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Abstract.  A finite-time fluctuation theorem is proved for the diusion-
influenced surface reaction A � B in a domain with any geometry where the 
species A and B undergo diusive transport between the reservoir and the 
catalytic surface. A corresponding finite-time thermodynamic force or anity is 
associated with the symmetry of the fluctuation theorem. The time dependence 
of the anity and the reaction rates characterizing the stochastic process can 
be expressed analytically in terms of the solution of deterministic diusion 
equations with specific boundary conditions.
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1. Introduction

When driven out of equilibrium by thermodynamic forces or anities, systems com-
posed of atoms and molecules manifest macroscopic fluxes dissipating energy and pro-
ducing thermodynamic entropy [1–5]. In particular, for diusion-influenced surface 
reactions, reactant and product molecules diuse between the reservoir where they 
enter or exit the system and the catalytic surface where they undergo interconversion 
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[6]. On macroscopic scales, the standard description of such processes makes use of 
deterministic diusion equations with suitable boundary conditions on the concentra-
tion fields of the reacting species. However, on mesoscopic scales, molecular motion is 
erratic and reactive events occur at random on the catalytic surface, which requires a 
description in terms of stochastic processes. Many approaches have been proposed to 
describe natural random phenomena, especially for molecular and colloidal systems [7–
20]. In this context, time-reversal symmetry relations, known as fluctuation theorems 
[21–26], are satisfied by the fluctuations of the currents flowing across nonequilibrium 
systems. These theorems are formulated within the framework of large-deviation theory 
[27] since they concern the full counting statistics of the currents, including rare events 
that are exponentially suppressed in time. For systems in stationary states, fluctuation 
theorems are time-reversal symmetry relations holding in the long-time limit. This 
has been established, in particular, for systems sustaining reactions or transport by 
diusion [28–36].

However, it has been shown in [37] that such time-reversal symmetry relations may 
also hold over finite time intervals for certain reactions taking place in systems with-
out spatial extension. In these systems, a thermodynamic force or anity can thus be 
defined at every time as a consequence of the finite-time symmetry.

Here, our purpose is to show that such a finite-time fluctuation theorem also 
holds in spatially extended systems where a surface reaction is influenced by the 
diusion of reactants and products from and to the reservoir. The problem is form-
ulated within the theory of stochastic partial dierential equations in terms of 
stochastic diusion equations coupled by stochastic boundary conditions for the 
reaction A � B at the catalytic surface. In this framework, a finite-time fluctuation 
theorem is established for the probability distribution that a certain number of reac-
tive events have occurred during some finite time interval. The theorem is proved 
by spatial discretization into small cells, leading to a Markov jump process ruling 
the time evolution of the numbers of molecules inside the cells. Using the linear-
ity between the reaction rate and the molecular concentrations, the master equa-
tion of this Markov jump process can be exactly solved using the generating function 
method [18], which provides the analytical expression for the cumulant generating 
function at every time. Returning to the continuum description, the cumulant gener-
ating function is obtained in terms of finite-time rates given by solving deterministic 
diusion equations with specific boundary conditions. The large-deviation properties 
of the spatially extended stochastic process can thus be found by solving determin-
istic partial dierential equations.

The paper is organized as follows. The main result is presented in section 2 where 
the finite-time fluctuation theorem is stated for the probability distribution of the 
number of reactive events and the associated cumulant generating function. In this 
section, the finite-time rates and the corresponding anity are expressed in terms of 
the solution of deterministic diusion equations with the specific boundary conditions, 
and connection is made to the thermodynamic entropy production. The proof of the 
finite-time fluctuation theorem is carried out in section 3. Section 4 gives concluding 
remarks and perspectives.

https://doi.org/10.1088/1742-5468/aad7c2
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2. The main results

2.1. Stochastic partial dierential equations for the diusion-influenced surface reaction

Let us consider a diusive medium of dimension d and volume V , extending between 
three surfaces ∂V = Scat ∪ Sinert ∪ Sres. Scat is a catalytic surface where the reaction 
A � B takes place. Sinert is an inert surface where the species A and B are reflected. Sres 
is a surface in contact with a reservoir for the species A and B. These species undergo 
diusion in the volume V  so that their concentrations, cA and cB, obey the stochastic 
diusion equations,

∂tcA +∇∇∇ · jA = 0 , jA = −DA∇∇∇cA + ηηηA , (1)

∂tcB +∇∇∇ · jB = 0 , jB = −DB∇∇∇cB + ηηηB , (2)
expressed in terms of Gaussian noise fields such that

〈ηηηk(r, t)〉 = 0 , 〈ηηηk(r, t)⊗ ηηηk′(r
′, t′)〉 = 2Dk ck(r, t) δkk′ δ(r− r′) δ(t− t′)1

 
(3)

for k, k′ = A,B, where Dk are positive diusion coecients and 1 is the d× d identity 
matrix. The boundary conditions are given by

if r ∈ Scat : DA ∂⊥cA(r, t) = −DB ∂⊥cB(r, t) = κ+cA(r, t)− κ−cB(r, t) + ξ(r, t) , (4)

if r ∈ Sinert : ∂⊥cA(r, t) = 0 , ∂⊥cB(r, t) = 0 , (5)

if r ∈ Sres : cA(r, t) = c̄A , cB(r, t) = c̄B , (6)
where ∂⊥ = 1⊥ · ∇∇∇ is the gradient in the direction of the unit vector 1⊥ normal to the 
surface and oriented towards the interior of the volume V , and κ± are the positive rate 
constants of the surface reactions. These rate constants have the SI units of meter per 
second. c̄A and c̄B denote the given concentrations at the reservoir. The Gaussian noise 
field due to the surface reaction is characterized by

〈ξ(r, t)〉 = 0 , δs(r) 〈ξ(r, t) ξ(r′, t′)〉 δs(r′) = (κ+cA + κ−cB) δ
s(r) δ(r− r′) δ(t− t′) ,

 (7)
in terms of surface delta distributions δs(r), nonvanishing if r ∈ Scat [38].

