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Abstract

Periodically forced oscillatory reaction—diffusion systems near the Hopf bifurcation can be modeled by the resonantly
forced complex Ginzburg—Landau equation. In the 3:1 resonant locking regime this equation has three stable fixed points
corresponding to the phase-locked states in the underlying reaction—diffusion system. Phase fronts separate spatial domair
containing the phase-locked states. When the Ginzburg—Landau equation parameters lie in the Benjamin—Feir-unstable regime
the phase fronts have a turbulent internal spatio-temporal structure. As the forcing intensity is changed, the intrinsic width of
a front grows until, at a critical value, the front “explodes” and the turbulent interfacial zone expands to fill the entire domain.
The scaling properties of this transition are explored and it is shown that front width and spatial and temporal correlations
diverge as the critical forcing intensity is approached. These results are compared with similar behavior seen in a coupled
map model with period-3 local dynamics. The prospects for observation of these phenomena in experiments on periodically
forced reaction—diffusion systems are discussed.
© 2002 Published by Elsevier Science B.V.

Keywords: Reaction—diffusion systems; Resonantly forced media; Complex Ginzburg-Landau equation

1. Introduction

If an oscillatory chemical reaction with oscillation frequengyexperiences a periodic external modulation of the
reaction kinetics, phase locking of the oscillations may occur when the forcing amplitude is sufficiently large and the
forcing frequencyws is sufficiently close to a rational multiple of the natural oscillation frequetag§wo ~ n/m
(n, m are co-prime integers). In a system phase-locked atthaesonance, a stable limit cycle exists but omly
different values of the phase of the oscillations are permitted. Given one such sagionthen — 1 remaining
solutions arey(r + 2k /ws), k = 1,2, ..., n—1; these are stable to phase perturbations as well as to perturbations
that displace the system from the limit cycle. In a spatially distributed reaction—diffusion system patterns typically
consist of spatially uniform domains locked to these solutions. The domain walls are “phase fronts” where the phase
of oscillations changes rapidly; typically the dynamics of these fronts plays a central role in the spatio-temporal
pattern dynamics of such systems. Spatio-temporal dynamics in resonantly forced systems has been the subject «
several experimental studifs-5].
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The spatio-temporal behavior of unforced oscillatory reaction—diffusion systems and their description near the
Hopf bifurcation in terms of the associated complex Ginzburg—Landau (CGL) equation:

%A(r,t) =(n+iv)A—Q+ip)APA+ 1+ia)V3A (1)

have been studied in some def&il7]. Here the complex amplitude describing the envelope of the oscillations is
denoted byA(r, r). The CGL parameterg and g reflect the difference in diffusion coefficients of the chemical
species and the amplitude dependence of the oscillation frequency, respectively. The Benjamin—Feir-unstable regime
where plane wave solutions are linearly unstable is determined by the conditi@g Xk 0. Since the parametets
andv may be eliminated frorkq. (1)by the rescaling — ¢/u, r — r//it, andA — /uA ev!/i, this condition
is independent oft andv. In this Benjamin—Feir-unstable regime the system may develop complex dynamics
characterized by phase or amplitude turbulence. In such turbulent regimes the tendency is for the oscillation phase
at nearby spatial locations to become decorrelated in time.

The normal form of a spatially distributed system near a Hopf bifurcation mithresonant forcing (where
n < 4) is the forced complex Ginzburg—Landau (FCGL) equal8l:

%A(r, H=w+iv)A— 1Q+iB)APA+yA" 1+ 1L +ia)V?A. 2)

The complex conjugate oA(r, ¢) is denoted byA(r, r) while y is the forcing amplitude. The parameter=
wo — mwi /n indicates the extent of the detuning of the forcing fromsthe resonance. This equation describes the
dynamics of the complex amplitude field in a stroboscopic representation determined by multiples of the driving
period 2rn /ws . Atintermediate forcing intensities, if the CGL parameters lie in the Benjamin—Feir-unstable regime,
interesting dynamics may arise from the competition between the turbulence and the forcing. We study the nature
of phase fronts under such conditions.

