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The cytoplasm and biomembranes in biological cells contain large
numbers of proteins that cyclically change their shapes. They are
molecular machines that can function as molecular motors or carry
out various other tasks in the cell. Many enzymes also undergo
conformational changes within their turnover cycles. We analyze
the advection effects that nonthermal fluctuating hydrodynamic
flows induced by active proteins have on other passive molecules in
solution or membranes. We show that the diffusion constants of
passive particles are enhanced substantially. Furthermore, when
gradients of active proteins are present, a chemotaxis-like drift of
passive particles takes place. In lipid bilayers, the effects are strongly
nonlocal, so that active inclusions in the entire membrane contribute
to local diffusion enhancement and the drift. All active proteins in a
biological cell or in a membrane contribute to such effects and all
passive particles, and the proteins themselves, will be subject to them.

active proteins | collective hydrodynamic effects |
nonthermal fluctuation effects | enhanced passive particle diffusion

Protein machines play a fundamental role in biological cells
(1, 2). Operating as motors, they are responsible for intracellular

transport and force generation. As manipulators, they perform
various operations involving other biomolecules, including RNA
and DNA. As pumps, they transfer ions across biomembranes. A
common feature of protein machines is that they undergo cyclic
conformational changes that are induced by ligand binding and
product release. Thus, all protein machines are enzymes where
substrate binding, catalytic conversion to products, and product
release are accompanied by internal mechanochemical motions.
Conformational changes within turnover cycles are also charac-
teristic of many other enzymes, which need not function as
molecular machines. The results we present in this paper are also
applicable to these enzymes.
When a macromolecule cyclically changes its shape, it induces

hydrodynamic flows in the surrounding fluid or biomembrane in
which it resides. Such pulsating flows can act on any passive parti-
cles in solution or lipid bilayers. The aim of the present study is to
analyze the collective hydrodynamic effects that active macromol-
ecules have on passive particles in the medium. We shall show that
these effects lead to substantial modifications of the diffusion con-
stants of passive particles. Furthermore, directed drift of passive
particles can be induced when there are spatial gradients of active
macromolecules, a phenomenon that is reminiscent of chemotaxis.
The investigation of hydrodynamic effects in active fluids is an

important field of current research (3, 4). Although the hydro-
dynamics of bacterial motion has been studied often, the active
elements may be of inorganic origin and operate through various
flow-generation mechanisms (5–13). There has been a consid-
erable amount of work on swimmers that can propel themselves
by cyclically changing their shapes (14). Interactions between
such swimmers and their collective flows have been analyzed
(15–21). Also, interactions between active hydrodynamic dipoles
have been investigated theoretically (22, 23) and experimentally
(24, 25). Effects of active dipoles on chromatin dynamics in a
two-fluid model have been considered (26).

Hydrodynamic effects on individual protein machines have
been studied; for example, investigations of simple models of
such machines have shown how they propel themselves and be-
have under a load (27). Also, the effects of hydrodynamic in-
teractions on the internal dynamics have been analyzed (28).
Active protein inclusions in lipid bilayers can act as hydrody-
namic dipoles (29) and, under certain conditions, such inclusions
can behave as active membrane swimmers (30).
The focus of the present study differs in several respects from

the work recounted above. We are not interested in the effects of
hydrodynamics on the operation of a single machine. Instead, we
concentrate on the advection effects that protein machines can
have on passive particles in the medium. Although some proteins
can indeed behave as motors, we only require that such machines
act as cyclic hydrodynamic force dipoles. Consequently, our anal-
ysis concerns the statistical effects that populations of incoherently
oscillating dipoles can have on passive particles in the system.
In bulk solution, the laws of 3D hydrodynamics need to be ap-

plied; however, as already pointed out by Saffmann and Delbrück
(31), biological membranes should behave as 2D fluids when lipid
flows in a membrane that occur on scales shorter than a micrometer
are considered (31–33). Recently, 2D lipid flows were directly ob-
served in mesoscopic simulations of lipid bilayers (34); additionally,
2D diffusion in biomembranes was experimentally investigated (35).
It is well known that 2D hydrodynamics is characterized by the
presence of ultra-long-ranged logarithmic interactions that make it
qualitatively different from the 3D case (33). We study the hydro-
dynamic effects of active machines in both 3D and 2D systems.
The outline of the paper is as follows. First, we give a brief