2.2. The finite-time fluctuation theorem

Let the random variable n denotes the number of reactive events A → B that have 
occurred during the time interval [0, t], if the system is in a steady state with given 
concentrations c̄A and c̄B at the reservoir. The probability P (n, t) that n reactive events 
have occurred is equal to

P (n, t) = e
−t

(
W

(+)
t +W

(−)
t

) (
W

(+)
t

W
(−)
t

)n/2

In

(
2t

√
W

(+)
t W

(−)
t

)
, (8)

where W
(±)
t  are two finite-time rates explicitly given below and In(u) is the modified 

regular Bessel function defined in section 9.6 of [39]. Since In(u) = I−n(u), this prob-
ability distribution obeys the finite-time fluctuation theorem

https://doi.org/10.1088/1742-5468/aad7c2
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P (n, t)

P (−n, t)
= exp(At n) (9)

holding at every time with the finite-time anity defined as

At = ln
W

(+)
t

W
(−)
t

. (10)

The finite-time rates have the explicit forms

W
(+)
t = Σκ+c̄A +

1

t
Ψ(t) , (11)

W
(−)
t = Σκ−c̄B +

1

t
Ψ(t) , (12)

with

Ψ(t) = �2κ+κ−

[
c̄B
D2

A

ΥA(t) +
c̄A
D2

B

ΥB(t)

]
. (13)

The first terms on the right sides of equations (11) and (12) are proportional to the 
eective catalytic surface area

Σ =

∫

cat

dS (1− φ) , (14)

φ being the solution of the following stationary problem,

∇2φ = 0 , (15)

(∂⊥φ)cat = �−1(φ− 1)cat , (16)

(∂⊥φ)inert = 0 , (17)

(φ)res = 0 , (18)
where

� ≡
(
κ+

DA

+
κ−

DB

)−1

 (19)

is the characteristic length of the diusion-influenced surface reaction. In equation (13), 
Ψ(t) is given in terms of the time-dependent functions

Υk(t) =

∫
dV φ(r) [φ(r)− fk(r, t)] , (20)

where fk is the solution of the following time-dependent problem,

∂tfk = Dk∇2fk , (21)

https://doi.org/10.1088/1742-5468/aad7c2
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(∂⊥fk)cat =

(
κ+

DA

fA +
κ−

DB

fB

)

cat

, (22)

(∂⊥fk)inert = 0 , (23)

( fk)res = 0 , (24)

( fk)t=0 = φ , (25)
for k = A,B.

If the catalytic and inert surfaces Sinert ∪ Scat, as well as the domain V , are compact 
the constant Σ and the functions Υk(t) are bounded, so that the rates (11) and (12) 
converge in the long-time limit t → ∞ to their asymptotic values

W (+)
∞ = Σκ+c̄A , (26)

W (−)
∞ = Σκ−c̄B , (27)

whereupon the anity (10) converges to the finite value

A∞ = ln
W

(+)
∞

W
(−)
∞

= ln
κ+c̄A
κ−c̄B

. (28)

We expect the same behavior to hold if the catalytic and inert surfaces Sinert ∪ Scat 
are compact and delimit a finite volume, while the domain V  is non-compact, but 
three-dimensional.

2.3. Formulation in terms of the cumulant generating function

Introducing the cumulant generating function

Qt(λ) ≡ −1

t
ln

+∞∑
n=−∞

e−λnP (n, t) (29)

with the counting parameter λ, we have the result that

Qt(λ) = W
(+)
t

(
1− e−λ

)
+W

(−)
t

(
1− eλ

)
, (30)

where the finite-time rates W
(±)
t  were defined in equations (11) and (12). As a conse-

quence of the finite-time fluctuation theorem (9), the following symmetry relation is 
satisfied at every time,

Qt(λ) = Qt(At − λ), (31)
in terms of the finite-time anity (10). The mean current and the diusivity at time t 
are thus given by

Jt =
∂Qt

∂λ
(0) = W

(+)
t −W

(−)
t , (32)

https://doi.org/10.1088/1742-5468/aad7c2
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Dt = −1

2

∂2Qt

∂λ2
(0) =

1

2

(
W

(+)
t +W

(−)
t

)
. (33)

We notice that the mean current (32) does not depend on time because of the forms of 
the expressions (11) and (12) for the rates, implying

Jt = J = W (+)
∞ −W (−)

∞ = Σ(κ+c̄A − κ−c̄B) . (34)

Moreover, the stationary solutions for the species concentrations are given by

〈ck〉st = c̄k +
νk�

Dk

(κ+c̄A − κ−c̄B)φ (k = A,B), (35)

where φ is the solution of the problem (15)–(18), while νA = −1 and νB = +1 are the 
stoichiometric coecients of the reaction A → B. The equilibrium thermodynamic state 
occurs when the chemical equilibrium condition κ+c̄A = κ−c̄B is satisfied, in which case 
the state is uniform. The stationary solution (35) determines the cumulant generating 
function at early time according to

Qt(λ) =

∫

cat

dS
[
κ+〈cA〉st

(
1− e−λ

)
+ κ−〈cB〉st

(
1− eλ

)]
+O(t), (36)

up to corrections that are linear in time.
The finite-time fluctuation theorem (9) and the associated results, which are stated 

above, are proved in section 3 by extending the result obtained in [37].

2.4. Thermodynamic entropy production

Here, we show the equivalence between the expressions for the entropy production 
given by macroscopic nonequilibrium thermodynamics and the fluctuation theorem 
under stationary conditions. On the one hand, according to nonequilibrium thermo-
dynamics [2–3], the entropy production is equal to the sum of the contributions from 
diusion in the domain V  and reaction at the catalytic surface Scat,

1

kB

diS

dt
=

∫

V

dV

[
DA

(∇∇∇a)2

a
+DB

(∇∇∇b)2

b

]
+

∫

cat

dS (κ+a− κ−b) ln
κ+a

κ−b
� 0

 (37)
with the notations a = 〈cA〉st and b = 〈cB〉st. Now, we have that

∫

V

dV
(∇∇∇a)2

a
=

∫

V

dV ∇∇∇a · ∇∇∇ (lnκ+a) =

∫

∂V

dS · (∇∇∇a) lnκ+a , (38)

by using the divergence theorem and the fact that ∇2a = 0 in a steady state. A simi-
lar expression is obtained for the other concentration field b. The boundary ∂V  of the 
domain V  is composed of the catalytic, inert, and reservoir surface components, where 
dS = −1⊥dS if 1⊥ is the unit vector normal to the surface and oriented towards the 
interior of the domain. Using the boundary conditions (4)–(6), we find that the contrib-
utions of the catalytic and inert components of the surface cancel and there remain the 
contributions of the surface component in contact with the reservoir,

1

kB

diS

dt
=

∫

res

dS (−DA ∂⊥a) lnκ+a+

∫

res

dS (−DB ∂⊥b) lnκ−b . (39)

https://doi.org/10.1088/1742-5468/aad7c2
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Replacing the concentration fields at the reservoir by their expression (35) in terms of 
the field φ obeying equations (15)–(18), and using the fact that

0 =

∫

V

dV ∇2φ =

∫

∂V

dS · ∇∇∇φ =
1

�
Σ−

∫

res

dS ∂⊥φ , (40)

where Σ is defined in equation (14), we find that the entropy production is given by

1

kB

diS

dt
= Σ(κ+c̄A − κ−c̄B) ln

κ+c̄A
κ−c̄B

= JA∞ � 0 , (41)

which is determined by the reservoir values of the concentrations. Therefore, the entropy 
production is equal to the mean current (34) multiplied by the asymptotic value (28) 
of the anity, as expected.

