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Abstract.  A finite-time fluctuation theorem for the diusion-influenced 
surface reaction A � B is investigated for spherical and Janus catalytic 
particles. The finite-time rates and thermodynamic force are analytically 
calculated by solving diusion equations with the special boundary conditions 
of the finite-time fluctuation theorem. Theory is compared with numerical 
simulations carried out with two dierent methods: a random walk algorithm 
and multiparticle collision dynamics.
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1. Introduction

Away from equilibrium, currents of energy and matter flow across open systems. 
Because of the atomic structure of matter, these currents manifest fluctuations, which 
can be characterized by their large-deviation properties within the framework of prob-
ability theory. Furthermore, the motions of microscopic particles obey fundamental 
time-reversal symmetry, which implies that the current fluctuations satisfy the so-
called fluctuation theorems [1–15]. These theorems are usually obtained in the long-
time limit. Remarkably, fluctuation theorems may also hold at every finite time under 
specific conditions. This is the case for Markov jump processes describing linear reac-
tions in homogeneous systems [16]. Recently, a finite-time fluctuation theorem was 
established for diusion-influenced surface reactions in spatially extended systems 
described by stochastic partial dierential equations [17].

Fluctuation theorems play a key role in the determination of the thermodynamic 
forces driving systems into nonequilibrium steady states. Under such circumstances, 
the measurement of the driving forces is carried out in the long-time limit. In systems 
where a finite-time fluctuation theorem holds, the driving forces are defined at every 
finite time, and this allows one to understand how they vary in time and to determine 
the time scale on which they converge to their asymptotic values.

The purpose of this paper is to investigate aspects of the finite-time fluctuation 
theorem for the diusion-influenced surface reaction A � B on spherical and Janus 
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catalytic particles. We deduce analytical expressions for the time dependence of the 
thermodynamic force of the reactive process by solving macroscopic diusion equa-
tions with the special boundary conditions obtained in [17] and specified in detail in 
the next section. This solution provides the large-deviation properties of the random 
number of reactive events occurring during finite-time intervals.

The physical systems to which our analysis applies are catalytic colloidal particles 
either immobilized or suspended in a solution that contains reactive solute species 
whose concentrations far from the catalytic particles are fixed at specified values by 
reservoirs to establish a nonequilibrium steady state. The time-dependent anity can 
be determined from measurements of the average value and variance of the net number 
of reactions that produce product in time intervals [0, t] with the system maintained in 
the steady state. The theory applies to a fixed colloidal particle in solution; however, 
even if this is not the case in experiments, since colloidal particles are typically much 
larger than the molecular-scale solute and solvent particles, their motion is small and 
negligible, and comparisons with the theory that assumes immobile catalytic particles 
can be made. This is even true for self-propelled Janus motors provided their velocity 
is not too large to lead to significant violations of the theoretical conditions.

The theoretical results are compared with numerical simulations carried out using 
two dierent methods. In the first method, we consider a fixed spherical colloidal par-
ticle where the solute dynamics is simulated with particles carrying a color (A or B) and 
independently diusing according to a random walk algorithm between the reservoir 
and the colloid catalytic surface where they may interchange their color. In the second 
method, the simulation is performed using multiparticle collision dynamics [18]. In this 
method, the system comprises reactive and solvent particles, together with a spherical 
composite catalytic particle made from a collection of linked beads [19], some of which 
catalyze the reaction A � B. Here the colloidal particle is not fixed but may diuse 
in solution but its motion is slow on the scale of the diusive solute dynamics and the 
theory is applicable for the reasons noted above.

The paper is organized as follows. The principal results of the finite-time fluctuation 
theorem are summarized in section 2. The theory is applied to a spherical catalytic 
particle in section 3, and a Janus catalytic particle in section 4. In these sections, the 
deterministic diusion equations are solved for the geometries of the particles in these 
systems. Complete analytic expressions are obtained for the time dependence of the 
rates and the corresponding anity. For each system, theory is compared with numer-
ical simulations. Section 5 gives concluding remarks and perspectives.

2. The finite-time fluctuation theorem

We consider a system where the molecular species A and B diuse in a  three-dimensional 
domain V  extending between three surfaces ∂V = Scat ∪ Sinert ∪ Sres. The reaction 
A � B takes place at the catalytic surface Scat. The molecules A and B are reflected at 
the inert surface Sinert. Moreover, they enter and exit the domain V  at the surface Sres 
in contact with a reservoir. Accordingly, the concentrations (i.e. the densities) ck of the 
species k ∈ {A,B} are ruled by the fluctuating diusion equations

https://doi.org/10.1088/1742-5468/aaeda1
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∂t ck +∇∇∇ · jk = 0 , with jk = −Dk∇∇∇ck + ηηηk , (1)
and the boundary conditions

if r ∈ Scat : DA ∂⊥cA(r, t) = −DB ∂⊥cB(r, t) = κ+cA(r, t)− κ−cB(r, t) + ξ(r, t) , (2)

if r ∈ Sinert : ∂⊥ck(r, t) = 0 , (3)

if r ∈ Sres : ck(r, t) = c̄k , (4)
where Dk are the diusion coecients, ∂⊥ is the gradient in the direction normal to the 
surface and oriented towards the interior of the domain V , κ± are the surface reaction 
rate constants, and c̄k the concentration values at the reservoir. The Gaussian noises 
associated with bulk diusion are characterized by

〈ηηηk(r, t)〉 = 0 , 〈ηηηk(r, t)⊗ ηηηk′(r
′, t′)〉 = 2Dk ck(r, t) δkk′ δ(r− r′) δ(t− t′)1 ,

 

(5)

with k, k′ ∈ {A,B} and the 3× 3 identity matrix 1, while the Gaussian noise associated 
with surface reaction satisfies