discussion of how protein machines undergoing random cyclic
changes in response to substrate binding and product release under
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nonequilibrium conditions can act as force dipoles. A simple model
for an active protein is used to illustrate how force dipole effects
arise but our general results do not rely on the specific structure of
the model. We then show that a cyclically fluctuating hydrodynamic
force dipole will induce diffusive motion and directed drift of a
passive particle located at some distance from it. When a pop-
ulation of cyclic hydrodynamic force dipoles is randomly distributed
in the medium, they will enhance the diffusion of all passive par-
ticles in the medium. Moreover, if such dipoles are nonuniformly
distributed and concentration gradients in these species are present,
directed flows of all passive particles will be induced. Numerical
estimates of the magnitudes of the effects are given, and a discus-
sion of the results is presented.

Protein Machines As Force Dipoles
Molecular machines are biomolecules, most often proteins, that
undergo structural changes in shape during their operation cy-
cles. These cyclic shape changes, induced by ligand binding and
product release, take place under nonequilibrium conditions;
therefore, they differ from thermally induced shape fluctuations
for which microscopic reversibility holds and the fluctuation-
dissipation theorem applies. These molecular machines operate
in a viscous environment and their dynamics takes place under
low Reynolds number conditions so that inertia does not play a
significant role. As a result, if a force is applied to a particle in
the fluid, the same force acts on the fluid.
Such protein machines act as stochastic oscillating force di-

poles that can influence the motions of other particles in the
system. For example, consider a protein with two domains that
operates as an enzyme converting substrate into product mole-
cules. The protein domains close in response to binding of ATP
or other substrate molecules and open after the reaction and
release of a product. We assume that the substrate is continu-
ously supplied and the products are instantaneously removed
from the system. When the substrate binds to the protein new
bonds are formed and thus the chemical energy, needed to induce
conformational changes and cause the domains to close, is sup-
plied. When the product is released, the additional chemical bonds
are broken, leading to domain opening, and the protein returns to
its initial state. Within one cycle, an active protein consumes the
chemical energy whose net value is determined by the difference in
internal energies of the substrate and product molecules. If reverse
conversion of a product into the substrate is allowed, an active
protein can also operate in the opposite direction. Generally, its
cycles are driven by the difference in Gibbs potentials of substrate
and product; the sign of this difference determines the operation
direction of the machine. Because the net force on the protein is
zero, the forces that act on the domains are equal in magnitude and
opposite in direction, so that a force dipole is created. This oscil-
lating force dipole will act on the surrounding viscous fluid to
generate hydrodynamic flows that can induce motions of passive
particles in the fluid. A simple dimer model of such an active
protein, where the domains in a bidomain protein are represented
by beads, is formulated in SI Text.

Hydrodynamic Effects
When a force F is applied to the fluid at a point r, it produces a fluid
flow field at R that advects a particle at this location with velocity

_Rα =GαβðR− rÞFβðrÞ, [1]

where Gαβ is the mobility tensor which, for sufficiently large
distances, can be evaluated in the Oseen approximation. (The
Einstein summation convention over repeated indices will be
used throughout this paper.) For an oscillating dimer of length
x with orientation given by the unit vector e and interaction force
magnitude F, we have _Rα = ½GαβðR− r− xeÞ−GαβðR− rÞ�eβF, be-

cause the forces on the dimer beads have equal magnitude but
are opposite in direction. If the dimer length x is small compared
with the distance jR− rj, we can approximately write