Studies of resonantly forced oscillatory systems in the Benjamin—Feir-unstable regime have generally employed
Eq. (2) which may be regarded as a generic model for systems of this type. Coullet and Effdits¢dfinvestigated
phase front dynamics in the = 2 case. In one spatial dimension,jasvas lowered, phase fronts with constant
velocity v, whose solutions may be written in the forigx — vt), underwent a Hopf bifurcation to periodic motion
of the front position, followed by a period-doubling cascade to chaotic front motion. At still Ipwaffinite-sized
turbulent domain formed at the phase front. In two spatial dimensions phase fronts exhibited front roughening. For
n =1, 2, 3, 4, stationary spatial patterns were found. Battogtokh and Brgt2jeinvestigated front propagation
in the presence of such stationary patterns.

In this article, we examine the critical properties of fronts in 3:1 resonantly forced systems. Our earligt3york
has shown that in the Benjamin—Feir-unstable regime in two spatial dimensions regular phase fronts exist for large
values ofy while rough fronts are found for lower values. Asy is decreased further the fronts develop turbulent
internal structure and eventually the fronts “explode” and the turbulent interfacial phase fills the entire domain. In
Section 2ve describe this front explosion phenomenon in detail and compare it with an analogous phenomenon seen
in a coupled map lattice (CML) modebection 3presents a quantitative study of the scaling properties of the front
width as well as the decay constants of spatial and temporal correlation functions for the FCGL system. This section
also outlines a description of the process in terms of a model of the dynamics involving two coupled interfacial profiles
introduced in the study of the CML front dynamics. The conclusions of the investigation are gi8ention 4

2. Turbulent phasefronts

We present an overview of the dynamics of phase fronts seen in the 3:1 FCGL system and compare the phase
front phenomenology with that observed in a CML model with period-3 local dynamics. In the simulations of
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Fig. 1. Interfaces in the 3:1 FCGL for = 0.475 (left frame) ang’ = 0.459 (right frame). The system size transverse to the frabtis800. In

this and subsequent figures the gray shade indicates the plodgiee complex fieldd = R/, Simulations were conducted in a frame moving

with the front, with periodic boundary conditions on the top and bottom edges and no-flux boundary conditions on the other edges. The system
size in the direction of front motion was adjusted depending ¢m be sufficiently large to contain the interface.

the FCGL equation, we fixed the parametgrs= 1.0, v = 1.55,¢ = —1.3 andg = 1.5. For this choice of
parameters the system is obviously in the Benjamin—Feir-unstable regimesfdr and supports spatially uniform

3:1 resonantly locked states for sufficiently langeWe have not investigated other values in the CGL parameter
space but phenomena similar to those described below are expected to exist where the these conditions are satisfie
The forcing intensityy was varied to explore the front explosion process.

2.1. Frontsinthe 3:1 FCGL system

In the 3:1 FCGL model there are three fixed points, which we denote A, B and C, corresponding to the three
distinct resonantly locked phases in a stroboscopic representation of the dynamics in multiples of the driving period.
In the reaction—diffusion system whose stroboscopic dynamics is modeled by the FCGL equation, these three phase
cycle inthe order A~ B — C — A. We consider two-dimensional geometries with the system infinitely extended
along thex-direction and periodic with lengtlh in the y-direction. If we then suppose the left domain< 0
contains phase A and the right domain> 0 contains phase B, a phase front AB separating the A and B phases
will develop and propagate from left to right. Lat be the mean velocity of the front. Similar interfaces BC and
CA can be established between the (B,C) and (C,A) fixed-point pairs, and all such fronts propagate with the same
mean velocityys since they are equivalent under the dynamics.

In a large parameter domain the front separating two phases is characterized by a steep but smooth variation o
the phase of the complex amplitude from one phase to the other. If the CGL parameters are chosen to lie in the
Benjamin—Feir-unstable regime, more complex dynamics is observed in the interfacial zone for sufficiently small
forcing intensities. Examples of the complex interfacial structure are shomigin.l One can see in these figures
that there is no longer a smooth passage from one phase to the other as the interfacial zone is crossed; instea
complicated dynamics is seen in this zone. The intrinsic thickness of the interfacial zone may be determined by
choosing left and right marker values of the complex amplitude field that delimit this zorg. bett) = min(x) at
coordinatey where|A(x, y, t)—A'5| > e. Similarly,hr(y, t) = max(x) atcoordinate where|A(x, y, t)—A§| > €.