On the other hand, the thermodynamic entropy production can be expressed as

1

kB

diS

dt
= lim

t→∞

1

t

+∞∑
n=−∞

P (n, t) ln
P (n, t)

P (−n, t)
= lim

t→∞
JAt = JA∞ � 0 (42)

in terms of the probability distribution (8). Since this latter obeys the fluctuation theo-
rem (9), we recover the macroscopic value (41) of the entropy production because the 
mean current in the steady state is given by J = 〈n(t)〉st/t according to equation (34). 
The fluctuation theorem is thus consistent with macroscopic nonequilibrium thermo-
dynamics for the diusion-influenced surface reaction. In addition, the non-negative 
quantity JAt � 0 in equation (42) can be interpreted as a finite-time entropy produc-
tion in the measurement of the surface reaction using the full counting statistics of the 
reactive events.

3. Proof of the finite-time fluctuation theorem

The proof of the finite-time fluctuation theorem (9) and the associated results stated in 
sections 2.2 and 2.3 is carried out by discretizing space into small cells and using the 
master equation of the stochastic process for the random numbers of molecules in the 
cells, which, in the continuum limit, is equivalent to the stochastic process ruled by 
equations (1)–(7). We solve this master equation using a method based on the moment 
generating function for the probability distribution of the molecular numbers and the 
number of reactive events occurring during some time interval [18, 37]. Since the 
kinetic equations for the mean values of the molecular numbers are linear, the steady 
state of the reaction-diusion process is described by a Poisson distribution and the 
partial dierential equation ruling the moment generating function admits an exact 
solution, yielding an expression for the cumulant generating function of the number 
of reactive events occurring during some time interval. Its dependence on the count-
ing parameter is obtained by using projectors onto the subspaces corresponding to the 
molecules of species A and B, and we find that the cumulant generating function has 
the form (30). As a consequence, the probability distribution of the random number of 
reactive events is given by equation (8), implying the finite-time fluctuation theorem 

https://doi.org/10.1088/1742-5468/aad7c2
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(9). In this discrete-space formulation, matricial expressions are obtained for the time-
dependent rates.

Returning to the continuum limit, we first show that we recover the macroscopic 
diusion-reaction equations for the mean concentration fields. Next, we deduce the 
analytical expressions for the time-dependent rates by transforming the matricial 
equations obtained by space discretization into partial dierential equations and their 
boundary conditions. This is performed by summing the matricial equations with arbi-
trary conjugate vectors in order to obtain expressions involving integrals in the contin-
uum limit. This method allows us to obtain the partial dierential equations and their 
boundary conditions by considering variations with respect to the space-dependent 
conjugate functions corresponding in the continuum limit to the aforementioned arbi-
trary conjugate vectors. In this way, the time-dependent rates are shown to be given 
by the solutions of the problems (15)–(18) and (21)–(25), finally yielding their analytical 
expressions (11 and (12) with the time-dependent function (13) and the constant (14). 
Also, expression (36) is obtained for the behavior of the cumulant generating function 
at early time.

3.1. Space discretization

3.1.1. Master equation. In order to prove the theorem, the d-dimensional volume V  
is discretized into small cubic cells {Cr} of side ∆r, volume ∆rd, and centered on the 
nodes r of a d-dimensional cubic lattice. Every cell contains a certain number of mol-
ecules of each species:

Ar =

∫

Cr
cA(r

′) dr′ and Br =

∫

Cr
cB(r

′) dr′ . (43)

Some of the cells are in contact with the catalytic surface, the inert surface, and the 
reservoir. Every cubic cell has 2d faces, which correspond to the 2d vectors

∆r ∈ {(±∆r, 0, . . . , 0), (0,±∆r, . . . , 0), . . . , (0, 0, . . . ,±∆r)} , (44)
joining the center of the cell to those of the next-neighboring cells. The cells in the bulk 
of the volume have all their faces in contact with next-neighboring cells. However, the 
other cells have some faces in contact with the catalytic surface, the inert surface, or 
the reservoir. Therefore, for every cell, the set of 2d vectors is subdivided as

{∆r} = {∆r}diff ∪ {∆r}cat ∪ {∆r}inert ∪ {∆r}res (45)
into faces, through which particles can be exchanged by diusion with next-neighbor-
ing cells or the reservoir, reflected on the inert surface, or transformed by reaction on 
the catalytic surface.

The molecular numbers change in time according to the following processes:

diffusion : Ar

kA
�
kA

Ar+∆r if ∆r ∈ {∆r}diff , (46)

Br

kB
�
kB

Br+∆r if ∆r ∈ {∆r}diff ; (47)

https://doi.org/10.1088/1742-5468/aad7c2
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reaction : Ar

k+
�
k−

Br if ∆r ∈ {∆r}cat ; (48)

exchanges with the reservoir : Ar

kA
�
kA

Ā if ∆r ∈ {∆r}res , (49)

Br

kB
�
kB

B̄ if ∆r ∈ {∆r}res ; (50)

and there is no change at the faces in contact with the inert surface. The rate constants 
are given by

kA =
DA

∆r2
, kB =

DB

∆r2
, and k± =

κ±

∆r
 (51)

in terms of the diusion coecients and surface rate constants of the continuous-space 
formulation. These rate constants are positive and have the SI units of (second)−1.