_Rα =
∂Gαβ

∂rγ
eβeγm, [2]

where mðtÞ= xðtÞFðtÞ denotes the magnitude of the force dipole.
Although we derived Eq. 2 for a specific two-bead model, it is
general. If an object immersed in the fluid changes its shape, it
generates a hydrodynamic flow that, at large separations from
this object, can be described as being produced by an active force
dipole, unless special symmetries are present. Below, we shall
treat any active protein machine as a nonequilibrium stochastic
force dipole.
Consider a collection of such active force dipoles, located at

positions fRig with orientations feig and subject to fluctuations
arising from thermal and active nonthermal effects. The oscil-
lating dipoles collectively create a fluctuating flow field that in-
duces stochastic advection of a passive particle. At low Reynolds
numbers, the passive particle will exactly follow the local flow
velocity field. The equation of motion of a passive particle at
point Rα may then be written as

_Rα =
X
i

∂GαβðR−RiÞ
∂Riγ

eiβeiγmiðtÞ+ fαðtÞ. [3]

The passive particle is subject to fluctuations from two sources.
The random force fαðtÞ has zero mean and satisfies the fluctua-
tion-dissipation relation, hfαðtÞfα′ðt′Þin = 2kBTγδαα′δðt− t′Þ, where
γ is the mobility coefficient of the passive particle. The particle is
also subject to thermal and active nonthermal fluctuations of the
force dipoles miðtÞ with zero mean, hmðtÞin = 0, and correlation
function hmiðtÞmjð0Þin = hmðtÞmð0Þinδij = SðtÞδij, which defines
the force dipole correlation function SðtÞ= hmðtÞmð0Þin. For sim-
plicity we have assumed that the force dipole correlations of
different proteins are independent. We have further assumed
that their orientations are randomly distributed. The force dipole
tensor eiβeiγmiðtÞ of a protein is invariant under inversion of the
orientation vector ei and has properties like the tensor order
parameter in nematic liquid crystals. When correlations among
active proteins are taken into account it may be possible that
nematically ordered active protein states could be found (26,
36). We shall not consider such effects here.
The force dipole correlation function SðtÞ plays a central role

in our study. This correlation function contains effects that arise
from both thermal and nonthermal noise. This correlation func-
tion may be written as SðtÞ= 2STδðtÞ+ SAðtÞ, where the thermal
component STðtÞ is determined by the temperature, whereas the
active component SAðtÞ results from nonthermal colored noise. In
the absence of substrate, or when the system operates under
equilibrium conditions, only the delta correlated thermal contri-
bution remains. The integral intensity S=

R∞
0 dt  SðtÞ≡ ST + SA

may also be defined. This quantity will enter in the expressions for
the diffusion and drift derived below.
Because the conformational transitions that produce the force

dipole depend on substrate binding, the dependence on substrate
concentration enters the description through the force dipole
correlation function SðtÞ and, thus, the integral intensity SA of
active force dipoles should depend on the substrate concentra-
tion cS. Although the precise form of the dependence SAðcSÞ can
only be determined by considering the kinetics of a particular
enzymatic molecular system, general comments on its structure
may nonetheless be made. The contribution SA of active force
dipoles must vanish in the absence of substrate because only ther-
mal fluctuations are then present and they are accounted for in ST.
At high enough substrate concentrations the enzymes will operate
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at their maximum conversion rates and nonthermal effects will
saturate. Consequently, SAðcSÞ should display a similar behavior: a
linear proportionality at small substrate concentration cS and satu-
ration at large concentrations. For example, a functional form like
that of Michaelis–Menten kinetics, SAðcSÞ∼ S0cS=ðK + cSÞ, where
S0 is the saturation value of SA and K is a constant, satisfies these
criteria, but other forms for SAðcSÞwith similar limiting regimes may
well result from a calculation of SA for a specific molecular system.
If, within the time interval being considered, the displacements

in the position RðtÞ of a passive particle are small, we can write
RαðtÞ=R0,α + ραðtÞ and retain only terms that are of the first
order in the displacements ραðtÞ, so that

_ρα =
X
i

�
∂GαβðR0 −RiÞ

∂Ri,γ
+
∂2GαβðR0 −RiÞ

∂Ri,γ∂R0,δ
ρδ

�

× ei,βei,γmiðtÞ+ fαðtÞ.
[4]

It is convenient to write the first term on the right side of this
equation in field-point notation,