〈ξ(r, t)〉 = 0 , δs(r) 〈ξ(r, t) ξ(r′, t′)〉 δs(r′) = (κ+cA + κ−cB) δ
s(r) δ(r− r′) δ(t− t′) , (6)

where δs(r) is the surface delta distribution, which is nonvanishing if r ∈ Scat [20].
We consider the probability P (n, t) that the net number n of reactive events A → B 

have occurred during the time interval [0, t] for the process evolving under stationary 
conditions with fixed boundary concentrations c̄A and c̄B at the reservoir. As proved in 
[17], this probability distribution satisfies the finite-time fluctuation theorem

P (n, t)

P (−n, t)
= exp(At n) (7)

at every time. What is remarkable about this result is that the ratio of the probabilities 
of opposite fluctuations is exactly given by an exponential function of n, despite of the 
nonGaussian character of the probability distribution P (n, t) [17]. Here, the coecient 
At—usually referred to as the anity—depends on time and takes the form

At = ln
W

(+)
t

W
(−)
t

 (8)

where W
(±)
t  are the time-dependent rates of the transitions n → n± 1 in the counting 

statistics of reactive events during the time interval [0, t]. In [17], these rates are shown 
to have the analytical expressions

W
(±)
t = W (±)

∞ +
1

t
Ψ(t) , (9)

where their asymptotic values are given by

W (+)
∞ = Σκ+c̄A , W (−)

∞ = Σκ−c̄B , (10)

and their time dependence by the function

https://doi.org/10.1088/1742-5468/aaeda1


Finite-time fluctuation theorem for diusion-influenced surface reactions on spherical and Janus catalytic particles

5https://doi.org/10.1088/1742-5468/aaeda1

J. S
tat. M

ech. (2018) 123206

Ψ(t) = �2κ+κ−

[
c̄B
D2

A

ΥA(t) +
c̄A
D2

B

ΥB(t)

]
. (11)

The asymptotic values (10) of the rates can be calculated by expressing the station-
ary concentration fields for k = A,B as

〈ck〉st = c̄k +
νk�

Dk

(κ+c̄A − κ−c̄B)φ , (12)

where νA = −1 and νB = +1 are the stoichiometric coecients of the surface reaction 
and φ is the solution of the Laplace equation,

∇2φ = 0 , (13)
with the boundary conditions

(∂⊥φ)cat = �−1(φ− 1)cat , (∂⊥φ)inert = 0 , and (φ)res = 0 , (14)

involving the characteristic length of the diusion-influenced surface reaction,

� ≡
(
κ+

DA

+
κ−

DB

)−1

. (15)

The calculation carried out in [17] gives the results (10) expressed in terms of the 
eective catalytic surface area,

Σ =

∫

cat

dS (1− φ) . (16)

As shown in [17], the time-dependent contribution (11) to the rates (9) can be 
obtained by solving the diusion equations,

∂tfk = Dk∇2fk , (17)
with the boundary and initial conditions

(∂⊥fk)cat =

(
κ+

DA

fA +
κ−

DB

fB

)

cat

, (∂⊥fk)inert = 0 , ( fk)res = 0 , ( fk)t=0 = φ ,

 (18)
for k = A,B. By integration over the volume V  of the system, the solutions fk give the 
time-dependent functions

Υk(t) =

∫
dV φ(r) [φ(r)− fk(r, t)] , (19)

entering the expression (11). In this way, we can determine the probability distribution 
P (n, t) and establish the finite-time fluctuation theorem (7) [17].

In the long-time limit, the finite-time anity (8) converges to the value

A∞ = ln
W

(+)
∞

W
(−)
∞

= ln
κ+c̄A
κ−c̄B

, (20)

https://doi.org/10.1088/1742-5468/aaeda1
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which is the control parameter for driving the system away from equilibrium. Indeed, 
thermodynamic equilibrium happens if κ+c̄A = κ−c̄B, in which case the anity (20) is 
equal to zero. The mean current, i.e. the mean net reaction rate, is given by

J = W
(+)
t −W

(−)
t = Σ(κ+c̄A − κ−c̄B) , (21)

which does not depend on time because of the expression (9) for the rates. The mean 
net reaction rate can be written as

J = Σκ−c̄B (expA∞ − 1) (22)
in terms of the control parameter (20) of the nonequilibrium steady state. However, the 
diusivity of the current fluctuations

Dt =
1

2

(
W

(+)
t +W

(−)
t

)
=

Σ

2
(κ+c̄A + κ−c̄B) +

1

t
Ψ(t) (23)

has a time dependence coming from the function (11). This time dependence arises 
from the fact that the counting statistics of the reactive events depends not only on the 
state of the system at the initial time t  =  0 when the statistics starts, but also on the 
time interval [0, t], over which the statistics is carried on. In this regard, we note that 
the rates (9) are determined at early times by the stationary solutions (12) according to

W
(+)
t =

∫

cat

dS κ+〈cA〉st +O(t) , (24)

W
(−)
t =

∫

cat

dS κ−〈cB〉st +O(t) . (25)

However, the counting at longer times is conditioned not only by the initial state, but 
also by the number of reactive events that have occurred since the beginning of the 
counting. Consequently, the finite-time rates change depending on the diusive trans-
port associated with the reactive events during the time interval [0, t], as described by 
equations (17) and (18).

As schematically depicted in figure 1, the probability distributions P (±n, t) shift 
in opposite directions under nonequilibrium conditions, because their mean values are 
given by 〈n〉t = ±J t in terms of the mean current (21). Defining the entropy produc-
tion rate of the counting statistics in terms of the Kullback–Leibler divergence between 
the probability distributions P (±n, t), we find that it is given by diS/dt = kBJAt, 
which converges in the long-time limit towards the expected entropy production rate 
of the reactive process, kBJA∞ [17]. If the concentrations at the reservoir satisfy the 
equilibrium condition, we have that A∞ = 0, so that the entropy production rate van-
ishes together with the mean net reaction rate (22). Detailed balance is thus recovered 
at equilibrium.

