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Janus motors with chemically active and inactive hemispheres can operate only under nonequilibrium
conditions where detailed balance is broken by fluxes of chemical species that establish a nonequi-
librium state. A microscopic model for reversible reactive collisions on a Janus motor surface is
constructed and shown to satisfy detailed balance. The model is used to study Janus particle reactive
dynamics in systems at equilibrium where generalized chemical rate laws that include time-dependent
rate coefficients with power-law behavior are shown to describe reaction rates. While maintaining
reversible reactions on the Janus catalytic hemisphere, the system is then driven into a nonequilibrium
steady state by fluxes of chemical species that control the chemical affinity. The statistical properties of
the self-propelled Janus motor in this nonequilibrium steady state are investigated and compared with
the predictions of a fluctuating thermodynamics theory. The model has utility beyond the examples
presented here, since it allows one to explore various aspects of nonequilibrium fluctuations in sys-
tems with self-diffusiophoretic motors from a microscopic perspective. Published by AIP Publishing.
https://doi.org/10.1063/1.5029344

I. INTRODUCTION

Systems of active particles are often encountered in a num-
ber of different contexts. Molecular machines perform various
tasks to assist biological functions in the cell,1,2 while microor-
ganisms swim or move autonomously in different kinds of
media to seek food sources.3,4 Also, synthetic molecular
machines and nano/micromotors that execute directed motion
have been constructed.2,5,6 Chemically powered nanomotors
without moving parts have been the subject of many recent
investigations,7–17 and our focus is on small colloidal particles
that move as a result of phoretic mechanisms.12,18–24 All of
these machines and motors operate out of equilibrium, experi-
ence strong thermal fluctuations, and obtain energy from their
environment in order to move.

An often-studied synthetic motor is a spherical Janus par-
ticle with catalytic and noncatalytic hemispheres which oper-
ates by self-diffusiophoresis. For the diffusiophoretic mecha-
nism, chemical reactions on the catalytic hemisphere intercon-
vert reagent (fuel) and product molecules and, in the process,
generate inhomogeneous concentration fields of these species
in the Janus particle vicinity. The system is maintained in a
nonequilibrium state by fluxes of the species at the system
boundaries or in the fluid phase environment. As a result of
intermolecular interactions of the reactive species with the
Janus motor, the fluid exerts a force on the motor that is
compensated by fluid flows in the environment that lead to
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motor self-propulsion. Autonomous motion is possible only if
the system is driven out of equilibrium.

The mean values of properties such as the motor veloc-
ity are typically computed by adopting a continuum descrip-
tion where the concentration and fluid velocity fields are
described by reaction-diffusion and Stokes equations, respec-
tively. However, because of the presence of strong ther-
mal fluctuations, stochastic models are required to describe
motor motion. The underlying reactive dynamical processes
on the motor surface must be microscopically reversible,
and the stochastic equations of motion must account for
microscopic reversibility to be consistent with thermodynam-
ics. Langevin equations of motion that satisfy these consis-
tency requirements have been derived and used to establish
nonequilibrium fluctuation formulas for diffusiophoretic Janus
motors.25,26

In this paper, we consider the motion of Janus motors
chemically propelled by self-diffusiophoresis from a particle-
based perspective. The model we discuss can be viewed as
a coarse-grained description of some real motor and solvent
system, where the physical entities are replaced by effec-
tive particles.27 A Janus motor is built as an aggregate of
catalytic and noncatalytic beads.28,29 While irreversible cat-
alytic reactions on Janus particles were considered in previous
studies,28,30,31 here the reactive kinetics satisfies detailed bal-
ance. The role of detailed balance was also considered for
a sphere-dimer motor in a medium with cubic autocatalytic
reactions where the reactive events on the catalytic sphere
take a simpler form.32 Here we demonstrate that detailed
balance follows from the microscopic dynamics and study
the Janus particle dynamics and reaction kinetics in systems
both at equilibrium, where the Janus particle is chemically
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active but propulsion is not possible, and under nonequilib-
rium conditions where it is self-propelled. The model sat-
isfies the basic symmetries and conservation laws, and its
extensions should provide a framework for studies of self-
phoretic active particles in contexts other than those considered
here.

The paper is structured as follows: The model for a Janus
motor and reversible reactive collision dynamics on the motor
catalytic surface are described in Sec. II. Section III demon-
strates that the reactive dynamics satisfies the condition of
microscopic reversibility and the kinetics obeys detailed bal-
ance. Simulations of the dynamics of a Janus particle in sys-
tems at equilibrium are presented in Sec. IV where it is shown
that the equilibrium reactive species number fluctuations are
binomially distributed and that chemical relaxation obeys a
generalized rate law with time-dependent reaction rate coeffi-
cients. Nonequilibrium dynamics is the subject of Sec. V. The
system is driven out of equilibrium by the control of concentra-
tions of chemical species at a distant boundary. In this section,
the influence of an externally applied force to the motor on
the reaction rate is also considered. In Sec. VI, in addition
to reactions on the motor surface, an out-of-equilibrium fluid
phase reaction is implemented to break detailed balance in
the bulk phase instead of the distant boundary, while retain-
ing the microscopically reversible reactive dynamics on the
motor surface. Janus motor self-propulsion is now possible,
and its characteristics are studied and compared with con-
tinuum theory. The conclusions of the work are given in
Sec. VII.

II. JANUS MOTOR SYSTEM
AND CATALYTIC REACTIONS
A. System constituents and interactions

We consider a single Janus motor immersed in a fluid of
inert (S) and reactive (A and B) particles. The motor inter-
acts directly with the fluid particles, while interactions among
fluid particles are taken into account by multiparticle collision
dynamics.33

The Janus motor is constructed as a roughly spherical
object composed of Nb = NC + NN of NC catalytic (C) and
NN noncatalytic (N) beads with mass m that differ in their
interactions with the solvent particles and in their chemical
activity28 [see Fig. 1(a)].

Janus motor beads j and k at positions rbj and rbk interact
via a harmonic potential UJ (rjk) = 1

2 ks(rjk−r0
jk)2, with rjk = |rbj

− rbk |, if their equilibrium distance r0
jk < 2σ, where ks is a stiff

spring constant which ensures that fluctuations of the positions
of the beads are small so that the motor retains its spherical
shape during the evolution of the system. The isolated Janus
motor has a potential energy

UJ (rb) =
Nb∑
i=1

∑
j<i

UJ (rij), (1)

where rb = (rb1, rb2, . . . , rbNb ).
The surrounding fluid consists of NR reactive A and

B species with coordinates rR = (rR1, rR2, . . . , rRNR ), as
well as NS chemically inert S species with coordinates

FIG. 1. (a) A Janus motor comprising beads with radius σ connected by
springs (not shown) has catalytic (C, red) and noncatalytic (N, blue) hemi-
spheres. The motor axis is defined by the unit vector, û, in the direction from
the N to the C hemispheres, and θ is the polar angle. Reversible catalytic
reactions occur when particles A or B encounter the motor C beads. (b) Tra-
jectories for the forward (A → B) and reverse (B → A) reactive collisions.
In this diagram, a fuel particle A (product B) follows a black (red) trajectory,
where reactions take place upon entering (circles) into or leaving (squares)
from the motor surface. The solid and hollow symbols signify the forward
(A→ B) and reverse (B→ A) reactions, respectively.

rS = (rS1, rS2, . . . , rSNS ). In this notation, the index of the
particle follows the symbol b, R, or S specifying the type
of the particle. Collectively the coordinates of the fluid par-
ticles are rf = (rR, rS) and we let r = (rb, rf) denote all of
the coordinates. The NR reactive particles have species labels
α = (α1, α2, . . . , αNR ), where αi ∈ {A, B}. Since the inert
species are all of type S, we do not include them in the set α.
Letting the interaction energy between a motor bead j and a
solvent particle i of type α = A, B, S be Uα(|rfi − rbj |), the total
potential energy of the fluid particles is

Uf (r, α) =
NR∑
i=1

UR(rRi, αi, rb) +
NS∑
i=1

US(rSi, rb), (2)

with

UR(rRi, αi, rb) =
Nb∑
j=1

Uαi (|rRi − rbj |),

US(rSi, rb) =
Nb∑
j=1

US(|rSi − rbj |).

(3)

In the applications discussed below, Uα(r) is taken to be a
repulsive Lennard-Jones potential with interaction strength
εα, Uα(r) = 4εα[(σ/r)12 − (σ/r)6 + 0.25]Θ(rc − r), where
Θ(rc − r) is a Heaviside function with rc = 21/6σ. (For sim-
plicity, here we suppose that the interaction energy does not
depend on the type of motor bead. Extension to the general
case is straightforward.)