HereA('3 and A(F} are the complex amplitude fields in the two mode locked states that the front separa¢eis and
small numerical value. We shall call (v, r) andhr(y, t), respectively, the left and right profiles. The instantaneous
intrinsic thickness of the interfacial zone at positjoalong the frontis then given b (y, t) = hr(y, t) —hL(y, t).

1 Numerical integration of the FCGL equation was performed using explicit forward differencing with discretization stepsize8.25,
Ar = 0.005. A nine point discrete Laplacian with fourth-order accuracy was used. Lengths and times are reported in the absolute space and
time units in whichEq. (2)is written, with the exception of system sizesvhich are reported in lattice units.
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Fig. 2. The turbulent front for a larger system size= 1600, fory = 0.462. The figure shows the variations in the shape of the front along
the transverse direction as well as the variations in the intrinsic thickness of the front. (The frame has been rotétedrbp&@d td-ig. 1to
accommodate the larger system size.)

Fig. 2shows the turbulent front for a larger system size. The variatioagin ¢) with y are clearly visible in this
figure.
The spatial average)(¢) of the intrinsic thickness may be computed from

1 L
@0 =7 / dy Ay, 1), &)
0

where, henceforth, the angle brackets will refer to an average aldkfter a transienttime, the phase front dynamics
is observed to enter a statistically stationary regime where its average properties are independent of time, so that,
for example, for sufficiently largé the average widthA)(r) = Ag is independent of time and depends only on the
FCGL parameters. The evolution of the intrinsic width of the front starting from planar initial conditions is shown
in Fig. 3. One sees that the width grows and saturates at a finite value about which it fluctuates. While the saturated
width Ag is independent of time it is a function of the forcing amplitude and increasgsdesreases as can be
seen in the figure.

When the forcing amplitude is sufficiently small, less than a critical valyé, a finite interfacial zone can no
longer be maintained and the front “explodes”. The dynamics of the front in this regime is shbigndnthere are
now two counter-propagating fronts where the turbulent phase consumes the each of the two mode locked phases
so that asymptotically the turbulent phase fills the entire domain. The turbulent phase that exists jof is a
deterministically chaotic phase characterized by a positive Lyapunov expgd3gnt
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Fig. 3. Time evolution of the intrinsic widthA)(z) starting from a planar front. Forcing intensity:= 0.468 (lower curve)y = 0.46 (upper
curve). System sizd. = 800.
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Fig. 4. Evolution of an exploding interface in the 3:1 FCGL foe= 0.454,r = 1000 (left frame) and = 3000 (right frame). The arrows denote
the directions in which the two fronts propagate. System dize:800.

2.2. Frontsin a period-3 CML

A qualitatively similar phenomenon, where there is a progression from regular fronts, to rough fronts, to an
interfacial zone with turbulent dynamics whose width diverges as parameters are tuned, has been observed in «
CML with period-3 local dynamicfl4]. The CML system that exhibits this phenomenon is

Znia1(t) = (L= 46) fza () +€ Y flzar), 4
r'eN;

where

bz for 0<z<1/b,
f@) = (%)
a forl/b<z=<1
and\; is the von Neumann neighborhood mofThe mapf (z) possesses the super-stable 3-cycle solutioa A
a — B =ab— C=ab? - A = a and thus the system may be regarded as an abstract model for a 3:1 resonantly
forced oscillatory reaction—diffusion system. The discrete points on the cycle are fixed points in a stroboscopic
representation taking every third iterate of the map.

Using a system geometry and boundary conditions similar to that for the FCGL model, one may choose initial
conditions to produce a front between any two of the three map fixed points as described earlier. Taking initial
conditions appropriate for an AB phase front between phases A and B of the cycle and viewing the dynamics every
third iterate of the CML vyields a propagating front moving to the right where phase A consumes phase B. The
dynamics of the front may be studied as a function of the coupling strenarid the map parametersandb. In
particular, if one considers the behavior along the lime= 0.1, ¢ = 0.173) in the (a, b, €) Space one observes
dynamics that resembles that seen in the FCGL systeijraseases the front separating the two phases shows
complex spatio-temporal structure ($€g. 5); the intrinsic width of the interfacial zone increases until at a critical
value ofb = b* the width diverges and the turbulent phase fills the entire domairF{geé).