_ρα =
Z

dr 
�
∂GαβðrÞ

∂rγ
−
∂2GαβðrÞ
∂rγ∂rδ

ρδ

�

×
X
i

ei,βei,γmiðtÞδðRi −R0 − rÞ+ fαðtÞ,
[5]

where the term involving the sum over the proteins represents
the microscopic density of force dipoles, ei,βei,γmiðtÞ, at a point r
with origin at the position R0 of the passive particle. Note that
the first and the second derivatives of the Green function corre-
spond to dipole and quadrupole contributions. This equation
shows that the instantaneous position of a passive particle evolves
with time according to a stochastic differential equation with non-
thermal multiplicative noise arising from the collective operation
of active force dipoles, in addition to the additive thermal noise.
The diffusion tensor Dαα′ and the mean drift velocity V of a

passive particle can be determined from

Dαα′ =
Z∞

0

dt  hδVαðtÞδVα′ð0Þi, V α = hVαi, [6]

where δVα =Vα −V α and the angle bracket h⋯i denotes an aver-
age over the stochastic fluctuations, both thermal and nonthermal,
as well as the orientations and positions of active force dipoles.
The diffusion tensor and mean drift velocity of the passive

particle may be obtained by substituting the expression in Eq. 5
for the velocity Vα = _ρα of a particle, retaining only leading
terms, into Eq. 6. As discussed earlier, when computing the
average values in Eq. 6, we assume that the orientations of active
force dipoles are not correlated with their positions so that
hPieβeβ′eγeγ′δðRi −R0 − rÞi= heβeβ′eγeγ′icðrÞ≡Ωββ′γγ′cðrÞ, where
Ωββ′γγ′ =Cd½δββ′δγγ′ + δβγδβ′γ′ + δβγ′δβ′γ �, withC2 = 1=8 andC3 = 1=15
for two and three dimensions, respectively, and cðrÞ= hPiδðRi − rÞi is
the local concentration of active force dipoles at a point r in the fluid.
We find

Dαα′ðR0Þ=DT
αα′ðR0Þ+SAΩββ′γγ′

Z
dr 

∂GαβðrÞ
∂rγ

∂Gα′β′ðrÞ
∂rγ′

cðR0 + rÞ

≡DT
αα′ðR0Þ+DA

αα′ðR0Þ
[7]

V αðR0Þ=−SAΩββ′γγ′

Z
dr 

∂2GαβðrÞ
∂rγ∂rδ

∂Gδβ′ðrÞ
∂rγ′

cðR0 + rÞ, [8]

where DT
αα′ðR0Þ is the equilibrium diffusion tensor of the passive

particle averaged over protein configurations. It contains effects

arising from the thermal contribution ST as well as the mobility
of the individual passive particle. The last line in Eq. 7 defines
the contribution of active force dipoles, DA

αα′ðR0Þ, to the total
diffusion tensor.
We shall now analyze Eqs. 7 and 8 separately for 3D and

2D systems.

3D Systems. For applications to protein machines in bulk solution, for
example in the cytoplasm of biological cells, the 3D Green func-
tion in the Oseen approximation is GαβðrÞ= ð8πηrÞ−1 ðδαβ + r̂α r̂βÞ,
where η is the fluid viscosity and r̂ is the unit vector specifying the
direction of r. Suppose that the machines are uniformly distrib-
uted in space with constant concentration c0. In this case, dif-
fusion is isotropic, Dαα′ =Dδαα′, and Eq. 7 yields

DA =
SAc0
3

Ωββ′γγ′

Z ​
′
dr 

∂GαβðrÞ
∂rγ

∂Gαβ′ðrÞ
∂rγ′

, [9]

for the active force dipole contribution to the diffusion coefficient.
Note that whereas the integral (Eq. 9) diverges as 1=r for short
distances r, volume exclusion between an enzyme and the passive
particle restricts the domain of integration to distances exceeding
some cutoff length ℓc. The prime on the integral in Eq. 9 indicates
this restriction. Introducing dimensionless coordinates z= r=ℓc, the
nonthermal diffusion coefficient DA can be estimated as