The potential energy of the entire system is UT(r, α)
= U0 + U(r, α), where U(r, α) = UJ (rJ ) + U f(r, α), and
U0 =

∑NR
i=1 u0

αi
accounts for bare internal energies u0

αi
of the

reactive chemical species. The total energy is E = KJ + K f

+ UT(r, α), where KJ and K f are the kinetic energies of
the motor beads and fluid particles. Notice that there are no
interactions among the solvent and reactive particles. These
interaction effects are taken into account by using the multipar-
ticle collision method.34 The results in the paper are reported
in dimensionless units where mass is in units of m, length is in
units of σ, energies are in units of kBT, and time is in units of
t0 =

√
mσ2/kBT . The simulation method and parameters are

described in detail in Appendix A.
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B. Motor-catalyzed reactions

Interactions of the A and B species with the catalytic beads
may lead to the reversible chemical reaction

C + A
k+


k−

C + B, (4)

where k± denote the forward and reverse reaction rate con-
stants. A full description of reactive dynamics at the catalytic
portion of the Janus motor surface requires a microscopic
definition of chemical species and specification of the bond-
making and bond-breaking events that constitute the chemical
transformations from reactants to products. For example, a
common reaction mechanism involves species interconversion
dynamics governed by a double-well potential function for a
reaction coordinate. The potential wells can be used to define
the metastable chemical species. In the bulk phase, outside of
the interaction range with the Janus motor, the barrier sepa-
rating reactants from products is assumed to be very high so
that chemical reactions will occur with extremely low proba-
bility. Interactions with the catalytic face of the motor cause
the barrier height to be reduced, thus facilitating the reactive
events.

Instead of a full dynamical description, we suppose that in
the bulk of the solution the constant bare potential energy func-
tions, u0

α (α = A, B), are associated with the A and B species and
characterize their internal states. Instead of describing the reac-
tions by deterministic motion in the potential energy surface
of the reactive system, we encode the likelihood of chemical
transformations in probabilities p± for forward A → B and
reverse B→ A reactive events. Since the fluid species interact
with the surface beads of the Janus particle through short-range
intermolecular potentials, we may define a reaction surface
SR, which depends on the Janus particle configuration rb, and
outside of which interactions with the Janus catalytic beads
vanish. The region interior to the reaction surface is the reaction
zone. Chemical transformations between the A and B species
may take place when these species cross the reaction surface.
In the simulations, the reactions occur infinitesimally outside
of the reaction surface where the forces derived from the inter-
action potential are zero. This choice avoids difficulties in the
molecular dynamics associated with sudden changes in the
potential functions.

The coarse-grain reactive events take place as follows [see
Fig. 1(b)]: Reactions with the catalytic beads may occur when-
ever an A or B particle reaches a point infinitesimally outside
of SR at r = rc. More specifically, in our coarse-grain model,
a forward reaction, A → B, may occur with equal probabil-
ity p+/2 when an A particle enters or leaves from the motor
reaction zone. If the forward reaction occurs as the A particle
enters the reaction zone (red solid circle), it will propagate as a
product B particle and eventually leave this zone. Similarly, if
the forward reaction occurs as the A particle leaves the reactive
zone (red solid square), it will have propagated as an A particle
during its interactions with the motor catalytic beads. Since A
and B particles have different interaction potentials with the
motor catalytic beads, these two reactive trajectories differ.
Reactions take place only as these chemical species enter or
leave the reaction zone and no additional reactive events are
allowed to take place within the zone. Similarly, the reverse

reaction B→ A may occur with equal probability p−/2 when a
B particle enters (black hollow circle) or leaves (black hollow
square) the zone. Moreover, we assume no change of velocities
upon reaction.

III. REVERSIBLE DYNAMICS
AND DETAILED BALANCE
A. Dynamics

We let x = (v, r) = (xb, xf) be the phase point of the entire
system, where xb = (vb, rb) and xf = (vf, rf) with vb and vf

being the set of velocities of the Janus motor beads and fluid
particles, respectively. The phase space probability density is
denoted by P(x, α, t) and its evolution is given by the equation
of motion,

∂

∂t
P(x, α, t) = LP(x, α, t), (5)

where L = LD +C+LR is the sum of deterministic, multiparti-
cle collision, and reactive evolution operators. The Liouvillian
LD = −v ·∇r − (F/m) ·∇v for deterministic evolution involves
forces derived from the full potential U(r, α), while C, the
evolution operator for multiparticle collisions, is defined else-
where,34 and its explicit form will not be required here. To
write the reactive Liouville operator, LR, corresponding to the
reactive dynamics discussed above, we first let riJ and viJ

denote the position and velocity of particle i relative to the
position rJ of the center of mass of the Janus motor. The mag-
nitude of the vector riJ at a point infinitesimally outside the
reaction surface will be denoted by R+(r̂iJ , rb) since its value
depends on its location on the surface and the configuration
of the Janus beads. The normal to the reaction surface at this
point is denoted by n̂(r̂iJ , rb). (We omit the arguments of these
functions in the following.) The reactive Liouville operator
may now be written as

LR =

NR∑
i=1

∑
s

|viJ · n̂|Θ(sviJ · n̂)δ(riJ − R+)

×
1
2

[δαiA(p−EA→B
i − p+) + δαiB(p+EB→A

i − p−)], (6)

where the index s takes the values s = ± for entering or leaving
the reaction zone, and the operator Eα→α′i changes the species
index of particle i from α to α′. This dynamics conserves mass,
momentum, and energy and we now show that the reactive
dynamics satisfies detailed balance.

B. Detailed balance

Without loss of generality, we consider a single particle i
of type α at time t that is about to cross the reactive boundary
SR at a point on the surface that lies at riJ = R+ from the Janus
particle center. We compute the contribution to the reactive flux
of species A for this particle. The trajectories contributing to
this flux were discussed in Sec. II. Particle i with species label
A converts to B with probability p+/2 as it enters the reaction
zone. There is a corresponding trajectory, obtained by time
reversal from this trajectory, which converts B to A with prob-
ability p−/2 when it leaves the reaction zone at the reaction
boundary. Similarly, particle i with species label B converts
to A with probability p−/2 as it enters the reaction zone.
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There is a corresponding trajectory obtained by time rever-
sal from this trajectory that converts A to B with probability
p+/2 when it leaves the reaction zone at the reaction boundary.
The reactive flux may be written as

RA
i (x, α, t) dx =

∑
s

|viJ · n̂|Θ(sviJ · n̂)δ(riJ −R+)

×
1
2

(
p−P(x, α, t |B, R+)− p+P(x, α, t|A, R+)

)
dx.

(7)

Here P(x, α, t|αi = α, riJ = R+) ≡ P(x, α, t|α, R+) is the
probability density at (x, α) at time t given that particle i lies
at the point infinitesimally outside the reaction boundary and
is species α.

At equilibrium, this expression yields the detailed balance
condition,

p+Peq(x, α |A, R+) = p−Peq(x, α |B, R+). (8)

This equation may be integrated over all phase space coor-
dinates and summed over all species labels, except for the
position of particle i and its species label. Denoting the reduced
distributions that result from this integration by Peq(α, R+), we
obtain

Peq(B, R+)

Peq(A, R+)
=

p+

p−
=

k0
+

k0
−

, (9)

where the last equality uses the fact that the intrinsic rate
constants, k0

±, are proportional to the reaction probabilities,
k0
± = p±νcol, with νcol being the collision frequency.

Under this reversible coarse-grain reactive dynamics,
the system will evolve to an equilibrium state with reac-
tive solute concentrations ceq

A and ceq
B determined by the

choice of reaction probabilities. The forces that enter the
equations of motion are derived from the potential function
U(r, α) and do not depend on the constant bare energies;
the information about their values is encoded in the reac-
tion probabilities since their values determine the equilibrium
concentrations.

The equilibrium ratio Peq(B, R+)/Peq(A, R+) can be
computed as follows: The equilibrium canonical probabil-
ity density factorizes into Boltzmann kinetic and configura-
tional parts. The configurational probability density takes the
form

Peq(r, α) = e−βUT(r,α)
/ ∑

α

∫
dr e−βUT(r,α), (10)

where β = (kBT )−1 is the inverse temperature. To compute the
left-hand side of Eq. (9), we consider the probability density
of a particle i of species α′ at a position r′ = riJ ,

Peq(α′, r′) =
∑
α

∫
dr δ(r′ − riJ )δαi ,α′Peq(r, α)

≡ e−β(u0
α′

+uα′ (r
′))

/ B∑
α′=A

Zα′ . (11)

The second equality defines the potential of mean force,
uα′(r′), and we have introduced the quantity Zα = e−βu0

α

× ∫ dr′e−βuα (r′) in writing the equation. For values of r′ = r̂′R+

outside of the range of the potential, uα′(r̂′R+) = 0, and, using
Eq. (11), we have

Peq(B, R+)

Peq(A, R+)
= e−β∆u0

BA , (12)

with ∆u0
BA = u0

B − u0
A. Comparison with Eq. (9) gives p+/p−

= e−β∆u0
BA , which shows how the reaction probabilities encode

information about the bare potentials that are related to the
equilibrium concentrations.