We consider the time evolution of the probability

P = P (n, {Ar}, {Br}, t)
 (52)

that the cells contain given molecular numbers and that n reactive events have occurred 
during the time interval [0, t]. This probability is ruled by the following master equation,

dP

dt
= L̂P =

∑
r

{ ∑
{∆r}diff

kA

(
e−∂Ar+∆re+∂Ar − 1

)
ArP

+
∑

{∆r}diff

kB

(
e−∂Br+∆re+∂Br − 1

)
BrP

+
∑

{∆r}cat

k+
(
e−∂ne+∂Are−∂Br − 1

)
ArP

+
∑

{∆r}cat

k−
(
e+∂ne−∂Are+∂Br − 1

)
BrP

+
∑

{∆r}res

[
kAĀ

(
e−∂Ar − 1

)
P + kA

(
e+∂Ar − 1

)
ArP

]

+
∑

{∆r}res

[
kBB̄

(
e−∂Br − 1

)
P + kB

(
e+∂Br − 1

)
BrP

]}
,

 

(53)

where Ā = c̄A∆rd and B̄ = c̄B∆rd.

3.1.2. Kinetic equations for the mean numbers. As a consequence, the time evolution 
of the mean numbers,

〈Ar〉 =
∑

n,{Ar},{Br}

ArP ,
 (54)

〈Br〉 =
∑

n,{Ar},{Br}

BrP ,
 (55)
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〈n〉 =
∑

n,{Ar},{Br}

nP ,
 (56)

is ruled by the following equations,

d

dt
〈Ar〉 =

∑
{∆r}diff

kA (〈Ar+∆r〉 − 〈Ar〉)−
∑

{∆r}cat

(k+〈Ar〉 − k−〈Br〉) +
∑

{∆r}res

kA
(
Ā− 〈Ar〉

)
, (57)

d

dt
〈Br〉 =

∑
{∆r}diff

kB (〈Br+∆r〉 − 〈Br〉) +
∑

{∆r}cat

(k+〈Ar〉 − k−〈Br〉) +
∑

{∆r}res

kB
(
B̄ − 〈Br〉

)
, (58)

d

dt
〈n〉 =

∑
r

∑
{∆r}cat

(k+〈Ar〉 − k−〈Br〉) . (59)

In equations (57) and (58), the sums over {∆r}cat and {∆r}res are possibly vanishing if 
the cell located at r is not in contact with the catalytic surface or the reservoir.

If the mean numbers are larger than unity, the fluctuations around the mean val-
ues become Gaussian. In this limit, the Markov jump process described by the master 
equation can be transformed into a diusive process described by a Fokker–Planck 
equation by expanding the raising and lowering operators up to second order in the 
partial derivatives [40]. In this way, we can obtain the stochastic partial dierential 
equations (1) and (2) with the boundary conditions (4)–(6) and the Gaussian white 
noises (3) and (7).

3.1.3. Equation for the moment generating function. In order to solve the master equa-
tion, we introduce with Gardiner [18] the moment generating function,

G (z, {xr}, {yr}, t) ≡
∑

n,{Ar},{Br}

zn
∏
r

xAr
r

∏
r

yBr
r P (n, {Ar}, {Br}, t) , (60)

where

z = e−λ (61)
and λ is the counting parameter. This generating function obeys the following first-
order partial dierential equation,

∂tG+
∑
r

{ ∑
{∆r}diff

[kA (xr − xr+∆r) ∂xrG+ kB (yr − yr+∆r) ∂yrG]

+
∑

{∆r}cat

[
k+ (xr − z yr) ∂xrG+ k−

(
yr − z−1 xr

)
∂yrG

]

+
∑

{∆r}res

[kA (xr − 1) ∂xrG+ kB (yr − 1) ∂yrG]

}

=
∑
r

∑
{∆r}res

[
kAĀ (xr − 1) + kBB̄ (yr − 1)

]
G .

 

(62)
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Setting

s ≡ ({xr}, {yr}) , (63)
equation (62) can be written as

∂tG+ (L · s+ f) · ∂sG = (g · s+ h)G , (64)
where

(L · s) ·χχχ ≡
∑
r

{ ∑
{∆r}diff

[kA (xr − xr+∆r)αr + kB (yr − yr+∆r) βr]

+
∑

{∆r}cat

[
k+ (xr − z yr)αr + k−

(
yr − z−1 xr

)
βr

]

+
∑

{∆r}res

(
kA xr αr + kB yr βr

)}
,

 

(65)

f ·χχχ ≡ −
∑
r

∑
{∆r}res

(
kA αr + kB βr

)
,

 (66)

g · s ≡
∑
r

∑
{∆r}res

(
kAĀ xr + kBB̄ yr

)
,

 (67)

and

h ≡ −
∑
r

∑
{∆r}res

(
kAĀ+ kBB̄

)
,

 (68)

with the arbitrary vector

χχχ ≡ ({αr}, {βr}) . (69)

3.1.4. Solving the equation for the moment generating function. As a first-order partial 
dierential equation, equation (64) can be solved by the method of characteristics [18]. 
The equations for the characteristics are given by

ds

dt
= L · s+ f , (70)

dG

dt
= (g · s+ h)G , (71)

where the matrix L defined by equation (65) contains the rate constants and depends 
on z. Setting λ = 0 and thus z  =  1 in this matrix defines the matrix L0 such that the 
kinetic equations (57) and (58) together read

dΓΓΓ

dt
= LT

0 ·
(
ΓΓΓ0 −ΓΓΓ

)
, (72)
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where

ΓΓΓ = ({〈Ar〉}, {〈Br〉}) (73)
are the mean molecular numbers. The stationary values of these molecular numbers 
are given by

ΓΓΓ0 = L−1T
0 · g (74)

in terms of the vector g defined by equation (67) and containing the elements with the 
boundary values Ā and B̄. Moreover, the vector f  can be written as

f = −L0 · 1 , (75)
which follows by comparing its definition (66) with equation (65) after setting s = 1 and 
z  =  1. Similarly, the coecient (68) is given by

h = −g · 1 . (76)
The solution of equation (70) gives the characteristics

s = eLt ·
[
s0 + L−1 ·

(
I− e−Lt

)
· f
]
, (77)

while the solution of equation (71) is given by

G = G0 exp
[
g · L−1 ·

(
I− e−Lt

)
·
(
s+ L−1 · f

)
+
(
h− g · L−1 · f

)
t
]
. (78)

The initial condition is the Poisson distribution describing the steady state of equa-
tion (72) and the counter reset to zero n  =  0, so that

G0(z, s0) = eΓΓΓ0·(s0−1)
 (79)

with the vector (74) of the stationary mean values of the molecular numbers. The solu-
tion of the partial dierential equation (62) is thus equal to

G(z, s, t) = exp
[
g · L−1 ·

(
I− e−Lt

)
·
(
s+ L−1 · f

)
+
(
h− g · L−1 · f

)
t
]

× exp
{
ΓΓΓ0 ·

[
e−Lt · s− L−1 ·

(
I− e−Lt

)
· f − 1

]}
.