Fig. 5. Interfacial structure in the CML systeaquation (4)or b = 2.45 (left frame),b = 2.545 (right frame). The gray scale indicates the
value of the order parametgy(r). System size: 20& 200.
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Fig. 6. Exploding front in the CML systemquation (4for b = 2.548 andn = 599, 1199, 1799 (left, middle and right frames). The gray scale
indicates the value of the order parametgir). System size: 20& 200.

The CML model dynamics possesses some features that differ from those of the FCGL system. The complex
interfacial dynamics is transient in nature although the transientdindepends super-exponentially on the system
size:ty ~ exp(cL3/2) for systems with two spatial dimensiofis}]. In this transient regime the front structure shows
statistically stationary properties so that a statistical mechanical description can be carried out. Consequently, the
transient behavior is the relevant behavior to study for large system sizes since the asymptotic periodic attractor will
never be seen for the times of interest. The final periodic attracting state may have periods ranging from period-3
to very high periods and the attractor reached depends on the initial cor{ddipn

The other main difference concerns the nature of the turbulent phase. In the CML model one may show that
the turbulent phase which fills the entire domain after the front explodes is characterized by a negative Lyapunov
exponent even though it possesses many other characteristics of deterministic chaotic dynamics such as rapid decay
of correlations. This type of dynamics has been terrstatlle chaos [15] and its properties have been studied
[14-16]

As well as these differences in phenomenology, there are a number of points of difference between the two
models themselves that are worth noting. The CML, being a discrete time, discrete space system, does not posses:
the neutral modes associated with continuous time evolution and spatial translation. The paramisteICML
represents a diffusive coupling strength, but the parandetenot simply related to the parameters of a resonantly
forced system. Indeed, the CML is an abstract system which does not directly describe any physical 3:1 forced
system. Its use as a model arises from the presence of a discrete period-3 attractor, which reflects the broken time
translation symmetry of the resonantly forced system, and a nonlinearity which gives rise to complex dynamics
at the interface between the period-3 states. These common features may account for the similarity in the gross
phenomenology of the two systems.

We now turn to a quantitative analysis of the interfacial dynamics leading to the front explosion.

3. Analysis of thefront explosion

The results presented above show that the phase fronts in the FGGL and CML systems contain a turbulent zone
where the dynamics of the complex amplitude field is not simply periodic. It is convenient to analyze the dynamics
of fronts with complex internal structure by supposing that the turbulent zone constitutes a distinct turbulent phase,
T, separated from the resonantly locked phases by the left and right prifil@sdir, respectively, defined earlier.

The essential elements of the structure of such phase fronts are shielgninConsequently, one may consider the
phase front as a type of compound front composed of two interfacial profiles: one separating phase A from phase
T, and the other separating phase T from phase B.
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Fig. 7. Picture of the phase front in the FCGL system separating homogeneous domains of two resonantly locked phases. The turbulent zone 1
is delimited by left and right profiled, andhg, respectively.

Given the structure of the front shownkig. 7, if one wishes to study its scaling structure and determine to what
extent it behaves like a diffusively rough front, one may choose to examine the dynamics of the either the left or
right profiles, or the mean profile defined by, = (hr + h)/2. The widths of the left and right profiles (not to be
confused with the intrinsic widti) are defined as

WLR) (1) = ((hL®) (7, 1) — (hL DY, (6)

where, as earlier, the angle brackets denote a spatial averageyaldhg width of the mean profile,, may be
defined in an analogous way by replacingr) by im. Sinceh gy = hm = A /2, the width functions are related by

wE gy (1) = wh(0) £ ((hm(y. 1) = (Bm)) (A, 1) = (A) + ((A(y, 1) — (A))?). (7)

Because the fluctuations in the intrinsic width are independent of the systeh) Siz@ss-correlations are neglected
(these should be small for larde) one haswr(r) = w (f) = wm(¢). Our simulation studies of the dynamics of

hL®) show that both of these profiles satisfy Kardar—Parisi-Zhang (KPZ) scaling, provideslifficiently small

so that the fronts are not too tHib3]. More specifically, starting from a planar profile, the ensemble average width
w(r) grows asw(r) ~ t#, and saturates atsa ~ LY. The scaled width functiom(r)/L% plotted versus/L%/?

should be independent of the system size. The FCGL width data collapse onto a single curve if the exponents are
taken to be = 1/2 andg = 1/3[13]. These are the KPZ exponeifits].

