/β̂

should be independent of the system size. The FCGL width data collapse onto a single curve if the exponents are
taken to bêα = 1/2 andβ̂ = 1/3 [13]. These are the KPZ exponents[18].

An analogous study of the turbulent fronts in the period-3 CML model[14,16]showed that the profiles satisfied
Edwards–Wilkinson (EW)[19] rather than KPZ scaling. Estimates of the importance of the nonlinear terms in the
KPZ equation indicated that system sizes much larger than those used in the CML simulations would be needed to
observe the KPZ scaling regime.

Since the front, although complex, maintains its integrity providedγ > γ ∗, correlations must exist within the
turbulent interfacial zone so that the A and B phases can communicate with each other. As a result it is of interest
to study the structure of the interfacial zone in more detail. For this purpose we consider the dynamics of the
complex amplitude field averaged along contours within the interfacial zone. We define contoursRL(R)(t) located
respectively near the left (right) profile andRm(t) equidistant from the left and right profiles as

RL(t) = (hL(y, t) + 0.1∆(y, t), y), (8)

RR(t) = (hR(y, t) − 0.1∆(y, t), y), (9)

Rm(t) = (hm(y, t), y). (10)
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Fig. 8. Plots of the trajectories of〈A〉L (t) and〈A〉m(t) in the complex plane for the three different front types. For each simulation system size
wasL = 800 and data were collected for 4000 time units. Left panel: three outer groups of points,〈A〉L (t); central groups of points,〈A〉m(t).
Right panel: magnification of the central groups of points. The three symbols correspond to the three different front types. The three large hollow
circles indicate the centers of mass of the three clusters.

The averages of theA(x, y, t) field over these contours are

〈A〉L(R)(t) =
(∫

RL(R)

ds

)−1 ∫
RL(R)

ds A(RL(R), t), (11)

〈A〉m(t) =
(∫

Rm

ds

)−1 ∫
Rm

ds A(Rm, t), (12)

wheres is the arc length along the contours.
Fig. 8 (left panel) shows the time evolution of〈A〉L(t) and 〈A〉m(t) from simulations of the three different

front types, AB, BC and CA. (The〈A〉R(t) results contain the same information as the corresponding left pro-
file results.) A simulation of the FCGL equation for a given front type, say AB, will yield one of the outer
groups of points for〈A〉L(t) since the FCGL equation gives a stroboscopic representation of the dynamics. The
other two outer groups of points are obtained from simulations of the other two front types. Since there is no
overlap between these groups, the average field on this contour maintains phase coherence. The〈A〉m(t) val-
ues for the three front types comprise the center group of points in this figure.Fig. 8 (right panel) shows a
magnification of this group. Although there is considerable overlap of the three clusters of points, their cen-
ters of mass are separated. Consequently, along this center contour, although there is a breakdown of phase
coherence, phase coherence is partially maintained as indicated by the separation between the centers
of mass.

It is also of interest to study theA(x, y, t) field averaged over the entire interfacial zone; let

〈A〉I (t) = (L〈�〉(t))−1
∫ L

0
dy
∫
hL (y,t)≤x≤hR(y,t)

dx A(x, y, t). (13)

The time evolution of this quantity is shown as a phase plane plot inFig. 9. One can see that the three groups of points
do not overlap indicating that spatially averaged dynamics in the interfacial zone maintains phase coherence. The
centers of mass of these groups tend to zero asγ → γ ∗+ so that phase coherence between the two homogeneous
phases is destroyed at the transition point. This feature is also seen in the spatially averaged dynamics of theA field
along theRm contour.
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Fig. 9. Phase plane plot of〈A〉I (t). The three groups of points correspond to the three interface types. For each simulation system size was
L = 800 and data were collected for 4000 time units.

3.1. Scaling properties

We next quantitatively characterize the manner in which the front explosion occurs in the FCGL system. Simu-
lations show that two processes occur simultaneously as the front explodes: the mean velocity of the front tends to
zero and the width of the front diverges.

We define the mean intrinsic front width∆0 ≡ 〈〈∆(y′, t ′)〉〉 where〈〈·〉〉 denotes an average over space and time
(y′, t ′) in the statistically stationary regime.Fig. 10shows how the intrinsic width∆0 varies withγ as the explosion
transition is approached from the stable front side,γ → γ ∗+. One sees that∆0 diverges as∆0 ∼ |γ − γ ∗|−α

with γ ∗ = 0.458 andα = 0.47. The fluctuations in the front width〈〈(�∆)2〉〉, where�∆(y, t) ≡ ∆(y, t) − ∆0,
also diverge as〈〈(�∆)2〉〉 ∼ |γ − γ ∗|−µ whereµ = 1.34 and againγ ∗ = 0.458 (seeFig. 10, right panel). (The
exponentsα, β andµ introduced in this section should not be confused with the CGL parameters inSection 2.)