 

(80)

3.1.5. Obtaining the cumulant generating function. We notice that the moment gener-
ating function of the number n of reactive events is given by

G(z, 1, t) =
〈
e−λn

〉
t (81)

because of equation (61). The cumulant generating function at time t is thus defined as

Qt(λ) ≡ −1

t
lnG

(
z = e−λ, 1, t

)
, (82)

so that we find

Qt(λ) = g ·
(
1 + L−1 · f

)
− 1

t
g ·

(
L−1 − L−1

0

)
·
(
I− e−Lt

)
·
(
1 + L−1 · f

)
, (83)

which can be written in the form

https://doi.org/10.1088/1742-5468/aad7c2
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Qt(λ) = Q∞(λ)− 1

t
Ξt(λ) , (84)

where

Q∞(λ) = g ·
(
1 + L−1 · f

)
 (85)

and

Ξt(λ) = g ·
(
L−1 − L−1

0

)
·
(
I− e−Lt

)
·
(
1 + L−1 · f

)
. (86)

We notice that equation (86) converges exponentially towards a constant in the 
limit t → ∞ if the matrix L is supposed to be positive, which can be satisfied for some 
values of z (or λ) since the rate constants (51) are positive.

3.1.6. The dependence of the cumulant generating function on the counting param eter.  
A further observation is that

L = M · L0 ·M−1
 (87)

with

M ≡ z PA + PB (88)
expressed in terms of the projection matrices

PA =




1 · · · 0 0 · · · 0
... . . . ...

... . . . ...
0 · · · 1 0 · · · 0

0 · · · 0 0 · · · 0
... . . . ...

... . . . ...
0 · · · 0 0 · · · 0




and PB =




0 · · · 0 0 · · · 0
... . . . ...

... . . . ...
0 · · · 0 0 · · · 0

0 · · · 0 1 · · · 0
... . . . ...

... . . . ...
0 · · · 0 0 · · · 1




,

 

(89)

respectively onto the variables of species A and those of species B. These projection 
matrices satisfy the condition PA + PB = I. We thus have

M = I+ (z − 1)PA = I+
(
e−λ − 1

)
PA , (90)

M−1 = I+ (z−1 − 1)PA = I+
(
eλ − 1

)
PA . (91)

Therefore, the cumulant generating function can be written as

Qt(λ) = g ·
[
I−M · L−1

0 ·M−1 · L0

− 1

t

(
M · L−1

0 − L−1
0 ·M

)
·
(
I− e−L0t

)
·
(
M−1 − L−1

0 ·M−1 · L0

) ]
· 1 .

 

(92)

As a consequence of equations (90) and (91), the previous expression becomes
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Qt(λ) = g ·
[
(1− z)PA +

(
1− z−1

)
L−1
0 · PA · L0 −

(
2− z − z−1

)
PA · L−1

0 · PA · L0

+
1

t

(
2− z − z−1

) (
L−1
0 · PA − PA · L−1

0

)
·
(
I− e−L0t

)
·
(
PA − L−1

0 · PA · L0

)]
· 1 .

 (93)

Because of equation (74) and since PB = I− PA, the cumulant generating function has 
the form (30) with the rates

W
(+)
t = ΓΓΓ0 · L0 · PA · L−1

0 · PB · L0 · 1 +
1

t
Ψ(t) , (94)

W
(−)
t = ΓΓΓ0 · L0 · PB · L−1

0 · PA · L0 · 1 +
1

t
Ψ(t) , (95)

where

Ψ(t) ≡ ΓΓΓ0 ·
(
PA − L0 · PA · L−1

0

)
·
(
I− e−L0t

)
·
(
PA − L−1

0 · PA · L0

)
· 1 . (96)

We have thus proved that the cumulant generating function has the form (30) and we 
have obtained explicit expressions for the rates (11) and (12) and the function (13) for 
a discretized space.

3.1.7. Deducing the probability distribution and its finite-time symmetry. According to 
equation (82) and the previous results, the moment generating function has the follow-
ing expression,

G(z, 1, t) =
+∞∑

n=−∞

znP (n, t) = etW
(+)
t (z−1)+tW

(−)
t (z−1−1), (97)

with the probability distribution

P (n, t) ≡
∑

{Ar},{Br}

P (n, {Ar}, {Br}, t) (98)

for the number n of reactive events during the time interval [0, t]. As shown in [37], we 
can use the generating series of Bessel functions given by equation (9.6.33) of [39],

eu(q+q−1)/2 =
+∞∑

n=−∞

qn In(u) for q �= 0 . (99)

Taking

u = 2t

√
W

(+)
t W

(−)
t , (100)

q = z

√√√√W
(+)
t

W
(−)
t

, (101)

we get equation (8) in section 2, hence the finite-time fluctuation theorem (9). Q.E.D.
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3.2. The continuum limit

3.2.1. The mean concentrations. In the continuum limit, we should recover the noise-
less diusion equations (1) and (2) with the noiseless boundary conditions (4)–(6) for 
the mean concentrations 〈cA〉 and 〈cB〉. To obtain this result, we introduce the notations

ar ≡ 〈Ar〉/∆rd , br ≡ 〈Br〉/∆rd , (102)

where ∆V = ∆rd is the volume element, and we consider equation (57) for a cell in the 
bulk of the domain V , in which case there is diusion with all the 2d next-neighboring 
cells and {∆r} = {∆r}diff. Consequently, equation (57) gives

dar
dt

=
DA

∆r2

∑
{∆r}

(ar+∆r − ar) , (103)

which is the discrete version of the diusion equation

∂t〈cA〉 = DA∇2〈cA〉 (104)

for the mean concentration of species A, 〈cA(r, t)〉 = lim∆r→0 ar(t) = lim∆r→0〈Ar(t)〉/∆rd. 
Similarly, we get

∂t〈cB〉 = DB∇2〈cB〉 . (105)