In the following sections, these results, proved in [17], are applied to spherical and 
Janus catalytic particles.

https://doi.org/10.1088/1742-5468/aaeda1


Finite-time fluctuation theorem for diusion-influenced surface reactions on spherical and Janus catalytic particles

7https://doi.org/10.1088/1742-5468/aaeda1

J. S
tat. M

ech. (2018) 123206

3. Spherical catalytic particle

3.1. Theory

We consider a spherical catalyst of radius r  =  R centered on the origin of the refer-
ence frame, and a reservoir for species A and B that is located at a sphere of radius 
r = L � R, r denoting the radial distance from the origin. For this spherical geometry, 
the Laplacian operator in the problem (13) and (14) for the stationary solution reduces 
to

∇2φ =
1

r

d2

dr2
(r φ) = 0 , (26)

while ∂⊥ = d/dr. Hence, the equations can be solved by setting φ(r) = u(r)/r, yielding 
the solution

φ(r) = R
Da

∆̃

(
1

r
− 1

L

)
, (27)

where

Da ≡ R

�
= R

(
κ+

DA

+
κ−

DB

)
 (28)

is the Damköhler number defined in terms of the characteristic length (15), and

∆̃ ≡ 1 + Da

(
1− R

L

)
. (29)

The eective catalytic surface area (16) is given by Σ = 4πR2/∆̃ = 4πR2/[1 + Da× 
(1−R/L)]. Setting fk(r, t) = vk(r, t)/r, the functions (19) can be expressed as

Υk(t) = 4π

∫ L

R

dr u(r) [u(r)− vk(r, t)] . (30)

The solutions of equations (17) and (18) can be expanded as

P(−n,t )

0 n

P(n,t )

Figure 1. Schematic representation of the probability distributions P (±n, t) of 
opposite fluctuations in the number n of reactive events occurring during the time 
interval [0, t] under nonequilibrium conditions. These distributions shift away from 
the origin n  =  0 as time t increases, so that their overlap rapidly decreases.

https://doi.org/10.1088/1742-5468/aaeda1
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vk(r, t) =
∞∑
i=1

ai e
−Dkq

2
i t sin qi(L− r) + χk

∞∑
i=1

ãi e
−Dk q̃

2
i t sin q̃i(L− r) (31)

with the coecients χA = DA/κ+ and χB = −DB/κ− and where the eigenvalues are the 
roots of

qiR = −∆ tan qi(L−R) , (32)

q̃iR = − tan q̃i(L−R) , (33)
with ∆ ≡ 1 + Da = limL→∞ ∆̃ and qi, q̃i > 0. Since the solutions (31) satisfy the initial 
conditions vk(r, t = 0) = u(r) for k = A ,B, we find that the expansion coecients are 
given by

ai =
4R2 [sin qi(L−R)− qi(L−R) cos qi(L−R)]

qiL�∆̃ [2qi(L−R)− sin 2qi(L−R)]
 (34)

and ãi = 0. Using equation (32), the functions (19) are obtained as

Υk(t) =
8πR2

�2(L−R)

∞∑
i=1

1− e−Dkq
2
i t

q2i

[
q2i +

∆∆̃
R2(1−R/L)

] .
 (35)

Therefore, the rates are given by equation (9) with

W (+)
∞ =

4πR2

∆̃
κ+c̄A , W (−)

∞ =
4πR2

∆̃
κ−c̄B , (36)

and

Ψ(t) =
4πR5κ+κ−(
∆∆̃

)3/2

(
1− R

L

)3/2 [
c̄B
D2

A

Ωs (γAt) +
c̄A
D2

B

Ωs (γBt)

]
 (37)

with the function

Ωs(τ) ≡
2R

L
√

∆∆̃(1−R/L)

∞∑
i=1

1− e−Q2
i τ

Q2
i (Q

2
i + 1) (38)

obtained after the substituting Qi = qiR
√
(L−R)/(L∆∆̃) and defining the rates

γk ≡
Dk∆∆̃

R2 (1−R/L)
. (39)

Using these results, Ψ(t) can be determined by numerical evaluation of the sums.
Using the long-time limit of equations (30) and (31), we find that the function (11) 

is given by

Ψ(∞) =
4πR4Lκ+κ−

3∆̃2

(
1− R

L

)3 (
c̄A
D2

B

+
c̄B
D2

A

)
. (40)

https://doi.org/10.1088/1742-5468/aaeda1
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We see that this asymptotic value is proportional to the distance L to the reservoir and 
thus diverges in the limit L → ∞. Comparing equation (40) with the limit t → ∞ of 
equation (37), we get

Ωs(∞) =
L∆3/2

3R∆̃1/2

(
1− R

L

)3/2

. (41)

Consequently, on the long time scale D−1
k L2 � t for k ∈ {A,B}, the finite-time anity 

behaves as

At = ln
κ+c̄A + 1

t
R2Lκ+κ−

3∆̃

(
1− R

L

)3 ( c̄A
D2

B
+ c̄B

D2
A

)
+O

(
t−1e−DAq21t

)
+O

(
t−1e−DBq

2
1t
)

κ−c̄B + 1
t
R2Lκ+κ−

3∆̃

(
1− R

L

)3 ( c̄A
D2

B
+ c̄B

D2
A

)
+O

(
t−1e−DAq21t

)
+O

(
t−1e−DBq

2
1t
) . (42)

In most experimental situations L � R, and in this case, the rates (36) take the 
well-defined values

W (+)
∞ =

4πR2

1 + Da
κ+c̄A , W (−)

∞ =
4πR2

1 + Da
κ−c̄B , (43)

while the time-dependent function (37) becomes

Ψ(t) =
4πR5κ+κ−

(1 + Da)3

[
c̄B
D2

A

Ω (γAt) +
c̄A
D2

B

Ω (γBt)

]
, (44)

where γk = DkR
−2(1 + Da)2 and the function (38) is given by its integral approximation,

Ω(τ) =
1

π

∫ +∞

−∞

1− e−Q2τ

Q2 (1 +Q2)
dQ = 2

√
τ

π
− 1 + eτ erfc(

√
τ) . (45)

This function has the following asymptotic expansion for τ → ∞

Ω(τ) = 2

√
τ

π
− 1 +

1√
πτ

+O

(
1

τ 3/2

)
, (46)

and Taylor series around τ = 0

Ω(τ) = τ − 4

3
√
π
τ 3/2 +

1

2
τ 2 − 8

15
√
π
τ 5/2 +O(τ 3) . (47)

Consequently, the function (44) increases without limit as 
√
t. However, it is divided by 

the time t in the expression (9) for the rates, which thus have the well-defined values 
(43) in the long-time limit. In simulations of the dynamics, one may have to account 
for system finite-size eects and the validity of these asymptotic expressions must be 
tested in these situations, but the more general results should apply.