The probability of a reactive particle to be species α can
be obtained by integration of Eq. (11) over r′ to give

Peq(α) = Zα/(ZA + ZB), (13)

and the average number of particles of species α is 〈Nα〉
= Neq

α = NRZα/(ZA + ZB). We can write Zα = e−βu0
αVα

= e−βu0
αγ−1

α V , where Vα can be interpreted as the free vol-
ume available to solvent particles of type α and γα = V /Vα is
the activity coefficient of species α. From the definition of the
activity coefficient, we find that

γ−1
α = 1 −

1
V

∫
dr′

(
1 − e−βuα (r′)

)
≡ 1 −

VJα

V
, (14)

where V Jα denotes the Janus motor volume for species α.
For short-ranged potentials, the integral in Eq. (14) is

small relative to the total volume of the system and the activity
coefficients are close to unity.

Since the bulk equilibrium concentration of species α is
ceq
α = Neq

α /V , using these results, we have

γBceq
B

γAceq
A

=
aeq

B

aeq
A

= e−β∆u0
BA , (15)

where aeq
α is the activity of species α. The equilibrium constant

is defined by Keq = aeq
B /a

eq
A . From these results, the Guldberg-

Waage form of detailed balance, k0
+/k

0
− = Keq, is obtained.

IV. JANUS PARTICLES IN SYSTEMS AT EQUILIBRIUM
A. Equilibrium species number fluctuations

We consider a Janus motor where chemical reactions
occur on the catalytic face with probabilities p± = 0.5 in a
system at equilibrium containing NR = NA + NB reactive
solute species. The interaction strengths of the repulsive inter-
actions between motor beads and fluid particles as described
in Sec. II are εA = 1, εB = 0.5, and εS = 0.5. We can com-
pute the probability, Peq(NA), that there are NA particles of
species A in the system. Starting from an initial number of NA

and NB particles (NA + NB = NR), the system was evolved
in time under the microscopic dynamics until an equilibrium
state was reached. The distribution Peq(NA) was determined
from a histogram of NA values and is shown in Fig. 2. The
function is accurately described by a binomial probability
distribution

Peq(NA) =

(
NR

NA

)
pNA

A (1 − pA)NR−NA , (16)

with mean number Neq
A = pANR where pA ≈ 0.499 77, as shown

in the figure.
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FIG. 2. Comparison between the histogram of the total number of A parti-
cles from simulations (green solid area) and the binomial distributions with
pA = 0.499 77 (solid curve) and pA = 0.5 (dashed curve).

The fact that the binomial distribution provides a highly
accurate description of Peq(NA) can be understood from the
following considerations. The probability density of finding a
species label configuration αmay be obtained by integration of
the equilibrium distribution (10) over all system coordinates,
Peq(α) = ∫ dr Peq(r, α), which may be written as

Peq(α) =
∫ drbPJ (rb)

∏NR
i=1 Zαi (rb)∑

α ∫ drbPJ (rb)
∏NR

i=1 Zαi (rb)
, (17)

where PJ (rb) is the effective probability density of Janus bead
coordinates obtained by integrating over all solvent positions
and Zαi (rb) = ∫ drRie−βUR(rRi ,αi ,rb). The dependence of the
Zαi (rb) factors on the Janus bead coordinates prevents this
distribution from being binomial. However, if the fluctuations
of the Janus particle beads are small, we may suppose that
their positions relative to the Janus center of mass are fixed at
r0

b. Furthermore, if a reactive solute molecule interacts with
only one bead (as is the case for our simulation parame-
ters), the Zαi functions are independent of coordinates and we
obtain

Peq(α) =

∏NR
i=1 Zαi∑

α
∏NR

i=1 Zαi

, (18)

and from this expression, one can deduce that Peq(NA) has
the binomial form given in Eq. (16). Furthermore, the Zαi are
equal to the corresponding quantities defined below Eq. (11) in
Sec. III when the same approximations to obtain the binomial
form are used to evaluate them.

From Eq. (13) and the expression for Neq
A below it,

we have the general expression pA = ZA/(ZA + ZB) =
(
1

+ (γA/γB)e−β∆u0
BA

)−1. Since p± = 0.5 in our simula-
tions, we have ∆u0

BA = 0 and pA takes the simpler form
pA = (1 + γA/γB)−1. The activity coefficients γA,B can be esti-
mated using Eq. (14). From this expression, we see that pA

will differ from 0.5 if the A and B species interact with the
motor through different intermolecular potentials giving rise
to different effective Janus motor volumes V Jα. Also, as the
system volume increases, corresponding to a decreasing motor
volume fraction, the activity coefficients tend to unity. This is
the case for the Janus particle and system sizes considered in

the Secs. V and VI. To better visualize this activity coefficient
effect, the results in Fig. 2 were obtained using an intention-
ally small system size L = 20. For this system, the ratio of the
activity coefficients is found to be γA/γB ≈ 1.0009 which yields
pA ≈ 0.499 77. One can see that this value provides a noticeably
better fit than the dashed curve using pA = 0.5 corresponding
to unit activity coefficients.

B. Reactive dynamics in systems at equilibrium

The microscopic evolution equation for the deviation in
the number of A or B particles in the system from their equi-
librium values, δNA(t) = NA(t) − Neq

A = −δNB(t), is given
by

d
dt
δNA(t) = L†δNA(t), (19)

where L† is the adjoint of L defined in Eq. (5). This equation
can be cast in the form of a generalized Langevin equation
using projection operator methods,35,36

d
dt
δNA(t) = −

∫ t

0
dτ

φk(τ)
V

δNA(t − τ) + fR(t), (20)

where f R(t) is a random reaction rate with zero mean and
fluctuation-dissipation relation

〈 fR(t)〉 = 0,
φk(t)

V
= 〈 fR(t)fR(0)〉/〈(δNA(0))2〉, (21)

where the angular brackets denote an average over ρeq(x, α),
the equilibrium phase space density. It has the additional
property that 〈f R(t)δNA(0)〉 = 0.

The nonequilibrium phase space density for a system
linearly displaced from chemical equilibrium is

ρ(x, α) = ρeq(x, α)(1 − δNAArxn), (22)

where Arxn is the dimensionless chemical affinity. The average
of Eq. (20) over this nonequilibrium density yields

d
dt
〈δNA(t)〉n = −

∫ t

0
dτ

φk(τ)
V
〈δNA(t − τ)〉n, (23)

where the angular brackets with subscript n denote the
nonequilibrium average.

Alternatively, we may construct an evolution equation for
the autocorrelation function of the equilibrium fluctuations of
the particle number, CAA(t) = 〈δNA(t)δNA(0)〉, by multiplying
Eq. (20) by δNA(0) and averaging over the equilibrium density
to obtain

d
dt

CAA(t) = −
∫ t

0
dτ

φk(τ)
V

CAA(t − τ). (24)

From these results, in accord with the Onsager regression
hypothesis,37 the regression of the microscopic fluctuations
of δNA(t) at equilibrium should obey the same macroscopic
law as the relaxation of 〈δNA(t)〉n.

The memory kernel φk(τ) evolves on a microscopic time
scale tmic that is much shorter than that of the chemical relax-
ation time tchem of CAA(t). In such a circumstance, where
tmic � tchem, the generalized rate law takes the form
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FIG. 3. (Upper curve) Plot of the normalized autocorrelation function
CAA(t)/CAA(0) versus dimensionless simulation time obtained from the micro-
scopic simulation of the dynamics with motor reaction probabilities p+ = p−
= 0.5 (blue circles). These results are compared to those using the numer-
ical Laplace inversion of Eq. (31) (dashed line). (Lower curve) Plot of the
normalized autocorrelation function for a system with the same motor reac-
tion probabilities as in the upper curve plus a bulk phase reaction with
rate constants k2 = k−2 = 0.0005 (red circles). These results are compared
with the numerical Laplace inversion of Eq. (57) (solid line) discussed in
Sec. VI.

d
dt

CAA(t) ≈ −
k(t)
V

CAA(t), (25)

where the time-dependent rate coefficient is defined by

k(t) =
∫ t

0
dτ φk(τ). (26)

The factor 1/V in these equations accounts for the concentra-
tion of the single Janus particle in the volume V.