An analogous study of the turbulent fronts in the period-3 CML m¢ti&l16] showed that the profiles satisfied
Edwards—Wilkinson (EW}19] rather than KPZ scaling. Estimates of the importance of the nonlinear terms in the
KPZ equation indicated that system sizes much larger than those used in the CML simulations would be needed tc
observe the KPZ scaling regime.

Since the front, although complex, maintains its integrity proviged y*, correlations must exist within the
turbulent interfacial zone so that the A and B phases can communicate with each other. As a result it is of interest
to study the structure of the interfacial zone in more detail. For this purpose we consider the dynamics of the
complex amplitude field averaged along contours within the interfacial zone. We define cdRitgy@) located
respectively near the left (right) profile aR,(¢) equidistant from the left and right profiles as

RL(t) = (he(y, ) +0.1A(y, 1), y), (8)
RR(t) = (hR(yvt)_O'lA(yvt)’ )’), (9)
Rm(®) = (hm(y, 1), y). (10)
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Fig. 8. Plots of the trajectories ¢fi)| (r) and(A)m(¢) in the complex plane for the three different front types. For each simulation system size
wasL = 800 and data were collected for 4000 time units. Left panel: three outer groups of paints,); central groups of pointgA)m (7).

Right panel: magnification of the central groups of points. The three symbols correspond to the three different front types. The three large hollow
circles indicate the centers of mass of the three clusters.

The averages of the(x, y, t) field over these contours are

-1
(ALwr (@) = (f dS) / ds A(RL(R), 1), (11)
RLR) RLRr)

-1
(A)m(1) = (/ ds) ds A(Rm, 1), (12)
Rm Rm

wheres is the arc length along the contours.

Fig. 8 (left panel) shows the time evolution ¢A)_ () and (A)m(¢) from simulations of the three different
front types, AB, BC and CA. (Th&A)r(¢) results contain the same information as the corresponding left pro-
file results.) A simulation of the FCGL equation for a given front type, say AB, will yield one of the outer
groups of points fofA)| (¢) since the FCGL equation gives a stroboscopic representation of the dynamics. The
other two outer groups of points are obtained from simulations of the other two front types. Since there is no
overlap between these groups, the average field on this contour maintains phase cohereidey, Fheval-
ues for the three front types comprise the center group of points in this figige8 (right panel) shows a
magnification of this group. Although there is considerable overlap of the three clusters of points, their cen-
ters of mass are separated. Consequently, along this center contour, although there is a breakdown of phase
coherence, phase coherence is partially maintained as indicated by the separation between the centers
of mass.

It is also of interest to study thé&(x, y, ¢) field averaged over the entire interfacial zone; let

L
(A1) = (L(A>(t))_1/ dy/ dx A(x, y, ). (13)
0 hL () S =hR(1)

The time evolution of this quantity is shown as a phase plane pkgird. One can see that the three groups of points

do not overlap indicating that spatially averaged dynamics in the interfacial zone maintains phase coherence. The
centers of mass of these groups tend to zerp as y** so that phase coherence between the two homogeneous
phases is destroyed at the transition point. This feature is also seen in the spatially averaged dynamiciedfithe

along theRyy, contour.
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Fig. 9. Phase plane plot @fA);(¢). The three groups of points correspond to the three interface types. For each simulation system size was
L = 800 and data were collected for 4000 time units.

3.1. Scaling properties

We next quantitatively characterize the manner in which the front explosion occurs in the FCGL system. Simu-
lations show that two processes occur simultaneously as the front explodes: the mean velocity of the front tends to
zero and the width of the front diverges.

We define the mean intrinsic front widthy = ((A(y’, t'))) where((-)) denotes an average over space and time
(', t') in the statistically stationary regimeig. 10shows how the intrinsic widtk g varies withy as the explosion
transition is approached from the stable front side> y**. One sees that\g diverges asAg ~ |y — y*|™¢
with y* = 0.458 andx = 0.47. The fluctuations in the front widt{{(84)2)), wheredA(y, 1) = A(y, t) — Ao,
also diverge a$((8A4)%)) ~ |y — y*|~* whereu = 1.34 and againy* = 0.458 (se€Fig. 1Q right panel). (The
exponentsr, 8 andu introduced in this section should not be confused with the CGL parametS8extion 2)

Fory values approaching the transition, the probability distribufgdA) can be rescaled with good agreement
to an invariant functiorg such thatP(3A) = g(®A/ly — y*|7)/ly — y*|™* by takingx = 0.65 for y* =
0.458 (Fig. 11). The existence of such a universal functigmequires thaiw = 2«, since(((34)2)) = |y —
y*|7% [°7 duu?g(u) whereu = 8A/|y — y*|™“. The valuesu = 1.34 and« = 0.65 are approximately
consistent with the relation = 2«. In the CML system, thé® (8 A) scaling exponent was equal to the intrinsic
width scaling exponent >~ 1/3.