If L � R, on the intermediate time scale D−1
k R2/(1 + Da)2 � t � D−1

k L2, the rates 
have the following expressions

W
(±)
t = W (±)

∞ +
2√
πt

4πR4κ+κ−

(1 + Da)2

(
c̄A

D
3/2
B

+
c̄B

D
3/2
A

)
+O(t−1) (48)

in terms of their asymptotic values (43). Accordingly, the anity behaves as

https://doi.org/10.1088/1742-5468/aaeda1
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At = ln

κ+c̄A + 2√
πt

R2κ+κ−
1+Da

(
c̄A

D
3/2
B

+ c̄B

D
3/2
A

)
+O(t−1)

κ−c̄B + 2√
πt

R2κ+κ−
1+Da

(
c̄A

D
3/2
B

+ c̄B

D
3/2
A

)
+O(t−1)

. (49)

In the long-time limit, the anity (8) thus converges towards the expected asymptotic 
value (20).

On the short time scale t � D−1
k R2/(1 + Da)2, equations (24) and (25) with equa-

tion (12) show that the rates are given at early times by

W
(+)
t =

4πR2κ+

∆̃

[
c̄A + κ−R

(
1− R

L

)(
c̄A
DB

+
c̄B
DA

)]
+O(t) ,

W
(−)
t =

4πR2κ−

∆̃

[
c̄B + κ+R

(
1− R

L

)(
c̄A
DB

+
c̄B
DA

)]
+O(t) ,

 (50)

and the corresponding anity is

At = ln
κ+c̄A + κ+κ−R

(
1− R

L

) (
c̄A
DB

+ c̄B
DA

)
+O(t)

κ−c̄B + κ+κ−R
(
1− R

L

) (
c̄A
DB

+ c̄B
DA

)
+O(t)

, (51)

which holds for small enough times. Therefore, the anity can take an early-time value 
that is much smaller than its asymptotic value (20).

We notice that, according to equation (43), the mean rate is given in the limit 

L � R by J = W
(+)
∞ −W

(−)
∞ = 4πR2(κ+c̄A − κ−c̄B)/(1 + Da) for the spherical catalytic 

particle.
Taking equation (49) with D = DA = DB and κ = κ±, we see that the anity reaches 

its asymptotic value if

t �
(

Da

Da + 1

)2
R2

D
. (52)

This condition reads t � R2/D in the diusion-limited regime where Da � 1, and 
t � Da2R2/D in the reaction-limited regime where Da � 1. The convergence time is 
thus shorter in the reaction-limited regime than in the diusion-limited one. Since the 
molecular diusivities typically take the value D � 10−9 m2 s−1, the convergence time 
for a catalytic particle of micrometric radius is of the order of milliseconds.

3.2. Numerical results

For the simulation results, we suppose that the diusion coecients and the forward 
and reverse rate constants are equal, D ≡ DA = DB and κ ≡ κ±. The function Ψ(t) in 
equation (11) is given by

Ψ(t) =
�2κ2

D2
(c̄A + c̄B) Υ(t) (53)

with
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Υ(t) = 4π

∫ L

R

dr u(r) [u(r)− v(r, t)] , (54)

where u(r) = �−1∆̃−1R2 (1− r/L) and ∆̃ ≡ 1 + 2κD−1R (1−R/L). The function v(r, t) 
is the solution of the following problem:

∂tv(r, t) = D∂2
rv(r, t) , (55)

R∂rv(R, t) =

(
1 +

2κR

D

)
v(R, t) , (56)

v(L, t) = 0 , (57)

v(r, 0) = u(r) , (58)
which can be solved numerically by spatial discretization into I cells of size 
∆r = (L−R)/I.

These theoretical expressions are compared with numerical simulations based on 
a diusive random walk model as well as multiparticle collision dynamics. These two 
particle-based simulation methods model the dynamics in dierent but complemen-
tary ways. In the random walk model, the dynamics of the solute A and B particles 
is described by overdamped Langevin equations, and encounters with the catalytic 
surface lead to reactions that change the identities of these species. The simulation 
of the random walk process is described in appendix A. In the multiparticle collision 
dynamics scheme, the solute and solvent species undergo eective collisions in a man-
ner that preserves the basic conservation laws. The A and B particles interact with the 
colloid through repulsive Lennard-Jones intermolecular potentials and reactions again 
occur upon encounters with the catalytic surface. Simulation details for this method are 
given in appendix B, and further details of both methods and results are given below. 
The parameters in these methods may be chosen to study either the reaction-limited 
or diusion-limited regimes.

We first discuss the results obtained when the A and B particles move according to 
a diusive random walk process between a spherical catalytic particle of radius r  =  R 
and an outer sphere of larger radius r  =  L where the molecules have the fixed concen-
trations c̄A and c̄B. The system contains a total of N = 522 909 A and B particles with 
r  <  L. The parameters take the following values:

D = 1 , κ = 0.4 , R = 0.5 , L = 5 , c̄A = 526.1169 , c̄B = 473.5751 . (59)
The process is at the crossover between the reaction- and diusion-limited regimes 

because Da = 2κR/D = 0.4 and ∆̃ = 1 + Da (1−R/L) = 1.36. The mean reaction rate 
is J = 48.55 and the zero-time properties are given by

W
(+)
0 = 652.40 , W

(−)
0 = 603.85 , D0 = 628.13 , A0 = 0.077 329 ,

 (60)
while the asymptotic properties are

W (+)
∞ = 486.13 , W (−)

∞ = 437.58 , D∞ = 461.86 , A∞ = 0.105 21 .
 (61)
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These theoretical values compare favorably with the computational results: J � 49.7 
and D∞ � 465. The stationary profile of the concentration dierence cA − cB is depicted 
in figure 2 and is in agreement with the theoretical expectation (27).