DA ≈ ζ3
SAc0
ℓcη2

, [10]

where the dimensionless factor ζ3 is given by

ζ3 =
Ωββ′γγ′

192π2

Z ​
′
dz 

∂gαβðzÞ
∂zγ

∂gαβ′ðzÞ
∂zγ′

=
1

60π
, [11]

and the dimensionless function gαβðzÞ= z−1ðδαβ + ẑαẑβÞ.
Turning to Eq. 8, we notice that the drift velocity vanishes for a

uniform distribution of active dipoles. Suppose instead that a con-
stant concentration gradient in the direction n̂, ∇c= n̂ðn̂ ·∇cÞ=
n̂ð∇cÞ, is present and cðrÞ= c0 + ðr · n̂Þ∇c. Now, the integration in
Eq. 8 yields

V α =−SAΩββ′γγ′

Z ​
′
dr 

∂2GαβðrÞ
∂rγ∂rδ

∂Gδβ′ðrÞ
∂rγ′

ðr · n̂Þ∇c. [12]

Again, introducing dimensionless coordinates z= r=ℓc, we find

V≈ ξ3
SA
ℓcη2

∇c, [13]

where the positive dimensionless factor ξ3 is

ξ3 =−
Ωββ′γγ′

64π2

Z ​
′
dz  n̂α

∂2gαβðzÞ
∂zγ∂zδ

∂gδβ′ðzÞ
∂zγ′

ðz · n̂Þ= 1
30π

. [14]

Because ξ3 is positive the drift is in the direction of the enzyme
concentration gradient. We further note for 3D that the domi-
nant contributions to the integrals for the general expressions for
the diffusion and drift given in Eqs. 7 and 8 come from short
distance separations, so Eqs. 10 and 13 also hold for arbitrary
concentration distributions; in this case local concentration val-
ues and gradients should be taken to determine the effects at a
given point.

2D Systems. As noted by Saffman and Delbrück (31), biological
membranes should behave as 2D lipid fluids on submicrometer
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length scales. Therefore, the effects of an ensemble of active protein
machines on the motion of a passive particle in a lipid bilayer
provides an example where a 2D description is appropriate. In
the Oseen approximation, the 2D Green function of lipid bi-
layers is (32)

GαβðrÞ= ð4πηmÞ−1
�
−ð1+ lnðκrÞÞδαβ + r̂α r̂β

�
. [15]

Here, ηm is the 2D viscosity of the lipid bilayer, which is related
to its 3D viscosity ηL by ηm = ηLh, where h is the thickness of the
bilayer. In contrast to the 3D case, hydrodynamic interactions in
2D are ultra-long-ranged, owing to the logarithmic dependence
on the distance r. For biomembranes, one can use the estimate
(32) κ−1 = ηLh=ð2ηÞ, where η is the viscosity of the surrounding
aqueous medium. Typically, κ−1 is of the order of a micrometer.
At separations larger than this distance, 3D effects become im-
portant for biomembranes. Therefore, our analysis applies only
for relatively small membranes of micrometer size; for larger
membranes the crossover to 3D hydrodynamics at long length
scales needs to be taken into account.
The general expressions in Eqs. 7 and 8 hold in the 2D case as

well; however, because of the logarithmic distance dependence
in the Green function, hydrodynamic effects are nonlocal.
Therefore, it is not possible to obtain precise estimates similar to
those in Eqs. 10 and 13 for such systems. Still, some estimates
can be made.
Consider a passive particle at the center of a circular membrane

with radius ℓ0 so that 2D behavior applies. If we again consider a
uniform distribution of active enzymes, the diffusion coefficient
given by Eq. 7 is isotropic at the center of the membrane. Intro-
ducing the rescaled dimensionless coordinates z= r=ℓ0, we obtain

DA ≈ ζ2
SAc0
η2m

, [16]

where the dimensionless factor ζ2 is given by

ζ2 =
Ωββ′γγ′

32π2

Z ​
′
dz 

∂qαβðzÞ
∂zγ

∂qαβ′ðzÞ
∂zγ′

=
1

32π
ln
ℓo
ℓc
. [17]