0.0015 ——————— 0.12
3.
. 0001 ¢ = 008}
: N§ o/
T 0.0005 | 2 0.04 | // ]
0 ) , , 0 / . .
0.46 0.47 0.48 0.49 0.46 0.47 0.48 0.49
Y Y

Fig. 10. Left panel:A; ™/ versusy (circles, square), where = 0.47. The dashed line is. 04405y — 0.458). Right panel: dependence of
(((34)2))~Yr ony, whereyu = 1.34. The dashed line has equati@(A)2))~1/#* = 2.170(y —0.458). The exponents andu were determined
by a fit to the data foy < 0.47. InFigs. 10, 12 and 1Bollow circles indicate values from systems of sizd.o& 800 with average measured
over intervals from 3x 10 to 2.6 x 10° time units in length; the hollow square in each plot is a value from a systeminith1600 over an

interval of 6x 10* time units.
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Fig. 11. Scaled A probability distributionP (8A4)|y — y*|~* versusdA /|y — y*|~*, wherey* = 0.458 and« = 0.65. The curves are for

y = 0.46 (solid), 0.462 (long dashes), 0.465 (short dashes), 0.475 (dots). Data were collected in systemk ef §@@ over intervals of
3.9 x 10%-2.6 x 10° time units duration.

The mean velocity varies with and decreases to zero as— y**. The variation of the mean velocity of
the front withy is shown inFig. 12where one can see that ~ |y — y*| close enough te'*. The critical value
of y is found to bey* = 0.457 from a fit to the linear portion of the data near the critical point. The agreement
between the/* values extracted from these measurements is in accord with the notion that the behaviors of these
two properties signal the onset of the explosion transition.

Since the local fluctuations in the intrinsic width become pronounced-asy ** we expect that correlations in
the width alongy will grow. Hence, the correlation lengththat characterizes the decay of the correlation function

(BAG +'. )BAG. 1) 1
{BAWG, 1)?))

will diverge as the critical point is approached. The functiox(y) is found to develop long range correlations as

y — y**, but it is difficult to extract the precise form of thedependence of accurately. Since the correlation

length grows, one must simulate systems with very large transverse dimensions to ensure that correlations decay

on scales smaller than the system length. In addition, the existence of short range correlations make it difficult to

unambiguously extract the value of the characteristic decay lefigthl 3(left) plots our estimates of the correlation

length¢ as a function ofy.

Ca(y) =

0.08

o~ 0.04 |

046 047 0.48 049
Y

Fig. 12. The mean “center of mass” interface veloejtyersusy (circles, square). The long-dashed curve is a linear fit to the daja f00.47
which yieldsy* = 0.457. The system sizes and simulation durations are described in the capfign bl
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Fig. 13. Left: the reciprocal of the correlation lengtht versusy (circles, square). The equation of the dashed lieis= 7.203(y — 0.458).
Right: the reciprocal of the correlation time® versusy (circles, square). The equation of the dashed linefs= 0.7669y — 0.459). The

lines are intended as guides to the eye and were obtained by a fit to the data fad7. The system sizes and simulation durations are described
in the caption tdrig. 1Q

The temporal autocorrelation function of the intrinsic width is defined by

(BAQ', 1 +1)3A0, 1))
({BAL, 1))?))

and its decay may be characterized by the decay constelnith is plotted irFig. 13(right) as a function of . These
gualitative data suggest that the spatial and temporal correlations of the intrinsic width diverge ag*. Reliable
estimates of the nature of the divergence are difficult to obtain without considerably more extensive simulations on
larger systems.