The finite-time anity is shown in figure 3 where the computational results 
(squares) are compared with theory (solid line) obtained by spatial discretization into 
I  =  1000 cells. The anity is directly measured from simulation data as the slope of 
ln[P (n, t)/P (−n, t)] versus the number n of reactive events during the time interval 
[0, t] (open squares with error bars). As time increases, the overlap between the prob-
ability distributions P (n, t) and P (−n, t) rapidly decreases. In order to overcome this 
diculty, the Gaussian probability distribution

P (n, t) � 1√
2πσ2

t

exp

[
−(n− 〈n〉t)2

2σ2
t

]
 (62)

is fitted to the histogram. No significant deviations between the histogram and the 
Gaussian distribution have been observed. The anity is thus estimated as At � 2 〈n〉t/σ2

t . 
These values are depicted as filled squares in figure 3, showing agreement between the 
simulation data and theory, given that the simulation overestimates the values of the 
mean rate J  and thus the anity A∞ by about 2% with respect to theory.

As noted above, microscopic simulations have also been carried out using a hybrid 
molecular dynamics-multiparticle collision dynamics scheme [18, 21–23]. In particular, 
we use the implementation with reversible catalytic reactions that satisfies detailed 
balance [19]. The catalytic particle resides in a system containing half inert solvent (S) 
particles and half reactive A and B particles. The roughly spherical catalytic particle 
is made of catalytic (C) beads connected by sti harmonic springs. The fluid species 
interact with the particle beads through repulsive Lennard-Jones potential functions. 
Reversible reactions, C + A � C + B, take place on the catalytic beads with forward 
(p+ ) and reverse (p−) reaction probabilities. The reactive collision rule is designed 
such that the forward and reverse collisions satisfy the principle of detailed balance. 

38

40

42

44

46

48

50

52

54

0 1 2 3 4 5

c A  − 
c B

r

Figure 2. Spherical catalytic particle: stationary profile of the concentration 
dierence cA − cB versus the radial distance r for the simulation with the random 
walk algorithm and the parameter values (59). The dots are the simulation data 
and the solid line the theoretical result.
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To establish nonequilibrium conditions, the concentrations of A and B particles at a 
distance L are controlled by relabelling particle species as A with probability p̄A or as 
B with probability p̄B = 1− p̄A when a reactive particle moves across the boundary at 
L from the region outside L into the system. The resulting concentrations at r  =  L are 
c̄A = p̄Ac0 and c̄B = p̄Bc0, where c0 = c̄A + c̄B is the total concentration of A and B par-
ticles. This simulates a system where the concentrations outside of the sphere of radius 
L are prescribed to be c̄A and c̄B. The spherical particle is not fixed in space and under-
goes Brownian motion. The sphere of radius L is centered on the instantaneous position 
of the particle. This method requires the intermolecular potentials and multiparticle 
collision parameters, such as the collision time and collision rule, to be specified. The 
fluid transport properties including the solute diusion coecients and fluid viscosity 
then follow from the dynamics. For times long compared to the collision time, the sol-
ute species will exhibit diusive motion, similar to that in the random walk model. The 
structure of the boundary layer is determined by intermolecular interactions between 
the colloid and fluid species. Consequently, it is of interest to compare the dynamics of 
this model with the theoretical predictions.

As above, we focus on the case where the diusion coecients and the forward 
and reverse rate constants are equal, D ≡ DA = DB and κ ≡ κ±. To determine 
κ ≡ k0/(4πR2), we consider the irreversible reaction C + A → C + B on the particle 
with reaction probability p+   =  1. The rate law for this case is dcA(t)/dt = −k(t)nCcA(t), 
where nC = 1/V  is the colloidal particle density. The time-dependent rate coecient 
k(t) starts at k(0+) = k0 and decays to the asymptotic value k = k0kD/(k

0 + kD) where 
kD = 4πDR is the diusion-limited rate constant [19, 24]. The time-dependent rate 
coecient can be found by computing k(t) = −[dcA(t)/dt]/[nCcA(t)] with the system 
starting from all A particles in the bulk without particle relabelling at the boundary 
L. The values obtained are k0 � 188.4± 17.6 and k � 3.68± 0.05, from which one 
gets kD � 3.75. From kD, one can estimate the outer edge of boundary layer to be at 

0

0.02

0.04

0.06

0.08

0.1

0.12

0 1 2 3

A
t

t

Figure 3. Spherical catalytic particle: anity At versus time t for the simulation 
with the random walk algorithm and the parameter values (59). The squares are 
the simulation data and the solid line the theoretical result. The open squares show 
the anity directly measured with ln[P (n, t)/P (−n, t)], while the filled squares 
show the anity obtained from the Gaussian fit (62). The dashed line gives the 
asymptotic value of the anity.
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R = kD/(4πD) � 5.0, where D  =  0.0596 is the fluid species diusion coecient. The 
Damköhler number is equal to Da = 2κR/D � 100, and ∆̃ = 80.2, meaning that the 
system is in the diusion-limited regime.

The following two sets of parameter values with dierent reservoir concentrations 
have been used to obtain the results:

D = 0.0596 , κ = 0.6 , R = 5.0 , L = 24 , c̄A = {8, 6} , c̄B = {2, 4} . (63)
The mean reaction rates are J � {14.0, 4.7}, the zero-time properties are given by

W
(+)
0 = {941.7, 937.0} , W

(−)
0 = {927.7, 932.4} , D0 = {934.7, 934.7} , A0 = {0.015, 0.005} ,

 (64)
while the asymptotic properties are

W (+)
∞ = {18.7, 14.0} , W (−)

∞ = {4.7, 9.3} , D∞ = {11.7, 11.7} , A∞ = {1.4, 0.4} .
 