The phenomenological rate coefficient is given by
k = limt→∞k(t), and for long times, we have the chemical
rate law, dCAA(t)/dt = −(k/V )CAA(t), whose domain of valid-
ity can be determined from the direct microscopic simulation
of CAA(t). This autocorrelation function is plotted in Fig. 3.
Its decay is approximately exponential, but, as we shall show
below, there are power-law contributions at long times.

The reactive dynamics can be probed in more detail by
studying the time evolution of the time-dependent rate coef-
ficient k(t). In particular, we now show that the coupling of
the reaction at the motor surface to the diffusion of particles
leads to a weakly non-exponential algebraic decay of the num-
ber fluctuations that is difficult to detect by visual examination
of Fig. 3. The rate coefficient k(t) can be obtained from the
simulation by computing k(t) ≈ −V (dCAA(t)/dt)/CAA(t), and
the results are plotted in Fig. 4. One sees that k(t) decays very
rapidly on a time scale tmic ≈ 1, followed by a weak power-law
t−1/2 decay (see the inset in the figure). Since tmic � tchem,
one expects and finds that the phenomenological rate law
provides a good approximation to the long-time evolution
of CAA(t).

C. Continuum description

In the continuum description of the chemical rate pro-
cesses, we again suppose that the system is initially displaced
from chemical equilibrium by a small amount but compute
the decay to equilibrium by solving the deterministic reac-
tion diffusion equations. The local concentrations of species
α = A, B satisfy the diffusion equation

FIG. 4. Comparison of simulation and continuum theory results for the inte-
grated rate kernel k(t). The black and red curves correspond to the continuum
solution with and without bulk reactions in Eqs. (33) and (58), respectively.
The inset shows the long-time asymptotic behavior where the integrated rate
kernels approach the long-time value k as t−1/2.

∂cα(r, t)
∂t

= D∇2cα(r, t), (27)

where D is the common diffusion constant of the fluid particles.
This equation must be solved subject to the radiation boundary
condition38 at r = R,

Dn̂ · ∇cα(r, θ, t)��R = −να
k0

4πR2
ψ(R, θ, t)Θ(θ), (28)

where k0 = k0
+ +k0

−, the stoichiometric coefficients are νA = −1
and νB = 1,ψ = (k0

+cA−k0
−cB)/k0, andΘ(θ) is the characteristic

function that is unity on the catalytic hemisphere (0 < θ < π/2)
and zero on the noncatalytic hemisphere (π/2 < θ < π).

Equation (27) can be integrated over the volume of the
system outside of the Janus particle with radius R to obtain an
evolution equation for NA(t). Using the boundary condition in
Eq. (28), the result of this integration can be written as

dδNA(t)
dt

= −k0 ψ(R, θ, t)
s
, (29)

where ψ(r, t)
s
= (4πR2)−1

∫ dS ψ(R, θ, t)Θ(θ) is the surface
average over the catalytic hemisphere at radial distance R. The
Laplace transform of this equation is

zδN̂A(z) − δNA(0) = −k0 ψ̂(R, θ, z)
s
, (30)

with δNA(0) = δNA(t = 0). From the knowledge of ψ̂(r, z) given
in Appendix B, δN̂A(z) may be computed and is

δN̂A(z) =
Vψ(0)

z

[
1 −

a0(z)
V

k0(1 + ν0(z)R)
z

]
, (31)

where ν2
0 (z) = z/D and ψ(0) = δNA(0)/V. An expression for

a0(z) is also given in Appendix B. The quantity δNA(t) may
then be obtained by numerical Laplace inversion.

Rearranging the Laplace transform of the generalized rate
law (23), we can write the Laplace transform of the time-
dependent rate coefficient as

k̂(z)
V
=

1
V
φ̂k(z)

z
=
δNA(0)

zδN̂A(z)
− 1. (32)

Inserting the solution for δN̂A(z) into Eq. (32), we find that
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k̂(z) =
Va0(z)k0(1 + ν0(z)R)

zV − a0(z)k0(1 + ν0(z)R)
. (33)

From this equation, the short time limit of the rate coefficient
is given by k(t = 0+) = k0/2 since limz→∞ν0(z)R a0(z) = 1/2.

After numerical Laplace inversion, the results of these
solutions are plotted in Fig. 3 (the upper curve) where they are
compared with the microscopic simulation results for equilib-
rium systems. Good agreement is obtained. The time depen-
dent rate coefficient k(t) is shown in Fig. 4. The results are
close to those from the microscopic simulations, but there are
observable differences at short times. The inset compares the
long-time behavior and shows the t−1/2 decay which has its ori-
gin in the coupling of the reaction rate to the diffusive motions
of the solute species.36

V. JANUS MOTOR DYNAMICS OUT OF EQUILIBRIUM

Thus far we have considered a reactive Janus particle in
a system at equilibrium where self-propulsion is not possible;
however, if the system is driven out of equilibrium by fluxes of
reactive species into and out of the system, the Janus particle
can act as a self-propelled motor that operates by a diffusio-
phoretic mechanism. Specifically, the system is maintained in a
nonequilibrium steady state by contact with reservoirs contain-
ing a solution with constant concentrations c̄α of the chemical
species α. The reservoirs serve to fix the concentrations at c̄α
at distances far from the Janus particle.

The continuum description of Janus propulsion for this
case is well known.20–22,39 From a fluctuating chemohydrody-
namics perspective, the overdamped motion of the Janus motor
is governed by the Langevin equation,25,26,40

drJ

dt
= Vd + Vfl(t) . (34)

(The inclusion of an external force Fext acting on the motor
will be considered in Sec. V B.) In this equation, the fluctuating
velocity Vfl(t) has zero mean, 〈Vfl(t)〉 = 0, and satisfies the
fluctuation-dissipation relation

〈Vfl(t)Vfl(t ′)〉 = 2Dt δ(t − t ′) 1, (35)

where Dt is the translational diffusion coefficient of the motor.
The diffusiophoretic velocity Vd is given by26

Vd =
1

1 + 2b/R

B∑
α=A

bα ∇⊥cα(r)
s
= Vd û, (36)

where ∇⊥ stands for the tangential surface gradient and the
overline indicates an average over the surface of the Janus
particle. The expression for the diffusiophoretic velocity is
written for the case of arbitrary slip with a slip length b and
diffusiophoretic constants26,39 bα, where

bα =
kBT
η

(
K (1)
α + b K (0)

α

)
, (37)

with

K (n)
α ≡

∫ R+δ

R
dr (r − R)n [e−βuα (r) − 1] , (38)

and δ is the finite range of the radial intermolecular potentials
uα(r).

The steady-state concentration fields that enter the expres-
sion for the diffusiophoretic velocity can be obtained by solv-
ing the diffusion equations ∇2cα(r, θ) = 0 subject to the
boundary conditions cα(r = Rm) = c̄α, where Rm is a dis-
tance far from the Janus particle, and the radiation bound-
ary condition on the motor reactive surface at r = R [see
Eq. (28)]. The solution can be written as a series of Legendre
polynomials,

cα(r, θ) = c̄α + να(k0
+c̄A − k0

−c̄B)
1

kD

∞∑
`=0

a` f`P`(µ), (39)

where kD = 4πRD, µ = cos θ, and the radial function
f`(r) = (R/r)`+1 − (R/Rm)`+1(r/Rm)` . Since the functions
f `(Rm) = 0, we have cα(Rm, θ) = c̄α. The a` coefficients can
be obtained by solving a set of linear equations, M`m = G`m

+(k0
++k0

−)k−1
D [1−(R/Rm)2`+1]K`m with G`m = [2(`+1)/(2`+1)

+ 2`/(2` + 1)(R/Rm)2`+1]δ`m and K`m = ∫
1

0 P`(µ)Pm(µ)dµ,

a` =
∞∑
`=0

(M)−1
`mEm, (40)

M`m = G`m + (k0
+ + k0

−)k−1
D [1 − (R/Rm)2`+1]K`m,

Em =

∫ 1

0
Pm(µ)dµ, K`m =

∫ 1

0
P`(µ)Pm(µ)dµ,

G`m = [2(` + 1)/(2` + 1) + 2`/(2` + 1)(R/Rm)2`+1]δ`m.

Explicit expressions for Em and K`m are given in Eqs. (B10)
and (B11) of Appendix B.