Here qαβðzÞ=−lnðzÞδαβ + ẑαẑβ. The integral (Eq. 17) diverges log-
arithmically at z= 0 and a cutoff at z= ℓc=ℓ0 has been introduced.
In a similar manner, the drift velocity in 2D systems can be

estimated. Taking cðrÞ= c0 + ðr · n̂Þ∇c in Eq. 8, and changing
variables as indicated above, we find

V≈ ζ2
SA
η2m

∇c, [18]

where

ξ2 =−
Ωββ′γγ′

16π2

Z ​
′
dz  n̂α

∂2qαβðzÞ
∂zγ∂zδ

∂qδβ′ðzÞ
∂zγ′

ðz · n̂Þ= 1
32π

ln
ℓo
ℓc
, [19]

so that ξ2 = ζ2. Note that because the integrals in Eqs. 17 and 19
diverge logarithmically at large distances, the finite size of the
membrane is important. Moreover, as follows from Eq. 19 and
similar to the 3D case, passive particles drift toward higher con-
centrations of active proteins.
If the passive particle is not at the center of the domain or

concentration distributions of active protein inclusions are more
general than the constant and linear-gradient distributions con-
sidered above, the diffusion will no longer be isotropic and the
diffusion and drift will depend on the concentration distribution
cðrÞ over the entire membrane, in contrast to the 3D case where

only the local structure of the enzyme concentration field in the
neighborhood of the passive particle is of importance.

Numerical Estimates
The magnitude of a force dipole m of a protein machine can be
roughly estimated as m∼FdP, where F is the force generated by
the machine and dP is the linear size of the protein. Molecular
motors, such as myosin or kinesin, typically generate forces about
1 pN and this can be chosen as the characteristic value for F. Taking
the size of a protein to be about 10 nm, the force dipole can be
estimated to be about m= 10−20 N·m. The correlation time for
force-dipole fluctuations can be taken to be the duration tc of the
cycle time in a chemical machine. Although enzyme cycle times vary
widely, we choose a time of about tc ∼ 1 ms. The parameter SA can
then be evaluated to give SA ∼m2tc = 10−43 N2·m2·s. Note that this
estimate corresponds to substrate (typically ATP) saturation condi-
tions: The machine binds a new substrate molecule and enters into a
new cycle immediately once the previous cycle finishes. If this con-
dition is not satisfied, the protein machine must wait for a new
substrate molecule to arrive. During this waiting period, the machine
does not act as a force dipole and this will decrease the value of SA.
Obviously, the effects disappear when the substrate is not supplied.
Concentrations of active proteins inside a biological cell can

vary over a large range. The highest concentrations of the order
of 10−4 M are characteristic for the enzymes involved in glycolysis.
As a rough estimate, a value of 10−6 M can be chosen, corre-
sponding to c0 = 1021m−3, so that the mean distance between the
proteins being considered is about 100 nm. Given the protein size,
we choose a cutoff length of ℓc = 10 nm. The viscosity of water is
about 10−3 Pa·s. For the dimensionless numerical factors in Eqs.
11 and 14 we take their order-of-magnitude values ζ3 = 10−2 and
ξ3 = 10−2.
With these values, the contribution (Eq. 10) to the diffusion

coefficient owing to hydrodynamic effects arising from protein
machines in bulk 3D solutions is about DA ≈ 10−6cm2=s. This
result should be compared with typical diffusion constants in
water that can vary from about 10−5cm2=s for small molecules to
10−7cm2=s for small proteins in water. If one takes the viscosity
of the cytoplasm to be two to four times that of water, the active
contribution DA will decrease by approximately an order of
magnitude. However, it is still approximately the same as the
thermal Brownian contribution DT ≈ kBTγ = kBT=ð6πηRpÞ, where
Rp is the radius of the passive particle, under the same viscosity
conditions using a Stokes law estimate. To estimate the magni-
tude of the drift velocity from Eq. 13, we can take ∇c=Δc=L,
where Δc is the concentration difference across the cell and
L= 10  μm is the typical eukaryotic cell size. If we choose
Δc≈ 0.1c0, where again c0 = 1021m−3, we obtain a drift velocity
magnitude of about V ≈ 1  μm=s.
Proceeding to lipid bilayers, we observe that their 3D viscosity