Forγ values approaching the transition, the probability distributionP(�∆) can be rescaled with good agreement
to an invariant functiong such thatP(�∆) = g(�∆/|γ − γ ∗|−κ)/|γ − γ ∗|−κ by takingκ = 0.65 for γ ∗ =
0.458 (Fig. 11). The existence of such a universal functiong requires thatµ = 2κ, since〈〈(�∆)2〉〉 = |γ −
γ ∗|−2κ

∫∞
−∞ du u2g(u) whereu = �∆/|γ − γ ∗|−κ . The valuesµ = 1.34 andκ = 0.65 are approximately

consistent with the relationµ = 2κ. In the CML system, theP(�∆) scaling exponentκ was equal to the intrinsic
width scaling exponentα � 1/3.

Fig. 10. Left panel:∆−1/α
0 versusγ (circles, square), whereα = 0.47. The dashed line is 0.04405(γ − 0.458). Right panel: dependence of

〈〈(�∆)2〉〉−1/µ onγ , whereµ = 1.34. The dashed line has equation〈〈(�∆)2〉〉−1/µ = 2.170(γ −0.458). The exponentsα andµwere determined
by a fit to the data forγ ≤ 0.47. InFigs. 10, 12 and 13hollow circles indicate values from systems of size ofL = 800 with average measured
over intervals from 3× 104 to 2.6 × 105 time units in length; the hollow square in each plot is a value from a system withL = 1600 over an
interval of 6× 104 time units.
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Fig. 11. Scaled�∆ probability distributionP(�∆)|γ − γ ∗|−κ versus�∆/|γ − γ ∗|−κ , whereγ ∗ = 0.458 andκ = 0.65. The curves are for
γ = 0.46 (solid), 0.462 (long dashes), 0.465 (short dashes), 0.475 (dots). Data were collected in systems of sizeL = 800 over intervals of
3.9 × 104–2.6 × 105 time units duration.

The mean velocity varies withγ and decreases to zero asγ → γ ∗+. The variation of the mean velocityvf of
the front withγ is shown inFig. 12where one can see thatvf ∼ |γ − γ ∗| close enough toγ ∗. The critical value
of γ is found to beγ ∗ = 0.457 from a fit to the linear portion of the data near the critical point. The agreement
between theγ ∗ values extracted from these measurements is in accord with the notion that the behaviors of these
two properties signal the onset of the explosion transition.

Since the local fluctuations in the intrinsic width become pronounced asγ → γ ∗+ we expect that correlations in
the width alongy will grow. Hence, the correlation length+ that characterizes the decay of the correlation function

C∆(y) = 〈〈�∆(y + y′, t ′)�∆(y′, t ′)〉〉
〈〈(�∆(y′, t ′))2〉〉 (14)

will diverge as the critical point is approached. The functionC∆(y) is found to develop long range correlations as
γ → γ ∗+, but it is difficult to extract the precise form of theγ dependence of+ accurately. Since the correlation
length grows, one must simulate systems with very large transverse dimensions to ensure that correlations decay
on scales smaller than the system length. In addition, the existence of short range correlations make it difficult to
unambiguously extract the value of the characteristic decay length.Fig. 13(left) plots our estimates of the correlation
length+ as a function ofγ .

Fig. 12. The mean “center of mass” interface velocityvf versusγ (circles, square). The long-dashed curve is a linear fit to the data forγ ≤ 0.47
which yieldsγ ∗ = 0.457. The system sizes and simulation durations are described in the caption ofFig. 10.
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Fig. 13. Left: the reciprocal of the correlation length+−1 versusγ (circles, square). The equation of the dashed line is+−1 = 7.203(γ − 0.458).
Right: the reciprocal of the correlation timeτ−1 versusγ (circles, square). The equation of the dashed line isτ−1 = 0.7669(γ − 0.459). The
lines are intended as guides to the eye and were obtained by a fit to the data forγ ≤ 0.47. The system sizes and simulation durations are described
in the caption toFig. 10.

The temporal autocorrelation function of the intrinsic width is defined by

C∆(t) = 〈〈�∆(y′, t + t ′)�∆(y′, t ′)〉〉
〈〈(�∆(y′, t ′))2〉〉 (15)

and its decay may be characterized by the decay constantτ which is plotted inFig. 13(right) as a function ofγ . These
qualitative data suggest that the spatial and temporal correlations of the intrinsic width diverge asγ → γ ∗+. Reliable
estimates of the nature of the divergence are difficult to obtain without considerably more extensive simulations on
larger systems.