The scaling structure of the front explosion was examined in considerable detail for the CML[dvadél17]
Simulations of the CML are sufficiently efficient so that very large systems can be evolved for long time periods to
determine the scaling behaviorgf, Ag, £ andz. Even for this model it is difficult to determine thedependence
of £ andt accurately. As in the FCGL simulations, the variations of bgtland A¢ are much easier to reliably
determine.

The CML simulations showed that ~ |b — b*| andAg ~ |b — b*|7%, wherea = 1/3, as the critical value of
b is approached from the stable front sile> 5*~. In both the CML and FCGL systems the velocity of the front
vanishes linearly with the distance from the critical value. However, the power law behavigrdiffers for these
two systems since = 1/2 for the FCGL data presented earlier.

The scaling exponents in the CML model were calculated using a stochastic model of the dynamics that described
the turbulent front in terms of a pair of coupled EW left and right profitlgsand/r, moving with velocitiestv
and—v, respectively, coupled by repulsive forcés, and Fr that depend only om\ = hr — Ay:

Ca(t) = (15)

dhR(y, 8°h
R0 _p T~V FROR(. D — (1) R0, (16)

hL (v, 1t 92h
L(y )—D L

ot ay2 + v+ FLR®, 1) — hi(y, 1) +&L(y, 1), (17)

whereé| r) are Gaussian white noise terms. Assuming that the veloaorgyries linearly with|b — 5*|, and power

law decays of the formdg ~ |b—b*|~*, ¢ ~ |b—b*|"# andr ~ |b—b*|~%, onefindsy = 1/3,8 = 2/3,z = 4/3

from a scaling analysis of the coupled equations. These theoretical exponents are consistent with the measured CM
values.
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4. Discussion

The front dynamics and the front explosion that occurs for small forcing amplitudes in the 3:1 FCGL system when
the CGL parameters lie in the Benjamin—Feir-unstable regime were shown to exhibit a rich repertoire of behavior
with a number of unusual features.

The gross phenomenology of the front dynamics as the transition is approached is similar to that first observed in
the super-stable period-3 coupled map latfic8. In particular, diffusively rough fronts in deterministic systems,
whose profile widths scale like the square root of the system size, are seen in both systems. However, while KPZ
scaling of the profile widths is found in the FCGL profiles, EW scaling was found in the CML profiles. The system
sizes needed to enter the regime where the nonlinear terms are important were sufficiently large to preclude CML
simulations in that regime. The fact that the turbulence in the CML has its origin in “stable chaos” rather than true
chaos as in the FCGL system does not appear to be an essential ingredient for the front explosion or the qualitative
behavior of the turbulent front dynamics.

The front explosion possesses the signatures of a non-equilibrium phase transition. The intrinsic width diverges
with power law behavior and this divergence is accompanied by divergences in its spatial and temporal correlations.
The scaling exponents differ from those measured for the CML system. This difference might be attributable to the
differences in these systems, in particular, the nature of the correlations in the turbulent zone. However, one cannot
rule out the possibility that the present calculations are too far from the transition point so that the asymptotic scaling
behavior has not yet been achieved. While calculations that lie closer to the transition point than those presented in
this paper are desirable, they are very difficult to carry out because of the usual problems associated with behavior
near critical points. Large transverse system sizes are needed to ensure that diverging correlations decay on scale!
shorter than the system size, large system sizes parallel to the propagation direction are needed since the width grows
as the transition is approached, and long times are needed to avoid transient behavior which also diverges. The scaling
exponent for the intrinsic width is most easily measured and it shows a clear departure from the CML value. This
suggests there are quantitative differences in these two systems although the gross phenomenology is similar.

While the CML is an abstract model whose connection to real systems is difficult establish, the calculations
presented here on a normal form model for a reaction—diffusion system suggest that the front phenomena seen in
these two systems can now be sought in experiments on resonantly forced oscillatory media. Although quantitative
aspects of the front explosion might be difficult to measure in experiments on resonantly forced reaction—diffusion
systems, the qualitative phenomenology exhibited by these unusual chemical fronts might be much easier to ob-
serve. The Belousov-Zhabotinsky reaction has been studied in the 3:1 resonantly forced2ggitrere rough
interfaces separate pairs of the three mode locked states. Furthermore, conditions have been found where the
Belousov—Zhabotinsky reaction without external forcing displays spatio-temporal turbulent dyfh20hicSuch
systems under 3:1 resonant forcing might be candidates for the observation of the phenomena described in this paper
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