ηL ∼ 1 Pa·s is typically a factor of 103 higher than that of water.
The 2D viscosity of such bilayers is ηm = ηLh, where h∼ 1 nm has
been taken as the thickness of the bilayer. The magnitude
S∼ 10−43  N2·m2·s may again be used for the force dipoles. Taking
the mean distance between proteins to be ∼100 nm, the 2D
concentration is about c0 = 1014  m−2. As rough estimates of these
factors we again choose their order-of-magnitude values,
ζ2 = ξ2 = 10−2. A membrane of micrometer size is considered and
a cut-off distance of 10 nm is introduced.
Given these numerical values, the hydrodynamic effects of active

protein inclusions are predicted to increase the diffusion of passive
particles within the membrane by about DA ≈ 10−9cm2=s. For
comparison, Brownian diffusion constants for proteins in lipid bi-
layers are of the order of 10−10cm2=s and diffusion constants for
lipids are about 10−8cm2=s. The characteristic magnitude of the drift
velocity of passive particles in lipid bilayers is estimated to be about
V ≈ 10−2   μm=s, assuming that Δc= 0.1c0 and the characteristic
length for concentration variation in a membrane is about 1 μm.
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These numerical estimates should be used only as rough guide
to the possible magnitudes of the effects because many of the
parameters may vary significantly from one system to another, or
are known only poorly. For example, forces have only been
measured for some molecular motors and, for protein machines
that are not motors or for enzymes, they may be smaller than
1 pN. However, the concentrations of some proteins that behave
as force dipoles may be significantly higher than the value we
have assumed. For example, the enzyme phosphoglycerate ki-
nase involved in glycolysis is present in the living cell in the
concentrations up to 10−4 M, two orders of magnitude larger
than our assumed value. Proteins typically contribute about
40% of the mass in biomembranes and their concentrations
may well be significantly higher than our 2D values. In addition,
the cytoplasm is a very complicated medium that is crowded by
a variety of macromolecules, filaments, organelles, and other
structures (37). Diffusion in such a crowded environment dif-
fers from that in a simple solution. Crowding can also influence
the hydrodynamic effects owing to active force dipoles dis-
cussed in this paper. Such effects will have to be considered in
descriptions of transport in the cell that model the detailed
structure of the cytoplasm. Consequently, the uncertainty in the
estimates of hydrodynamic effects is high and deviations of up
to two orders of magnitude from the numerical estimates given
above may well be possible.
The effects considered here depend on the concentration of

substrate through SAðcSÞ as discussed earlier. If the substrate
concentration varies in a cell or a membrane, the coordinate-
dependent dipole intensity SA should be retained within integrals
in Eqs. 7 and 8. In three dimensions, diffusion is determined by
the local dipole force intensity according to Eq. 10, whereas the
drift velocity is determined by the local gradient of SAðrÞcðrÞ,
replacing the gradient of concentration in Eq. 13. In two di-
mensions, local diffusion and drift are generally dependent on
the concentration distribution of active inclusions and substrates
over the entire membrane.

Discussion and Conclusions
In a biological cell there are large populations of active proteins,
both molecular machines and enzymes, that change their con-
formations within catalytic cycles. In this paper we showed that
when active proteins are present, either in solution or in lipid
bilayers, they can substantially modify the diffusion constants of
passive particles in the system. These modifications affect all
passive particles, and all active proteins, even of different kinds,
contribute to the effect provided they are supplied with substrate
and remain active. The magnitude of the effect can be compa-
rable to the value of Brownian diffusion constants under physi-
ological conditions.
Furthermore, if protein machines are nonuniformly distrib-