Substituting these expressions for the concentration fields
into Eq. (36), we obtain the following formula for the diffu-
siophoretic velocity of the Janus particle:

Vd = Φ(k0
+c̄A − k0

−c̄B), (41)

with

Φ =
2kBT

3η
(Λ(1) + bΛ(0))

2b + R
a1

kD

[
1 −

( R
Rm

)3]
, (42)

where we have defined Λ(n) = K (n)
B − K (n)

A . The form of Vd in
Eq. (41) shows that the diffusiophoretic velocity is controlled
by the deviation of the boundary concentrations from their
equilibrium values, (k0

+c̄A − k0
−c̄B) = k0

−c̄A(ceq
B /c

eq
A − c̄B/c̄A),

which vanishes at equilibrium. The expression for the prefactor
Φ incorporates effects due to partial slip and has the following
limits. For perfect stick, the most commonly used boundary
condition on the velocity field, b = 0, and Vd depends only on
Λ(1). For perfect slip b→∞, and Vd is finite and depends only
onΛ(0), which is related to the surface excess concentrations of
the solute species.26 For small particles, partial slip boundary
conditions often apply and, as discussed below, this is the case
for our model.

A. Simulation of nonequilibrium Janus dynamics

We now compare microscopic simulations with the
Langevin model derived from nonequilibrium fluctuating ther-
modynamics. The nonequilibrium steady state conditions
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discussed above can be implemented in the microscopic sim-
ulations as follows. Consider a spherical region with radius
r = Rm = 24 centered on the Janus motor. The region of r > Rm

is a reservoir with fixed concentrations of α-type particles
whose values can be controlled by changing the species type
of a particle to α = A, B, S with probability p̄α whenever a
fluid particle enters the region r ≤ Rm. The resulting concen-
tration of species α at r = Rm is c̄α = c0p̄α, where

∑
α p̄α = 1

and c0 =
∑
α c̄α is the fixed total number of particles per unit

volume. This simulates a system where the concentrations out-
side of the r = Rm boundary are prescribed to be c̄α for α-type
particles.

In the simulations, we consider a system with c0 = 20 and
repulsive interaction strengths εA = 1, εB = 0.1, and εS = 0.5.
The reversible Janus catalytic reactions use p± = 1 so that
k0
± = p±ν0

c = 188.4. To implement the nonequilibrium bound-
ary conditions, we take p̄A = 0.5 and p̄B = 0.45 and the
corresponding concentrations at r = Rm are c̄A = 10, c̄B = 9,
and c̄S = 1. With these parameters, the system deviates slightly
from equilibrium so that it remains in the linear regime. How-
ever, since k0

+/k
0
− = p+/p− , p̄B/p̄A, detailed balance is broken

and motor self-propulsion can occur.
In order to evaluate Eqs. (41) and (42) for the diffusio-

phoretic velocity, we require various input parameters. The
Λ(n) factors in Eq. (42) involve the interaction potentials uα(r)
that can be identified as angular averages of the potentials of
mean force defined in Eq. (11). Consequently, these factors
can be computed from the knowledge of the radial distribution
functions gα(r) = e−βuα (r),

Λ
(n) =

∫ ∞
0

dr rn[gB(r) − gA(r)], (43)

where the integrals may be extended over all r values since
the integrand vanishes in the interior of the Janus particle
and outside the range of the mean potential. For a system
with εA = 1.0 and εB = 0.1, we have Λ(0) = 0.1006 and
Λ(1) = 0.4798. The values of the solute diffusion coefficient D
and fluid viscosity η are given in Appendix A, and the solution
of the reaction-diffusion equation yields a1 = 5.25 × 10−3.

The remaining parameter to determine is the slip length
b. To estimate this quantity, we assume that the translational
and rotational diffusion coefficients have their hydrodynamic
values,

Dt =
kBT

6πηR
1 + 3b/R
1 + 2b/R

, Dr =
kBT

8πηR3
(1 + 3b/R), (44)

and equate them to the simulation values of these transport
coefficients. From the mean square displacement, we obtain
Dt = 9 × 10−4, while decay of the orientational correlation
function Cu(t) = 〈û(t) · û〉 = exp(−2Dr t) yields Dr = 1.37
× 10−4. Given that R = 5, η = 16.58, and kBT = 1 in the
chosen units, we find b ' 11 from Dt and b ' 10 from Dr .
Using b = 10.5 and the other parameter values in Eqs. (41) and
(42), we find the theoretical estimate Vd = 6.2 × 10−4, which
is comparable to the simulation result Vd = 6.0 × 10−4 ± 2
× 10−5. The relatively large value of the slip length b finds its
origin in the slipperiness of the fluid-particle interface due to
the repulsive potentials used in the simulations. From a macro-
scopic perspective, the slip length is intended to account for the

microscopic structure of the boundary layer; similarly, in
kinetic theory formulations, the boundary layer dynamics
involves collision events that give rise to a microscopic or
Enskog friction. Consequently, one expects that the slip length
and the microscopic friction are related, and this has been
shown to be the case.41

The microscopic simulation of the autocorrelation func-
tion of the fluctuating velocity, 〈Vfl(t)Vfl(0)〉, was also com-
puted. It exhibits a rapid decay on a time scale of tv ≈ 0.7,
with a power-law tail at longer times. The time integral
of this correlation function gives Dt = 10−3, which is
consistent with the value obtained from the mean square
displacement.

We may also consider the microscopic aspects of the reac-
tion rate. From fluctuating thermodynamics, the reaction rate,
dn/dt, gives the instantaneous time rate of change of the net
number of product molecules that are produced in the motor
catalytic reaction up to time t. It is a fluctuating random variable
that satisfies the stochastic equation25,26

dn
dt
= Wrxn + Wfl(t) , (45)

where W rxn is the mean reaction rate and Wfl(t) is the fluc-
tuating rate that satisfies the fluctuation-dissipation relation,
〈Wfl(t) Wfl(t ′)〉 = 2Drxn δ(t − t ′), with Drxn being the reaction
diffusivity.

The mean reaction rate gives the average value of the rate
at which product molecules are produced, W rxn = W+ − W−,
where W± are the rates of the forward and reverse reactions. It
is zero in equilibrium but takes non-zero values under nonequi-
librium conditions. Since W+ = ∫S dS k0

+ cA(R, θ) Θ(θ) and
W− = ∫S dS k0

− cB(R, θ) Θ(θ), where the surface integrals are
restricted to the motor catalytic surface by the characteristic
function Θ(θ), using the expressions for cα(R, θ) in Eq. (39),
we find

Wrxn = Γ(k0
+c̄A − k0

−c̄B), (46)

where Γ = (1 − γJk0/kD)/2 and γJ =
∑∞
`=0 a`[1

− (R/Rm)2`+1]E` . The reaction diffusivity is given by Drxn

= (W+ + W−)/2 = Γ(k0
+c̄A + k0

−c̄B)/2. For our system parame-
ters, Γ = 0.0085 with γJ = 0.0097 and k0

+c̄A − k0
−c̄B = 188.4 so

that W rxn = 1.6 and Drxn = 15.3.
The Fokker-Planck equation for the probability p(n; t)

that n product molecules have been produced up to time t
corresponding to the Langevin equation (45) is

∂p
∂t
= −Wrxn∂np + Drxn∂

2
n p, (47)

whose solution is

p(n; t) =
1

√
4πDrxnt

exp
[
−(n −Wrxnt)2

4Drxnt

]
. (48)

The long-time steady-state values of W rxn and Drxn can be
determined from the distribution of product particles estimated
from simulations. Figure 5(a) shows the probability distribu-
tions obtained by constructing histograms of n. The results are
consistent with Gaussian distributions (red curves) with the
mean and variance of n shown in panels (b) and (c), respec-
tively. From these results, we find W rxn = 1.7 and Drxn = 16.5,
in good agreement with the continuum theory results 1.6 and
15.3, respectively.
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FIG. 5. (a) The probability distribution functions, p(n; t), at different times,
where the black dots are simulation results and red curves are the Gaussian
distribution [Eq. (48)] with simulation values of mean and variance shown in
panels (b) and (c), respectively.

B. Janus motor subject to an external force

In the presence of an external force Fext, one must consider
the coupled Langevin equations,25,26

drJ

dt
= Vd + βDt Fext + Vfl(t) , (49)

dn
dt
= Wrxn + β χDrxnû · Fext + Wfl(t) , (50)

in order for the fluctuating thermodynamics description to be
consistent with microscopic reversibility. In particular, this
consistency requires that a contribution, Wd = β χDrxnû ·Fext,
that is reciprocal to the diffusiophoretic coupling appears in
Eq. (50). Here χ = Vd/W rxn. The diffusiophoretic coefficient
χ is a finite number even when the system is at equilibrium
since the factor (k0

+c̄A − k0
−c̄B) appears both in Vd [Eq. (41)]

and W rxn [Eq. (46)] and cancels because χ involves their ratio.
As a result of this contribution, the reaction rate depends on
the external force and allows for the possibility that the appli-
cation of an external force can result in the net production of
fuel from product.