Next, we consider equation (57) for a cell in contact with the catalyst by the facets 
{∆r}cat. Therefore, {∆r}diff = {∆r} \ {∆r}cat and we find

dar
dt

=
DA

∆r2

∑
{∆r}

(ar+∆r − ar)−
DA

∆r2

∑
{∆r}cat

(ar+∆r − ar)−
1

∆r

∑
{∆r}cat

(κ+ar − κ−br) . (106)

As before, the first term gives the discrete version of the Laplacian, while the second 
can be approximated using

ar+∆r � ar +∆r · ∇∇∇ar = ar −∆r 1⊥ · ∇∇∇ar, (107)
where, as noted earlier, 1⊥ is the unit vector normal to the surface and oriented towards 
the interior of the volume V . For this cell, we thus have

∂tar � DA ∇2ar +
1

∆r

∑
{∆r}cat

[DA 1⊥ · ∇∇∇a− (κ+a− κ−b)]r , (108)

where the derivative dar/dt becomes the partial derivative ∂tar. In the limit ∆r → 0, 
consistency is established if every diverging term in the right side is vanishing, which 
yields the boundary condition

DA ∂⊥〈cA〉 = κ+〈cA〉 − κ−〈cB〉 if r ∈ Scat , (109)
for the mean concentrations, thus recovering equation (4). Similarly, equation (58) gives

−DB ∂⊥〈cB〉 = κ+〈cA〉 − κ−〈cB〉 if r ∈ Scat . (110)
The boundary conditions on an inert surface are recovered by setting the rate constants 
equal to zero, κ± = 0.

If equation (57) is considered for a cell in contact with the reservoir by the facets 
{∆r}res, we have that {∆r}diff = {∆r} \ {∆r}res and
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dar
dt

=
DA

∆r2

∑
{∆r}

(ar+∆r − ar)−
DA

∆r2

∑
{∆r}res

(ar+∆r − ar) +
DA

∆r2

∑
{∆r}res

(c̄A − ar) ,

 

(111)

because c̄A = Ā/∆rd. Since the first term of equation (111) can also be approximated in 
terms of the Laplacian and the next terms can be grouped together, we obtain

∂tar � DA ∇2ar +
DA

∆r2

∑
{∆r}res

(c̄A − ar+∆r) . (112)

Again, the consistency is established in the limit ∆r → 0 if every diverging term in the 
right side is vanishing, whereupon we find the boundary conditions ar+∆r = c̄A, if r is 
the center of a cell next to the reservoir and ∆r ∈ {∆r}res. Consequently, we recover 
the boundary conditions

〈cA〉 = c̄A and 〈cB〉 = c̄B if r ∈ Sres , (113)
which are given by equation (6) for the mean concentrations.

In addition, equation (59) becomes

d

dt
〈n〉 =

∫

cat

dS (κ+〈cA〉 − κ−〈cB〉) (114)

in the limit ∆r → 0, because the rates are given by equation (51), the surface element 
is ∆S = ∆rd−1, and the sum over the cells having some facets {∆r}cat in common with 
the catalytic surface converges to a surface integral over the catalyst.

The continuum description is thus recovered for the mean concentrations from the 
stochastic process introduced by spatial discretization.

3.2.2. The matrix L0 in the continuum limit. In order to interpret more precisely 
the matrix L0 in the continuum limit, we take the scalar product of the kinetic equa-
tion (72) with the vector (63) and use equation (74) to get

s · dΓ
ΓΓ

dt
= −ΓΓΓ · L0 · s+ g · s . (115)

With the notation ΓΓΓ =
(
{ar∆rd}, {br∆rd}

)
, equation (65) for z  =  1, and equation (67), 

we obtain

s · dΓ
ΓΓ

dt
=

∑
r

∆rd
(
xr

dar
dt

+ yr
dbr
dt

)

= −
∑
r

∆rd
{ ∑

{∆r}diff

[kA (xr − xr+∆r) ar + kB (yr − yr+∆r) br]

+
∑

{∆r}cat

(xr − yr) (k+ar − k−br)

+
∑

{∆r}res

[kAxr (ar − c̄A) + kB yr (br − c̄B)]

}
.

 

(116)
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Using the identity∑
r

∑
{∆r}diff

xr+∆r ar =
∑
r

∑
{∆r}diff

xr ar+∆r ,
 (117)

a similar relation for yr+∆r and br, as well as {∆r}diff = {∆r} \ {∆r}cat \ {∆r}res,  
equation (116) becomes

s · dΓ
ΓΓ

dt
=

∑
r

∆rd
(
xr

dar
dt

+ yr
dbr
dt

)

=
∑
r

∆rd
∑
{∆r}

[kA xr (ar+∆r − ar) + kB yr (br+∆r − br)]

−
∑
r

∆rd
∑

{∆r}cat

[kA xr (ar+∆r − ar) + kB yr (br+∆r − br) + (xr − yr) (k+ar − k−br)]

−
∑
r

∆rd
∑

{∆r}res

[kAxr (ar+∆r − c̄A) + kB yr (br+∆r − c̄B)] .

 

(118)

Substituting the expressions (51) for the rates, and using the approximations (107), we 
have that

∑
r

∆rd
(
xr

dar
dt

+ yr
dbr
dt

)

�
∑
r

∆rd
(
DA xr ∇2ar +DB yr ∇2br

)

+
∑
r

∆rd−1
∑

{∆r}cat

[DA xr 1⊥ · ∇∇∇ar +DB yr 1⊥ · ∇∇∇br − (xr − yr) (κ+ar − κ−br)]

−
∑
r

∆rd−2
∑

{∆r}res

[DAxr (ar+∆r − c̄A) +DB yr (br+∆r − c̄B)] .

 

(119)

In the limit ∆r → 0, the last terms at the boundary with the reservoir are vanishing 
because of the boundary conditions ar+∆r = c̄A and br+∆r = c̄B and we find
∫

dV (x ∂ta+ y ∂tb) =

∫
dV

(
xDA ∇2a+ y DB ∇2b

)

+

∫

cat

dS [x (DA ∂⊥a− κ+a+ κ−b) + y (DB ∂⊥b+ κ+a− κ−b)] .
 

(120)

We notice that the diusion equations and the reactive boundary conditions are recov-
ered by considering variations of this equation with respect to x and y. Therefore, the 
matrix L0 can be interpreted as the evolution operator of the diusion equations com-
bined with the boundary conditions of the problem. The result is consistent with the 
fact that equation (72) corresponds to the macroscopic diusion equations.