(65)
These theoretical values compare favorably with the computational results: 
J � {13.9, 4.6} and D∞ � {13.6, 13.2}. The time-dependent 〈n〉t, σ2

t  and At obtained 
from theory and simulations are plotted in figure 4 where good agreement is seen. We 
observe that a small few percent error in 〈n〉t is amplified in the estimate of At and is 
responsible for the discrepancy between theory and simulation in the graph, although 
the results are still within the statistical errors.

Comparing figures 3 and 4, we observe that the time-dependent anity At starts 
from an early-time value A0 that is much closer to the asymptotic value A∞ in the 
reaction-limited regime than in the diusion-limited regime. The reason is that the 
time-dependent anity converges faster in the former regime than in the latter regime, 
as shown in section 3.1 with equation (52).

4. Janus catalytic particle

Janus catalytic particles, where one hemisphere is catalytically active while the other 
is not, are often studied in the laboratory, especially when they can act as motors pro-
pelled by phoretic mechanisms. When such motors are pinned in solution they can act 
as fluid pumps. The asymmetry of the catalytic activity also introduces new features 

Figure 4. Spherical catalytic particle: plots of 〈n〉t, σ2
t  and the finite-time anity 

At versus time t for two dierent reservoir conditions indicated in the figure inset. 
The dots and the squares are the simulation data of the multiparticle collision 
dynamics and the solid lines the theoretical results.
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in the finite-time fluctuation theorem results and for these reasons it is interesting to 
extend our considerations to such colloidal catalytic particles.

4.1. Theory

Here, we consider an immobile Janus particle of radius R centered on the origin r  =  0 in 
the spherical coordinates (r, θ,ϕ). The upper hemisphere is catalytic and the lower one 
is inert, so that the problem has a cylindrical symmetry under the rotations ϕ → ϕ+ α 
around the axis of the Janus particle.

The stationary problem (13) and (14) is given by

∇2φ =
1

r

∂2

∂r2
(r φ) +

L̂
r2

φ = 0 , (66)

with the operator acting as L̂Ylm = −l(l + 1)Ylm on the spherical harmonics Ylm(θ,ϕ). 
The boundary conditions read

(
∂φ

∂r

)

R

=
1

�
(φ− 1)RH(cos θ) and (φ)L = 0 , (67)

where H(ξ) is Heaviside’s function such that H(ξ) = 1 if ξ = cos θ > 0 and zero other-
wise. The solution of this problem can be expressed as

φ(r, θ) = Da
∞∑
l=0

al

[(
R

r

)l+1

−
(
R

L

)l+1 ( r

L

)l
]
Pl(cos θ) (68)

in terms of the coecients

al =
∞∑
l′=0

(
M−1

)
ll′

∫ 1

0

dξ Pl′(ξ) (69)

with

(M)ll′ =
2

2l + 1

[
l + 1 + l

(
R

L

)2l+1
]
δll′ +Da

[
1−

(
R

L

)2l′+1
]∫ 1

0

dξ Pl(ξ)Pl′(ξ) ,

 (70)
where Da is the Damköhler number (28). The stationary mean concentrations are thus 
given by equation (12).

Here, the eective catalytic surface area (16) is given by Σ = 4πR2a0 = 2πR2 × 
(1−Da γJ) with the constant

γJ =
1− 2a0
Da

=
∞∑
l=0

al

[
1−

(
R

L

)2l+1
] ∫ 1

0

dξ Pl(ξ) . (71)

In the limit L → ∞, the eective catalytic surface area can be approximated by 
Σ � 2πR2/(1 + 0.708 115Da), as shown in [25].

The functions (19) can here be expressed as

Υk(t) = 4π

∫ L

R

dr
∞∑
l=0

1

2l + 1
vkl(r, 0) [vkl(r, 0)− vkl(r, t)] , (72)
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by expanding the functions fk(r, θ, t) as

fk(r, θ, t) =
1

r

∞∑
l=0

vkl(r, t)Pl(cos θ) (73)

in terms of the solutions of

∂tvkl(r, t) = Dk

[
∂2
r −

l(l + 1)

r2

]
vkl(r, t) (74)

with the boundary conditions

(∂rvkl)R =
1

R
(vkl)R +

2l + 1

2

∞∑
l′=0

(
κ+

DA

vAl′ +
κ−

DB

vBl′

)

R

∫ 1

0

dξ Pl(ξ)Pl′(ξ)

 (75)
and (vkl)L = 0, and starting from the initial conditions

vkl(r, 0) = DaRal

[(
R

r

)l

−
(
R

L

)l ( r

L

)l+1
]

 (76)

for k = A and k = B.
Therefore, the rates are given by equation (9) with

W (+)
∞ = 2πR2 (1−Da γJ) κ+c̄A , W (−)

∞ = 2πR2 (1−Da γJ) κ−c̄B ,
 

(77)

and the function (11) is expressed in terms of the functions (72), which behave quali-
tatively as in the spherical geometry. If L is finite, we have in the long-time limit that

ΥA(∞) = ΥB(∞) =
4π

3
a20

R4

�2
L [1 +O(R/L)] with a0 =

1

2
(1−Da γJ) ,

 (78)
so that

Ψ(∞) =
4π

3
a20R

4Lκ+κ−

(
c̄A
D2

B

+
c̄B
D2

A

)
[1 +O(R/L)] , (79)

which is proportional to L as in the spherical geometry. Therefore, the rates (9) conv-
erge to their asymptotic value (77) with corrections of O(1/t), if L remains finite. 
However, if L is infinite, the convergence proceeds with corrections of O(1/

√
t), as in 

the spherical geometry. Consequently, the anity (8) converges towards its asymptotic 
value (20) if L is finite and infinite.