To investigate the consequences of this reciprocal con-
tribution on the reaction rate, in the microscopic simulations,
we subject the Janus particle with a magnetic moment µ to
an external force and torque that are derived from the exter-
nal potential function Uext(rJ , û) = −Fext · rJ − µB · û, where
Fext = Fext ẑ and B = B ẑ is the external magnetic field chosen
to be in the same direction as the external force. The magnetic
field produces an external torque Text = µ û × B that tends to
align the Janus motor with B and thus with the external force.
(See Appendix A for details.)

In the simulation, we can compute the average Janus
velocity and reaction rate and compare the results with the
averages of Eqs. (49) and (50),

FIG. 6. Plots of the Fext dependence of the average motor velocity in the ẑ
direction, d〈zJ 〉/dt (left panel), and of the reaction rate, d〈n〉/dt (right panel)
for systems with (a) c̄A = 10 and c̄B = 9 (black circles) and (b) c̄A = 10 and
c̄B = 10 (black squares). The fits to the data given in the text are indicated
by solid (a) and dashed (b) red lines. The results for (a) and (b) systems
were obtained from averages over 200, 100 realizations of the dynamics,
respectively.

d〈zJ〉

dt
= χWrxn〈ûz〉 + βDFext, (51)

d〈n〉
dt
= Wrxn + β χDrxn〈ûz〉Fext, (52)

where zJ = rJ · ẑ. Simulations were carried out with a magnetic
field strength B = 500 with a magnetic moment µ = 1. In this
case, the simulation yields 〈ûz〉 = 0.998 which agrees with
the theoretical estimate 〈ûz〉 = coth(βµB) − 1/(βµB) = 0.998.
The simulation results for d〈zJ〉/dt and d〈n〉/dt versus Fext are
plotted in Fig. 6.

One can see that the average reaction rate increases lin-
early with the external force and fits to these data yield d〈n〉/dt
= (1.691 ± 0.0007) + (0.006 ± 0.0006)Fext. The intercept and
slope are in accord with the theoretical predictions, W rxn = 1.6
and β χDrxn〈ûz〉 = 0.006, confirming the existence of the
effect of the external force on the reaction rate due to the
diffusiophoretic coupling.

According to Eq. (50), if a Janus motor under equilibrium
conditions is subjected to an external force, its reaction rate
will change since the diffusiophoretic coefficient is non-zero.
Simulations confirm this prediction. We consider a system at
equilibrium with c̄A = c̄B = 10 at r = Rm and reaction prob-
abilities p± = 1 so that Vd = W rxn = 0 and apply an external
force and torque as described above. The results, presented as
black squares in Fig. 6, show that both the d〈zJ〉/dt and d〈n〉/dt
vary with the external force. Fits to the data show that d〈n〉/dt
= (−0.0012 ± 0.0013) + (0.0084 ± 0.0012) Fext and the inter-
cept and slope are close to the theoretical values, W rxn = 0 and
β χDrxn〈ûz〉 = 0.0063. Note that for negative value of Fext the
Janus motor consumes product B particles and produces fuel
A particles.

One can see that both the projected motor velocity and the
average reaction rate increase linearly with the external force.
Fits to these data yield d〈zJ〉/dt = 5.7 × 10−4 + 7.7 × 10−4 Fext

and d〈zJ〉/dt = 1.0 × 10−5 + 7.8 × 10−4 Fext for systems out
of equilibrium and at equilibrium, respectively.

VI. INCLUSION OF A FLUID PHASE REACTION

While the catalytic cap on the Janus motor catalyzes the
reaction A + C
B + C, it is possible that this reaction can also
take place in the bulk fluid phase in the absence of catalyst.
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Here we suppose that this is possible and include the fluid phase

reaction A
k2


k−2

B. Since a catalyst does not alter the equilibrium

in the system and only changes the forward and reverse rate
constants, in order to satisfy detailed balance we must have
k0

+/k
0
− = k2/k−2 = Keq.
When a bulk phase reaction is also present, the generalized

rate law has a form analogous to that in Eq. (24) and can be
written as

d
dt

CAA(t) = −(k2 +k−2)CAA(t)−
∫ t

0
dτ

φk(τ)
V

CAA(t−τ), (53)

with a modified time dependent rate coefficient that includes
the bulk reaction and is defined by

k(t)
V
= k2 + k−2 +

1
V

∫ t

0
dτ φk(τ). (54)

In the simulation, the fluid phase reaction is taken into account
by using reactive multiparticle collision dynamics.42 The
dynamics preserves the conservation laws and detailed bal-
ance. Additional details are given in Appendix A. The results of
simulations of CAA(t) and k(t) for an equilibrium system with
both motor catalyzed reactions and uncatalyzed fluid phase
reactions are shown in Figs. 3 and 4. The structures of these
functions are similar to those of systems where no fluid phase
reaction is present, although, as expected, the decay is more
rapid because of the increased bulk phase reactivity of the
system.

A. Continuum description with fluid phase reaction

We may again compare the microscopic simulation results
with those predicted from a continuum model. The continuum
description in Sec. IV C is easily extended to include a fluid
phase reaction. As earlier, we suppose that the system is ini-
tially displaced from chemical equilibrium by a small amount
and compute the decay to equilibrium. The reaction-diffusion
equation for cα(r, t) now takes the form

∂cα(r, t)
∂t

= D∇2cα(r, t) + να(k2cA(r, t) − k−2cB(r, t)), (55)

and the reaction at the surface of the motor is accounted for
through the radiation boundary condition in Eq. (28).

Following the earlier derivation, Eq. (55) can be integrated
over the volume of the system outside of the Janus particle with
radius R to obtain

d δNA(t)
dt

= −(k2 + k−2)δNA(t) − k0 ψ(R, θ, t)
s
. (56)

From the solution for the Laplace transform of ψ(R, θ, t)
outlined in Appendix B, we may obtain δN̂A(z) and k̂(z), which
are given by

δN̂A(z) =
δNA(0)

Dν2(z)

[
1 −

a0(z)
V

k0(1 + ν(z)R)

Dν2(z)

]
, (57)

where ν2(z) = (z + k2 + k−2)/D, and

k̂(z) =
V (k2 + k−2)

z
+

Dν2(z)
z

×
Va0(z)k0(1 + ν(z)R)

VDν2(z) − a0(z)k0(1 + ν(z)R)
. (58)

The short-time limit of the rate coefficient is k(0+) = V (k2

+ k−2) + k0/2 since limz→∞ν(z)R a0(z) = 1/2. The results
for δNA(t) and k(t) obtained by numerical Laplace inversion
are plotted in Figs. 3 and 4 and agree well with the micro-
scopic simulations at long times but as expected exhibit notable
differences at short times.

B. Nonequilibrium fluid phase reaction

It is possible that the reactive A and B species may par-
ticipate in other chemical reactions that are themselves taking
place under nonequilibrium conditions. For example, suppose

that the chemical reaction E +A
k3


k−3

F +B takes place in the fluid

phase and that the E and F chemical species are pool species
whose concentrations are fixed and may be incorporated into
the k±3 rate constants so that kn = k3cE and k−n = k3cF . By
varying the concentrations of the pool species, one can break
detailed balance since k0

+/k
0
− , kn/k−n and maintain the system

in a nonequilibrium state.
In a nonequilibrium steady state produced in this way,

concentration gradient fields of chemical species will be gen-
erated and motor self-propulsion will take place. For example,
we have simulated systems with energy parameters εA = 1, εB

= 0.5, and εS = 0.5 and motor catalytic reaction probabilities p±
= 0.5 for two choices of k±n that break detailed balance. When
(a) kn = 10−3 and k−n = 10−2, we find that the diffusiophoretic
velocity is Vd = 0.0017, while for the other choice where (b)
kn = 10−2, k−n = 10−3, we find that the motor moves with
the negative velocity Vd = −0.0016, showing that the motor
motion can be controlled by altering how the system is driven
out of equilibrium.

VII. CONCLUSION

The coarse-grain microscopic model incorporating
reversible reaction kinetics on the catalytic face of a Janus par-
ticle was shown to provide a description of the dynamics that
conserves mass, momentum, and energy with reactive events
that satisfy microscopic reversibility. Consequently, funda-
mental features of the dynamics of these particles could be
investigated. Our results for a reactive Janus particle in an equi-
librium system showed that the model is able to capture all of
the properties expected in such a system, namely, a binomial
distribution of chemical species and a generalized chemical
rate law with a time-dependent rate coefficient that has a long-
time power law decay due to coupling of the reaction to solute
diffusion modes.