3.2.3. The asymptotic cumulant generating function. Here, we calculate the asymp-
totic value (85) of the cumulant generating function (83). Denoting γγγ the solution of 
the problem

LT · γγγ = g , (121)
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and using equation (75), the asymptotic cumulant generating function can be expressed 
as

Q∞(λ) = γγγ · (L− L0) · 1 . (122)
With the same method as before and replacing in equation (65) the vector χχχ by

γγγ = ({ãr∆rd}, {b̃r∆rd}) , (123)

we get

γγγ · L · s � −
∫

dV
(
xDA ∇2ã+ y DB ∇2b̃

)

−
∫

cat

dS
[
x
(
DA ∂⊥ã− κ+ã+ z−1κ−b̃

)
+ y

(
DB ∂⊥b̃+ zκ+ã− κ−b̃

)]

+
1

∆r

∫

res

dS
(
xDA ã+ y DB b̃

)
,

 (124)
while equation (67) becomes

g · s � 1

∆r

∫

res

dS (xDA c̄A + y DB c̄B) . (125)

Since equation (121) implies the equality γγγ · L · s = g · s for any vector s, its solution 

can be expressed in terms of the fields ã(r) ≡ lim∆r→0 ãr and b̃(r) ≡ lim∆r→0 b̃r that are 
given by solving

∇2ã = 0 , (126)

∇2b̃ = 0 , (127)

DA (∂⊥ã)cat =
(
κ+ã− z−1κ−b̃

)
cat

, (128)

DB

(
∂⊥b̃

)
cat

= −
(
z κ+ã− κ−b̃

)
cat

, (129)

(ã)res = c̄A , (130)
(
b̃
)
res

= c̄B . (131)

Setting

ã(r) = c̄A − �

DA

(
κ+c̄A − z−1κ−c̄B

)
φ(r) , (132)

b̃(r) = c̄B +
�

DB

(z κ+c̄A − κ−c̄B)φ(r) , (133)

we find that the field φ(r) is the solution of equations (15)–(18).
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In order to calculate (122), we set s = 1 in equation (124) and substract the same 
expression with z  =  1. Since z = e−λ, we obtain

Q∞(λ) =

∫

cat

dS
[
κ+ã

(
1− e−λ

)
+ κ−b̃

(
1− eλ

)]
 (134)

in terms of the solution of equations (126)–(131). Substituting equations (132) and (133) 
therein yields

Q∞(λ) =

∫

cat

dS (1− φ)
[
κ+c̄A

(
1− e−λ

)
+ κ−c̄B

(
1− eλ

)]
.

 (135)
According to equation (14), we thus find

Q∞(λ) = W (+)
∞

(
1− e−λ

)
+W (−)

∞
(
1− eλ

)
,

 
(136)

proving that the asymptotic values of the rates (11) and (12) are indeed given by equa-
tions (26) and (27).

3.2.4. The time-dependent contribution to the cumulant generating function. Here, we 
calculate the time-dependent function (86), which appears in the last term of the cumu-
lant generating function (83). Using equation (87), the function (86) becomes

Ξt(λ) = g ·
(
L−1 − L−1

0

)
·M ·

(
I− e−L0t

)
·M−1 ·

(
1 + L−1 · f

)
. (137)

On the one hand, the vector g can be expressed in terms of the stationary state 
ΓΓΓ0 according to equation (74), as well as in terms of the vector γγγ given above by 
equation (121),

g = LT
0 ·ΓΓΓ0 = LT · γγγ . (138)

On the other hand, the vector f  can be written as in equation (75). Consequently, the 
function (137) is of the form

Ξt(λ) = ηηη ·
(
I− e−L0t

)
· ξξξ (139)

with

ηηη ≡ (γγγ −ΓΓΓ0) ·M (140)
and

ξξξ ≡ L−1
0 ·M−1 · (L− L0) · 1 . (141)

Using equations (90) and (91), we notice that

ηηη = (1− z)ΓΓΓ0 ·
(
PA − L0 · PA · L−1

0

)
, (142)

ξξξ = (z−1 − 1)
(
PA − L−1

0 · PA · L0

)
· 1 , (143)

showing that we should expect the factorizations of 1  −  z and z−1  −  1, respectively. In 
order to establish this factorization and obtain the analytical expressions for (140) and 
(141) in the continuum limit, we proceed as follows.
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Multiplying equation (140) by an arbitrary vector s = ({xr}, {yr}) and using the 
notations (123),

ηηη =
(
{ur∆rd}, {vr∆rd}

)
, ΓΓΓ0 = ({〈Ar〉st}, {〈Br〉st}) , (144)

as well as the definition (88), we have that

ηηη · s =
∑
r

∆rd (ur xr + vr yr) =
∑
r

[
z
(
ãr∆rd − 〈Ar〉st

)
xr +

(
b̃r∆rd − 〈Br〉st

)
yr

]
. (145)

Since

〈Ar〉st = 〈cA(r)〉st ∆rd and 〈Br〉st = 〈cB(r)〉st ∆rd . (146)

Equations (35), (132) and (133) yield

ur = (1− z) �κ−
c̄B
DA

φ(r) , (147)

vr = − (1− z) �κ+
c̄A
DB

φ(r) , (148)

confirming the factorization expected by equation (142) and expressing (140) in terms 
of the solution φ(r) of the stationary problem (15)–(18).

Multiplying equation (141) by L0 and an arbitrary vector (69), we obtain the equation

χχχ · L0 · ξξξ = χχχ ·M−1 · (L− L0) · 1 (149)

that the vector ξξξ = ({x̃r}, {ỹr}) should satisfy. With the same method as before, we get

χχχ · L0 · ξξξ � − 1

∆rd

∫
dV

(
x̃ DA ∇2α + ỹ DB ∇2β

)

− 1

∆rd

∫

cat

dS [x̃ (DA ∂⊥α− κ+α + κ−β) + ỹ (DB ∂⊥β + κ+α− κ−β)]

+
1

∆rd+1

∫

res

dS (x̃ DA α + ỹ DB β) ,

 (150)
and

χχχ ·M−1 · (L− L0) · 1 � 1

∆rd

∫

cat

dS
(
z−1 − 1

)
(κ+α− κ−β) . (151)

At the leading order 1/∆rd+1, the equality (149) between (150) and (151) shows that 
the boundary conditions (x̃)res = (ỹ)res = 0 should be satisfied on the reservoir. Now, 
integrating by parts leads to∫

dV x̃∇2α =

∫
dV α∇2x̃+

∫
dS (α ∂⊥x̃− x̃ ∂⊥α) (152)

and a similar relation between ỹ and β. Accordingly, at the subleading order 1/∆rd, 
equation (149) becomes
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∫
dV

(
αDA ∇2x̃+ β DB ∇2ỹ

)

+

∫

cat

dS
{
α
[
DA ∂⊥x̃− κ+

(
x̃− ỹ + 1− z−1

)]
+ β

[
DB ∂⊥ỹ + κ−

(
x̃− ỹ + 1− z−1

)]}
= 0 .