According to equation (25), the rates are given at early time by

W
(+)
t = 2πR2κ+

[
c̄A − γJ

R

DA

(κ+c̄A − κ−c̄B)

]
+O(t) , (80)

W
(−)
t = 2πR2κ−

[
c̄B + γJ

R

DB

(κ+c̄A − κ−c̄B)

]
+O(t) , (81)

so that the early time behavior of the anity is given by
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At = ln
κ+

[
c̄A − γJ

R
DA

(κ+c̄A − κ−c̄B)
]
+O(t)

κ−

[
c̄B + γJ

R
DB

(κ+c̄A − κ−c̄B)
]
+O(t)

, (82)

which can also be much smaller than the asymptotic anity (20).
For the Janus catalytic particle, the mean rate is thus given in the limit L � R by 

J = W
(+)
∞ −W

(−)
∞ � 2πR2(κ+c̄A − κ−c̄B)/(1 + 0.708 115Da).

4.2. Numerical results

We again suppose that the diusion coecients and the rate constants are equal, 
D ≡ DA = DB and κ ≡ κ±. The finite-time anity is thus given by equation (8) with 
the rates

W
(+)
t = 2πR2κ (1−Da γJ) c̄A + �2

κ2

D2
(c̄A + c̄B)

Υ(t)

t
, (83)

W
(−)
t = 2πR2κ (1−Da γJ) c̄B + �2

κ2

D2
(c̄A + c̄B)

Υ(t)

t
, (84)

where the function Υ(t) = ΥA(t) = ΥB(t) is defined by equation (72) and calculated by 
solving equations (74) and (75) for vl(r, t) ≡ vAl(r, t) = vBl(r, t). This problem is solved 
numerically by spatial discretization vl,i(t) = vl(ri, t) with ri = R + (i− 1/2)∆r where 
i = 1, 2, ..., I and ∆r = (L−R)/I with I  =  20 and l � 100 (see details in appendix C).

Again, the theoretical results are compared with simulations where A and B par-
ticles move according to a diusive random walk process between an immobile Janus 
particle of radius r  =  R with a hemispherical catalytic surface and an outer sphere of 
larger radius r  =  L where the molecules have the fixed concentrations c̄A and c̄B, as 
described in appendix A. The system contains a total of N = 523 164 A and B particles 
with r  <  L. Here, the parameters have the following values:

D = 1 , κ = 0.4 , R = 0.5 , L = 5 , c̄A = 527.195 , c̄B = 474.545 . (85)
The process is at the crossover between the reaction- and diusion-limited regimes 
since Da = 2κR/D = 0.4. For this system, we have that γJ = 0.519 60. The mean reac-
tion rate is given by J = 26.2, the time-zero properties by

W
(+)
0 = 327.81 , W

(−)
0 = 301.60 , D0 = 314.71 , A0 = 0.083 318 ,

 

(86)

and the asymptotic properties by

W (+)
∞ = 262.40 , W (−)

∞ = 236.19 , D∞ = 249.30 , A∞ = 0.105 21 .
 

(87)

Here also, these theoretical values compare favorably with the computational results: 
J � 26.5 and D∞ � 250. We notice that the diusivity does not deviate much from its 
asymptotic value in the present case.

The finite-time anity is shown in figure 5 where the computational results (squares) 
are compared with theory (solid line). As for the spherical catalytic particle, the anity 
is directly measured from simulation data as the slope of ln[P (n, t)/P (−n, t)] versus 
the number n of reactive events during the time interval [0, t] (open squares with error 
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bars), as well as by Gaussian fits to the histograms of n values. No significant devia-
tions between the histogram and the Gaussian distribution have been observed. The 
anity is then estimated as At � 2 〈n〉t/σ2

t . These values are depicted as filled squares 
in figure 5, showing here also agreement between the simulation data and theory.

Microscopic simulations as described in appendix B have also been carried out for a 
Janus particle made from catalytic and noncatalytic beads connected by sti harmonic 
springs. We have chosen the interaction potentials of the A and B particles with the 
beads of the Janus particle to be equal so that the diusiophoretic mechanism that 
leads to self propulsion does not operate. The Janus particle does, however, execute 
Brownian motion as is the case for the spherical particle. Again, we investigate the 
time-dependent reaction rates, diusivities and anity for two parameter sets with 
dierent reservoir concentrations:

D = 0.0596 , κ = 0.6 , R = 5.0 , L = 24 , c̄A = {8, 6} , c̄B = {2, 4} .
 

(88)
Here, the process evolves in the diusion-limited regime because the Damköhler num-
ber has the value Da = 2κR/D � 100. The mean reaction rates are J � {9.7, 3.23}, the 
zero-time properties are given by

W
(+)
0 = {475.8, 472.6} , W

(−)
0 = {466.1, 469.4} , D0 = {471.0, 471.0} , A0 = {0.021, 0.0068} ,

 (89)
while the asymptotic properties are

W (+)
∞ = {12.9, 9.7} , W (−)

∞ = {3.23, 6.47} , D∞ = {8.09, 8.09} , A∞ = {1.38, 0.405} . (90)

These theoretical values compare favorably with the simulation results: J � {10.1, 3.35} 
and D∞ � {9.3, 10.6}. The time-dependent 〈n〉t, σ2

t  and At obtained from theory and 
simulations are plotted in figure 6 where good agreement is seen.
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Figure 5. Janus catalytic particle: anity At versus time t for the simulation with 
the random walk algorithm and the parameter values (85). The squares are the 
simulation data and the solid line the theoretical result. The open squares show 
the anity directly measured with ln[P (n, t)/P (−n, t)], while the filled squares 
show the anity obtained from the Gaussian fit (62). The dashed line gives the 
asymptotic value of the anity.
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Here also, the comparison between figures 5 and 6 shows that the time-dependent 
anity At remains closer to its asymptotic value A∞ in the reaction-limited regime 
than in the diusion-limited regime, confirming the general behavior already observed 
in the spherical geometry. We also observe that the time-dependent anity at early 
time is somewhat larger for the Janus particle that for the fully catalytic particle. The 
spherical catalytic particle yields product over its entire surface and this restricts the 
amount of reactant available to the surface. In contrast, there is a larger amount of 
reactant available on the noncatalytic portion of the Janus particle that can diuse to 
the catalytic hemisphere and react. Thus, the catalytic portion of the Janus particle is 
more eective per unit catalytic area at yielding product than the spherical particle, 
and this may lead to a higher anity at early time.