We also showed that when the system is driven out of
equilibrium by coupling it to reservoirs with constant con-
centrations of chemical species or by out-of equilibrium fluid
phase reactions, detailed balance is broken and the Janus par-
ticle can become a motor and move autonomously by self-
diffusiophoresis. The results of the microscopic model were
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compared with deterministic and stochastic theories based on
continuum reaction-diffusion and hydrodynamic equations of
motion. In particular, when the Janus motor is subject to an
external force, we were able to verify the existence of an effect
that is reciprocal to diffusiophoresis that causes the reaction
rate to depend on the external force.

Our study has served to document that the theoretical
underpinnings of the microscopic model accurately describe
the dynamics of Janus particles under both equilibrium and
nonequilibrium conditions. It also showed how the model
can be used to complement and extend the predictions of
phenomenological theories. The microscopic model can be
extended in various ways by changing the geometry of the
motor, implementing other motor and fluid phase reaction
mechanisms, and environmental and boundary conditions. As
such, the microscopic framework presented here, which satis-
fies the basic principles of dynamics, can be applied to other
active systems.
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APPENDIX A: SIMULATION METHOD
AND PARAMETERS

The Janus motor is made from Nb = 2681 motor beads,
each with mass m and radius σ, randomly distributed within
a sphere of radius RJ = 4 σ. The effective radius of the Janus
motor is R = RJ + σ = 5σ. To ensure spherical symmetry,
the equilibrium coordinates of the Nb beads are chosen such
that the diagonal elements of the moment of inertia tensor are
approximately I = 2

5 mJR2
J with small off-diagonal elements,

where mJ = m Nb is the total mass. In a selected equilibrium
configuration, two beads are linked by a harmonic spring with
spring constant ks = 50 kBT /σ2 if their separation is less than
2σ. The Janus motor is placed in a cubic periodic box of linear
size L consisting of N = NA + NB + NS solvent particles,
and the average solvent density is n0 = N /L3 ≈ 20. For the
simulations that deal with the binomial distribution L = 20
and N = 153 417 with NA + NB = 75 368 and NS = 78 049,
whereas other simulations described in this paper have a box
of size L = 50 and N = 2 488 439. In the simulations with bulk
reactions, the total number of A and B particles is chosen to
be NA + NB = 1 244 219 and NS = 1 244 220 inert solvent S
particles with L = 50. The interaction strengths of the repulsive
interactions between motor beads and fluid particles as well as
the reaction probabilities for specific simulations are given in
the text.

Interactions among solvent particles are described by mul-
tiparticle collision (MPC) dynamics comprising streaming and
collision steps at discrete time intervals τ = 0.1 t0. During each
collision step, fluid particles are sorted into a grid of cubic cells

with linear size σ. The postcollision velocities of particles i
in a cell ξ are given by v′i = Vξ + R̂(vi − Vξ ), where Vξ is
the center of mass velocity of particles in a cell ξ and R̂ is a
rotation operator about a random axis by an angle of 120◦. In
the streaming step, the system evolves by Newton’s equations
of motion with forces determined from the potential function,
U(r, α), using a time step of δt = 0.005 t0. The mean free path
for MPC is 0.1 in the simulation.

The common diffusion constant of the solvent particles
determined from the measurements of the mean-squared dis-
placement is found to be D = 0.06 in dimensionless units.
Using the MPC expression for the viscosity,33,34,43 one gets
η = 16.58, the kinematic viscosity of the fluid is ν = η/c0

= 0.829, and the Schmidt number is Sc = ν/D ' 14.
In the simulations with an external force and torque in

Sec. V B, a thermostat and an effective no-slip boundary are
needed in order to keep the system temperature constant and
avoid a systematic drift of the entire system in a periodic
simulation box. Specifically, in the MPC collision steps, the
velocities of the particles outside r = Rm are drawn from a
Maxwell-Boltzmann distribution with zero mean velocity and
variance

√
kBT/m. In this way, the system inside r = Rm is

effectively in contact with a heat bath with temperature T with
a vanishing average velocity at the boundary at r = Rm.

In the simulations with chemical reactions in the
fluid phase, reactive multiparticle collision dynamics42 was

employed and a bulk reaction A
k2


k−2

B was introduced, with

k2 and k−2 being the forward and reverse rate constants,
respectively. The fluid phase reactions are carried out at the
multiparticle collision steps, where forward and reverse reac-
tions take place independently in each cell with probabilities

pξ2 = qξ2 (1 − e−qξ
2 )/q0 and pξ

−2 = qξ
−2(1 − e−qξ

−2 )/q0, respec-

tively. Here q0 = qξ2 + qξ
−2 with qξ2 = k2N ξ

B and qξ
−2 = k−2N ξ

A ,

where N ξ
A and N ξ

B are the total number of A and B particles in
cell ξ.

APPENDIX B: SOLUTION OF REACTION-DIFFUSION
EQUATION

In this appendix, we present the solution of the evolution
equations for the concentration fields of the A and B species in

a reaction-diffusion system with a fluid phase reaction A
k2


k−2

B,

as well as a catalytic reaction on the motor surface. We restrict
ourselves to systems where detailed balance is satisfied so
that k0

+/k
0
− = Keq, and if uncatalyzed fluid phase reactions

are present, k2/k−2 = k0
+/k

0
− = Keq. The results in Sec. IV C

for a system with no fluid phase reaction may be obtained from
the solutions in this appendix by setting k2 = k−2 = 0.

Including the fluid phase reaction, the reaction diffusion
equation for cα (α = A, B) is given by Eq. (55) and this equation
must be solved subject to the radiation boundary condition
(28). Making the change of variables,

c = cA + cB, ψ = (k0
+cA − k0

−cB)/k0, (B1)

the coupled reaction-diffusion equations and their boundary
conditions take the uncoupled forms
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∂c(r, t)
∂t

= D∇2c(r, t), Dn̂ · ∇c(r, t)��R = 0, (B2)

and

∂ψ(r, t)
∂t

= D∇2ψ(r, t) − (k2 + k−2)ψ(r, t),

Dn̂ · ∇ψ(r, t)��R =
k0

4πR2
ψ(R, θ, t)Θ(θ).

(B3)

Note that if the change of variables cA = ψ + k0
−c/k0 and

cB = −ψ + k0
+c/k0 is substituted into the right-hand side of the

reaction-diffusion equation (55), we obtain

k2cA(r, t) − k0
−2cB(r, t) = (k2 + k−2)ψ

− c(k0
+/k

0
− − k2/k−2)k0

−k−2/k
0, (B4)

and hence, it is only when the system satisfies detailed balance
that the equations and their boundary conditions decouple in
the new variables.

We are interested in the solutions of these equations for a
system that is initially slightly displaced from chemical equi-
librium so that δNA(0) = NA(0) −Neq

A = −δNB(0). In terms of
the new variables, we can write

δNA(t) =
∫

R
dr δcA(r, t) =

∫
R

dr ψ(r, t) = −δNB(t), (B5)

where the integrals are over the volume outside of the
Janus particle; thus, the information needed to compute these
quantities can be obtained from the knowledge of ψ(r, t).

The Laplace transform of Eq. (B3) is

(
∇2 − ν2(z)

)
ψ̂(r, z) = −

1
D
ψ(r, 0), (B6)

where ν2(z) = (z + k2 + k−2)/D and ψ(r, 0) = δNA/V =−δNB/V,
which is independent of r for this choice of the initial condi-
tion. Henceforth we shall not indicate the dependence of the
parameter ν on the Laplace variable z. This equation can be
solved using the Green function method. The Green function
ĝ(r, r′, z) for the axisymmetric system satisfies

(
∇2 − ν2

)
ĝ(r, r′, z) = −

δ(r − r ′)

2πr ′2

∞∑
`=0

2` + 1
2

P`(µ)P`(µ
′),

(B7)
subject to the radiation boundary conditions specified in
Eq. (B3) at the surface of the motor and assuming ĝ(r, r′, z)
vanishes far from the Janus motor. In Eq. (B7), P`(x) are the
Legendre polynomials, r and r ′ are radial distances from the
center of the Janus particle in a spherical polar coordinate sys-
tem with polar angles θ and θ ′ measured from a polar axis
aligned with the unit vector û (see Fig. 1), and µ = cos θ and
µ′ = cos θ ′.