uted in a cell or in a biomembrane, directed drift of passive
particles, analogous to chemotaxis, can occur. However, the
mechanism is completely different: All active proteins contribute
toward it and all passive particles experience the drift. Drift
velocities of the order of micrometers per second can be re-
alized. The enhancement of diffusion and chemotaxis-like drift
should take place for the protein machines (enzymes) themselves
as well. Note that the drift velocity is in the same direction as the
concentration gradient and therefore the hydrodynamic attrac-
tion of incoherent active proteins should occur. Generally, the
same proteins would exhibit different interactions depending on
whether they are catalytically active or inactive (no ATP is
supplied). However, thus far we have not considered collective
effects due to hydrodynamic interactions on the populations of
active proteins. It may be that orientation alignment leading to
nematic order (26, 36) and cycle synchronization also arise.
In three dimensions, hydrodynamic interactions are already

long-ranged, with power-law dependence. In two dimensions

they become ultra-long-ranged with a logarithmic dependence
on distance. Thus, the effects predicted to exist in 3D and 2D
systems differ substantially. In solution, the change in the dif-
fusion constant is determined by the local protein machine
concentration and the drift velocity is controlled by its local
spatial gradient. In contrast, in 2D systems such as lipid bilayers,
the effects are essentially nonlocal: The change in the diffusion
constant and the drift of passive particles at a given location are
determined by the distribution of active inclusions over the en-
tire membrane. Note, however, that only relatively small mem-
branes with micrometer sizes were considered here. In general,
diffusion in biomembranes should be anisotropic, reflecting the
asymmetry of protein distribution and the membrane shape.
Our description of how active molecular machines, through

hydrodynamic interactions, influence the dynamics of passive
particles was based on the equations of continuum hydrody-
namics. One might question the use of such a continuum de-
scription for molecular systems. It is well established (38) that
hydrodynamic effects are observable on even very small scales of
tens of solvent particle diameters. They persist despite strong
fluctuations and their presence is signaled in the long-time tails
of velocity correlation functions or even in the transport prop-
erties of polymers. Our use of continuum equations is restricted
to rather long scales so that the main conclusions of our study
should be robust.
Sen and coworkers (39, 40) have shown that catalytically active

enzymes have larger diffusion coefficients than their inactive
counterparts in the absence of substrate. Recently, chemotaxis-
like drift of enzymes in the presence of substrate gradients has
been observed and used for sorting of the enzymes (41). Al-
though additional analysis of the experimental data is needed, it
may be that such observations can be explained by the effects
considered above. Furthermore, in vivo studies have revealed
that the diffusion of particles decreases in ATP-depleted bio-
logical cells (42). In addition, several studies have proposed
specific explanations for the importance of nonthermal random
motions in living cells, whose origin lies in the forces generated
by the uncorrelated activity of protein machines. (26, 42–44)
Such nonthermal fluctuations may also be a consequence of the
universal hydrodynamic effects, described here, that arise from
active conformational changes in molecular motors and other
protein machines powered by ATP.
Our analysis focused on general aspects of the phenomena and

is not intended to address the full complexity seen in biological
systems. Nevertheless, in accord with the above findings, our
results suggest a modified physical picture of kinetic processes in
the biological cell. When energy is supplied by ATP or other
substrates to active proteins in a cell, such as molecular motors,
other protein machines, or enzymes, they cyclically change their
shapes in the course of carrying out their various specific func-
tions. In addition to their functions, all such proteins act as os-
cillating active force dipoles and collectively create a fluctuating
hydrodynamic field over the entire cell or a biomembrane. This
nonequilibrium flow field can be maintained because a fraction of
the energy flux arriving with substrates is diverted through the
force-dipole activity to hydrodynamic flows in the cytoplasm. Such
fluctuating fields arise from nonequilibrium effects; therefore, in
contrast to thermal hydrodynamic fluctuations, the fluctuation-
dissipation theorem does not apply to them. Because these fluc-
tuating fields arise from nonthermal noise, it is possible that they
can be rectified and work or energy can be extracted from them.
Thus, active proteins in a cell not only execute their specific
functions but, collectively, they supply power in a distributed way
to the system. Such power, originating from substrate supply to
active proteins, spans the entire cell.
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