The scaling structure of the front explosion was examined in considerable detail for the CML model[14,16,17].
Simulations of the CML are sufficiently efficient so that very large systems can be evolved for long time periods to
determine the scaling behavior ofvf , ∆0, + andτ . Even for this model it is difficult to determine theγ dependence
of + andτ accurately. As in the FCGL simulations, the variations of bothvf and∆0 are much easier to reliably
determine.

The CML simulations showed thatvf ∼ |b − b∗| and∆0 ∼ |b − b∗|−α, whereα = 1/3, as the critical value of
b is approached from the stable front side,b → b∗−. In both the CML and FCGL systems the velocity of the front
vanishes linearly with the distance from the critical value. However, the power law behavior of∆0 differs for these
two systems sinceα = 1/2 for the FCGL data presented earlier.

The scaling exponents in the CML model were calculated using a stochastic model of the dynamics that described
the turbulent front in terms of a pair of coupled EW left and right profiles,hL andhR, moving with velocities+v

and−v, respectively, coupled by repulsive forces,FL andFR that depend only on∆ = hR − hL:

∂hR(y, t)

∂t
= D ∂2hR

∂y2
− v + FR(hR(y, t) − hL(y, t)) + ξR(y, t), (16)

∂hL(y, t)

∂t
= D ∂2hL

∂y2
+ v + FL(hR(y, t) − hL(y, t)) + ξL(y, t), (17)

whereξL(R) are Gaussian white noise terms. Assuming that the velocityv varies linearly with|b − b∗|, and power
law decays of the forms∆0 ∼ |b−b∗|−α, + ∼ |b−b∗|−β andτ ∼ |b−b∗|−z, one findsα = 1/3,β = 2/3,z = 4/3
from a scaling analysis of the coupled equations. These theoretical exponents are consistent with the measured CML
values.
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4. Discussion

The front dynamics and the front explosion that occurs for small forcing amplitudes in the 3:1 FCGL system when
the CGL parameters lie in the Benjamin–Feir-unstable regime were shown to exhibit a rich repertoire of behavior
with a number of unusual features.

The gross phenomenology of the front dynamics as the transition is approached is similar to that first observed in
the super-stable period-3 coupled map lattice[14]. In particular, diffusively rough fronts in deterministic systems,
whose profile widths scale like the square root of the system size, are seen in both systems. However, while KPZ
scaling of the profile widths is found in the FCGL profiles, EW scaling was found in the CML profiles. The system
sizes needed to enter the regime where the nonlinear terms are important were sufficiently large to preclude CML
simulations in that regime. The fact that the turbulence in the CML has its origin in “stable chaos” rather than true
chaos as in the FCGL system does not appear to be an essential ingredient for the front explosion or the qualitative
behavior of the turbulent front dynamics.

The front explosion possesses the signatures of a non-equilibrium phase transition. The intrinsic width diverges
with power law behavior and this divergence is accompanied by divergences in its spatial and temporal correlations.
The scaling exponents differ from those measured for the CML system. This difference might be attributable to the
differences in these systems, in particular, the nature of the correlations in the turbulent zone. However, one cannot
rule out the possibility that the present calculations are too far from the transition point so that the asymptotic scaling
behavior has not yet been achieved. While calculations that lie closer to the transition point than those presented in
this paper are desirable, they are very difficult to carry out because of the usual problems associated with behavior
near critical points. Large transverse system sizes are needed to ensure that diverging correlations decay on scales
shorter than the system size, large system sizes parallel to the propagation direction are needed since the width grows
as the transition is approached, and long times are needed to avoid transient behavior which also diverges. The scaling
exponent for the intrinsic width is most easily measured and it shows a clear departure from the CML value. This
suggests there are quantitative differences in these two systems although the gross phenomenology is similar.

While the CML is an abstract model whose connection to real systems is difficult establish, the calculations
presented here on a normal form model for a reaction–diffusion system suggest that the front phenomena seen in
these two systems can now be sought in experiments on resonantly forced oscillatory media. Although quantitative
aspects of the front explosion might be difficult to measure in experiments on resonantly forced reaction–diffusion
systems, the qualitative phenomenology exhibited by these unusual chemical fronts might be much easier to ob-
serve. The Belousov–Zhabotinsky reaction has been studied in the 3:1 resonantly forced regime[2] where rough
interfaces separate pairs of the three mode locked states. Furthermore, conditions have been found where the
Belousov–Zhabotinsky reaction without external forcing displays spatio-temporal turbulent dynamics[20]. Such
systems under 3:1 resonant forcing might be candidates for the observation of the phenomena described in this paper.
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