A general Green function that vanishes as r → Rm and
r ′→ Rm can be written in terms of modified spherical Bessel
functions k` and i` that satisfy the radial equation( d2

dr2
+

2
r

d
dr
−

(
`(` + 1)

r2
+ ν2

))
y`(νr) = 0. (B8)

Exploiting the axial symmetry of the Janus motor system, the
Green function can be written in terms of the two independent
radial solutions as

ĝ(r, r′, z) =
ν

2π

∞∑
`

2` + 1
2

P`(µ)
(
h`(νr)i`(νr ′)H(r − r ′)

+ i`(νr)h`(νr ′)H(r ′ − r)
)
P`(µ

′) +
ν

2π

∑
`,m

2` + 1
2

×P`(µ)h`(νr)Γ`mhm(νr ′)Pm(µ′)
2m + 1

2
,

where H(r) is the Heaviside function, h`(r) = k`(r) − αli`(r)
with αl = k`(νRm)/i`(νRm), and Γ is a symmetric matrix deter-
mined by the radiation boundary conditions. Note that in the
limit that Rm →∞, α` → 0 and hence h` → k` . Inserting this
form for ĝ(r, r′, z) into the radiation boundary condition in
Eq. (B3), we find that

Γ`m =
1
νR

1
h`(νR)hm(νR)

2
2` + 1

2
2m + 1

(M−1)`m

−
2

2m + 1
i`(νR)
h`(νR)

δ`m,

where the z-dependent matrix M is defined as

M`m =
2Q`(νR)
2` + 1

δ`m +
k0

kD

∫ 1

0
dµ Pm(µ)P`(µ) (B9)

with

Q`(νR) =
νR

(
k`+1(νR) + αli`+1(νR)

)
k`(νR) − αli`(νR)

− `.

The matrix M defined above may be easily evaluated using the
Wigner 3j-symbols,44

∫ 1

0
dµPl(µ)Pm(µ) =

|l+m |∑
n= |l−m |

(
l m n
0 0 0

)2

(2n + 1)En, (B10)

where E0 = 1 and for n ≥ 1,

En =

∫ 1

0
dµ Pn(µ) =

Pn−1(0) − Pn+1(0)
2n + 1

. (B11)

With this form of the matrix Γ, the Green function can be
written as

ĝ(r, r′, z) =
ν

2π

∞∑
`=0

2` + 1
2

P`(µ)ĝd
` (r, r ′)P`(µ

′) +
1

2πR

×
∑
`,m

P`(µ)
h`(νr)
h`(νR)

(M−1)`m
hm(νr ′)
hm(νR)

Pm(µ′),

(B12)

where

ĝd
` (r, r ′) = i`(νr)h`(νr ′)H(r ′ − r) + h`(νr)i`(νr ′)

×H(r − r ′) − h`(νr)
i`(νR)
h`(νR)

h`(νr ′). (B13)

Using the Green function for a spatially uniform ini-
tial fluctuation ψ(0) = δNA(0)/V, in the limit Rm → ∞, we
obtain the z-dependent concentration fluctuation fields and the
particle number fluctuations from
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ψ̂(r, z) =
ψ(0)

Dν2

[
1 −

k0(νr)
k0(νR)

+ 2(1 + νR)

×

∞∑
`=0

k`(νr)
k`(νR)

(M−1)0`P`(µ)
]
. (B14)

The radiation boundary condition implies that

1 − 2(1 + νR)M−1
00 =

k0

kD

∞∑
`=0

(M−1)0`E` =
k0

kD
a0(z),

where we have defined the vector components ak(z)
=

∑
`(M

−1)k`E` . From the integral of Eq. (B14) over the vol-
ume outside the Janus particle, we may obtain Eq. (57) and,
setting k±2 = 0, Eq. (31) of the main text.
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G. Volpe, Rev. Mod. Phys. 88, 045006 (2016).
18B. V. Derjaguin, G. P. Sidorenkov, E. A. Zubashchenkov, and E. V. Kiseleva,

Kolloidn. Zh. 9, 335 (1947).
19S. S. Dukhin and B. V. Derjaguin, in Surface and Colloid Science, edited

by E. Matijevic (Wiley, New Yok, 1974), Vol. 7, p. 365.
20J. L. Anderson, M. E. Lowell, and D. C. Prieve, J. Fluid Mech. 117, 107

(1982).
21J. L. Anderson, Annu. Rev. Fluid Mech. 21, 61 (1989).
22J. L. Anderson and D. C. Prieve, Langmuir 7, 403 (1991).
23R. Golestanian, T. B. Liverpool, and A. Ajdari, Phys. Rev. Lett. 94, 220801

(2005).
24G. Oshanin, M. N. Popescu, and S. Dietrich, J. Phys. A: Math. Theor. 50,

134001 (2017).
25P. Gaspard and R. Kapral, J. Chem. Phys. 147, 211101 (2017).
26P. Gaspard and R. Kapral, J. Chem. Phys. 148, 134104 (2018).
27Given this effective particle-based description, its dynamics is treated

microscopically and henceforth we refer to the dynamics as microscopic.
28P. de Buyl and R. Kapral, Nanoscale 5, 1337 (2013).
29P. de Buyl, e-print arXiv:1802.03264v1 (2018).
30M. Yang, A. Wysocki, and M. Ripoll, Soft Matter 10, 6208 (2014).
31M.-J. Huang, J. Schofield, and R. Kapral, Soft Matter 12, 5581 (2016).
32S. Thakur and R. Kapral, J. Chem. Phys. 135, 024509 (2011).
33A. Malevanets and R. Kapral, J. Chem. Phys. 110, 8605 (1999); 112, 7260

(2000).
34R. Kapral, Adv. Chem. Phys. 140, 89 (2008).
35R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford University

Press, New York, 2001).
36R. Kapral, Adv. Chem. Phys. 48, 71 (1981).
37L. Onsager, Phys. Rev. 37, 405 (1931); 38, 2265 (1931).
38F. C. Collins and G. E. Kimball, J. Colloid Sci. 4, 425 (1949).
39A. Ajdari and L. Bocquet, Phys. Rev. Lett. 96, 186102 (2006).
40P. Romanczuk, M. Bär, W. Ebeling, B. Lindner, and L. Schimansky-Geier,

Eur. Phys. J.: Spec. Top. 202, 1 (2012).
41J. T. Hynes, R. Kapral, and M. Weinberg, J. Chem. Phys. 67, 3256

(1977).
42K. Rohlf, S. Fraser, and R. Kapral, Comput. Phys. Commun. 179, 132

(2008).
43G. Gompper, T. Ihle, D. M. Kroll, and R. G. Winkler, Adv. Polym. Sci. 221,

1 (2009).
44A. Messiah, Quantum Mechanics (North Holland, Amsterdam, The Nether-

lands, 1962), Vol. 2, pp. 1054–1060.

https://doi.org/10.1146/annurev.bb.04.060175.001003
https://doi.org/10.1002/anie.200504313
https://doi.org/10.1021/ja047697z
https://doi.org/10.1039/b414896g
https://doi.org/10.1039/b414896g
https://doi.org/10.1002/anie.200461890
https://doi.org/10.1002/anie.200461890
https://doi.org/10.1002/smll.200901976
https://doi.org/10.1103/physrevlett.108.268303
https://doi.org/10.1103/physrevlett.108.268303
https://doi.org/10.1063/1.4773981
https://doi.org/10.1016/j.nantod.2013.08.009
https://doi.org/10.1021/nl500068n
https://doi.org/10.1039/c4sm00340c
https://doi.org/10.1002/anie.201406096
https://doi.org/10.1103/revmodphys.88.045006
https://doi.org/10.1017/s0022112082001542
https://doi.org/10.1146/annurev.fl.21.010189.000425
https://doi.org/10.1021/la00050a035
https://doi.org/10.1103/physrevlett.94.220801
https://doi.org/10.1088/1751-8121/aa5e91
https://doi.org/10.1063/1.5008562
https://doi.org/10.1063/1.5020442
https://doi.org/10.1039/c2nr33711h
https://arxiv.org/abs/1802.03264
https://doi.org/10.1039/c4sm00621f
https://doi.org/10.1039/c6sm00830e
https://doi.org/10.1063/1.3607408
https://doi.org/10.1063/1.478857
https://doi.org/10.1063/1.481289
https://doi.org/10.1002/9780470371572.ch2
https://doi.org/10.1103/physrev.37.405
https://doi.org/10.1103/physrev.38.2265
https://doi.org/10.1016/0095-8522(49)90023-9
https://doi.org/10.1103/physrevlett.96.186102
https://doi.org/10.1140/epjst/e2012-01529-y
https://doi.org/10.1063/1.435242
https://doi.org/10.1016/j.cpc.2008.01.027
https://doi.org/10.1007/12_2008_5