 (153)
Taking variations with respect to α and β, we find that the fields x̃ and ỹ are the solu-
tions of the following problem:

∇2x̃ = 0 , (154)

∇2ỹ = 0 , (155)

DA (∂⊥x̃)cat = κ+

(
x̃− ỹ + 1− z−1

)
cat

, (156)

DB (∂⊥ỹ)cat = −κ−
(
x̃− ỹ + 1− z−1

)
cat

, (157)

(x̃)res = 0 , (158)

(ỹ)res = 0 . (159)
With the substitution

x̃(r) =
(
z−1 − 1

)
�
κ+

DA

φ(r) , (160)

ỹ(r) = −
(
z−1 − 1

)
�
κ−

DB

φ(r) , (161)

the problem is reduced to finding the solution φ(r) of equations (15)–(18).
Now, equation (139) can be rewritten as

Ξt(λ) = ηηη · (ξξξ − ξξξt) (162)
in terms of the time-dependent vector

ξξξt = e−L0t · ξξξ , (163)
which is the solution of

dξξξt
dt

= −L0 · ξξξt (164)

and denoted ξξξt = ({x̃t,r}, {ỹt,r}). Multiplying equation (164) by an arbitrary vector (69) 
and using the same method as above, we find that
∫

dV (α ∂tx̃t + β ∂tỹt) =

∫
dV

(
αDA ∇2x̃t + β DB ∇2ỹt

)

+

∫

cat

dS {α [DA ∂⊥x̃t − κ+ (x̃t − ỹt)] + β [DB ∂⊥ỹ + κ− (x̃t − ỹt)]}
 

(165)
with the boundary conditions (x̃t)res = (ỹt)res = 0. The fields x̃t and ỹt are thus the solu-
tions of the following problem:
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∂tx̃t = DA∇2x̃t , (166)

∂tỹt = DB∇2ỹt , (167)

DA (∂⊥x̃t)cat = κ+ (x̃t − ỹt)cat , (168)

DB (∂⊥ỹt)cat = −κ− (x̃t − ỹt)cat , (169)

(x̃t)res = 0 , (170)

(ỹt)res = 0 , (171)

x̃t=0 = x̃ , (172)

ỹt=0 = ỹ , (173)
where the initial conditions are given in terms of the previously obtained stationary 
functions x̃ and ỹ. Setting

x̃t(r) =
(
z−1 − 1

)
�
κ+

DA

fA(r, t) , (174)

ỹt(r) = −
(
z−1 − 1

)
�
κ−

DB

fB(r, t) , (175)

we conclude that the functions fk(r, t) obey the time-dependent problem of equa-
tions (21)–(25) for k = A,B. We note that the factorization expected by equation (143) 
is confirmed by equations (160), (161), (174) and (175).

Substituting the results (147), (148), (160), (161), (174) and (175) into equation (162), 
we find

Ξt(λ) =
∑
r

∆rd [ur (x̃r − x̃t,r) + vr (ỹr − ỹt,r)]

� (1− z)
(
z−1 − 1

)
�2κ+κ−

∑
r

∆rd φ(r)

{
c̄B
D2

A

[φ(r)− fA(r, t)] +
c̄A
D2

B

[φ(r)− fB(r, t)]

}
.

 (176)
Since z = e−λ, we finally obtain

Ξt(λ) =
(
eλ + e−λ − 2

)
Ψ(t) (177)

expressed in terms of the function (13) in the continuum limit ∆r → 0.
The analytic expressions (11) and (12) for the rates are thus proved.

3.2.5. The cumulant generating function at early time. Expanding the function (139) 
in powers of time, keeping the term of first order in the time t, and replacing Q∞(λ) 
with its expression (122) in equation (84), we get the following expression,

Qt(λ) = ΓΓΓ0 · (L− L0) · 1 +O(t) , (178)
showing that the early-time behavior of the cumulant generating function is given by an 
expression similar to equation (122), but with the vector γγγ corresponding to the fields 
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(ã, b̃) substituted by the stationary state (74) corresponding to the fields (〈cA〉st, 〈cB〉st). 
Carrying out this substitution in equation (134), which is the continuum limit of equa-
tion (122), we obtain equation (36).

4. Conclusion and perspectives

In this paper, a finite-time fluctuation theorem was established for the diusion-
influenced surface reaction A � B ruled by stochastic partial dierential equations. 
The theorem was deduced by solving the evolution equation for the moment generating 
function of a corresponding spatially discretized system, thereafter taking the contin-
uum limit. The analytical expression of the cumulant generating function is thus given 
in terms of the finite-time rates of the diusion-influenced reaction process. In this way, 
the large-deviation properties of the spatially extended stochastic process are obtained 
by solving deterministic diusion equations with specific boundary conditions.

The results show that, in stationary states, the full counting statistics of the reactive 
events satisfies a time-reversal symmetry over every finite time interval. The anity 
of the fluctuation theorem also depends on time with a known analytical dependence. 
In this diusion-influenced system, one of the prominent features of this anity is that 
it may take dierent values at finite time than its asymptotic value predicted by the 
standard infinite-time fluctuation theorem.

The finite-time fluctuation theorem holds because the macroscopic rate of the 
reaction A � B is linear in the concentrations (although nonlinear in the anity). 
Therefore, the generating function (80) of the joint conditional probability distribution 
for the numbers of molecules and reactive events remains exponential in the generating 
variables, s, associated with the numbers of molecules, if the counting starts from the 
Poissonian stationary state. In this regard, we may conjecture that the result can be 
extended to networks of diusion-influenced surface reactions having macroscopic rates 
that are linearly dependent on the concentrations. In such systems, several currents 
may be coupled together, leading to Onsager reciprocal relations and their generaliza-
tions to the nonlinear response regimes [29].
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