5. Conclusion and perspectives

In this paper, the finite-time fluctuation theorem of [17] has been investigated for the 
diusion-influenced surface reaction A � B on spherical and Janus catalytic particles. 
The finite-time rates of the forward and reverse reactions A � B have been analytically 
calculated in both geometries by solving diusion equations with the special boundary 
conditions obtained in [17]. These rates provide the time-dependent thermodynamic 
force or anity driving the process away from equilibrium. This anity converges 
towards its asymptotic value determined by the concentrations of the reacting species 
at the reservoir, as predicted by infinite-time fluctuation theorems. Using the time-
dependent anity, we can determine how the entropy production rate evolves in time 
during the counting of reactive events.

The results show that the anity may take a much lower value at early time than 
its expected asymptotic value. The reason is that the anity reaches its asymptotic 
value beyond the diusion time characteristic of the reaction taking place on the cata-
lytic particle. In the reaction-limited regime, this diusive time is short, so that the 
anity rapidly converges towards its asymptotic value. However, the diusion time 

Figure 6. Janus catalytic particle: the mean number of reactive events 〈n〉t, the 
corresponding variance σ2

t , and the anity At versus time t for the microscopic 
simulation with the multiparticle collision method. The dots and the squares are 
the simulation data of the multiparticle collision dynamics and the solid lines the 
theoretical results. The results are the average of 40 realizations and the error is 
given by the standard deviation.
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may be significantly longer in the diusion-limited regime. For micrometric catalytic 
particles and small molecular-scale diusing molecules whose diusion coecients in 
water are typically of the order of 10−9 m2 s−1, the convergence time (52) is of the order 
of milliseconds, which is short relative to macroscopic measurement times, hence justi-
fying the use of the long-time limit.

Theoretical results for the spherical catalytic and Janus particles were compared 
with numerical simulations using two dierent methods: a random walk algorithm and 
an algorithm based on multiparticle collision dynamics. These systems were studied for 
diusion-limited catalytic reactions as well as for reactions that lie in crossover regime 
between reaction- and diusion-limited kinetics. In the diusion-limited regime, the 
anity takes an early-time value that is significantly smaller than its asymptotic value. 
In all cases theoretical and simulation results are in agreement.

In the three-dimensional geometries of the spherical and Janus catalytic particles, 
the convergence time does not depend on the distance between the catalytic surface 
and the reservoir where the concentrations of reacting species are fixed. This is no 
longer the case in the one-dimensional planar geometry, as we shall report in a future 
publication.
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Appendix A. Random walk simulation method and parameters

The system contains i = 1, 2, ...,N  particles moving in a cubic box of size L  according to 
the Langevin stochastic dierential equations dri/dt = vi(t) where the velocities are given 
by Gaussian white noises satisfying 〈vi(t)〉 = 0 and 〈vi(t)⊗ vj(t

′)〉 = 2D δij δ(t− t′)1, 
expressed in terms of the diusion coecient D and 3× 3 identity matrix 1. These 
equations are solved numerically by discretization into time steps ∆t = 0.001. Initially, 
the cubic box is uniformly filled with 106 particles, so that the overall particle density is 
equal to c0 = 106/L 3. As the particles move into a sphere of radius L < L  centered at 
the origin inside the box, they acquire a color A or B with the probabilities P̄A = c̄A/c0 
or P̄B = c̄B/c0 = 1− P̄A. Simultaneously, particles crossing the surface r  =  L are specu-
larly reflected by the surface, so that the number of particles inside the sphere of radius 
L is constant and equal to N = c0 × 4πL3/3. This determines the boundary values of 
the concentrations at r  =  L.

The color A or B of the moving particles changes upon their collision with the 
catalytic surface. The catalyst occupies a spherical domain of radius R  <  L centered 
at the origin. The surface reaction is simulated according to the algorithm of [26]. 
Whenever the particle displacement ri(t+∆t)− ri(t) = ∆i(t) crosses the catalytic sur-

face the moving particle changes its color with the probabilities P± = κ±
√
π∆t/D and 
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simultaneously its trajectory is specularly reflected by the surface. There is a chance 
that a particle hits the catalyst even if ri(t+∆t) is located outside the spherical 
domain, since the particle might have crossed the catalyst surface twice during the time 
interval [t, t+∆t]. Thus, if ∆i(t) intersects the surface at two locations, the particle 
trajectory is reflected specularly at the first intersection point.

In the reported simulations, the following values are taken for the parameters: 
L = 10, L  =  5, R  =  0.5, D  =  1, P̄A = 10/19, P̄B = 9/19, and c0 = c̄A + c̄B = 103. Time 
series with 106 data points have been computed for the number of reactive events 
during the time interval 10×∆t of the simulation. In equations (59) and (85), the 
given values of the concentrations have been determined from the mean numbers 
of particles of both species in the layer L−∆r < r < L next to the reservoir (with 
∆r = (L−R)/50 = 0.09).

Appendix B. Microscopic simulation method and parameters

Here, we describe the hybrid molecular dynamics-multiparticle collision dynamics 
scheme and give the parameter values used in the simulations.

The Janus motor of radius R = RJ + σ = 5 σ is placed in a cubic simulation box of 
linear length L = 50σ containing N = NA +NB +NS = 2488 439 fluid particles with 
NA +NB = NS. The average densities of the fluid and reactive particles are N/L 3 � 20 
and c0 = (NA +NB)/L 3 � 10, respectively. The construction of the Janus motor was 
described earlier [19]. It is made of 2681 beads randomly distributed in a sphere of 
radius RJ = 4 σ, where two beads within a distance 2 σ are linked by a sti spring 
with spring constant ks = 50 kBT/σ

2, where kBT  is the thermal energy. The interaction 
between a motor bead and a fluid particle is given by a repulsive Lennard-Jones poten-
tial with interaction strength εα, Uα(r) = 4 εα[(σ/r)

12 − (σ/r)6 + 0.25], which vanishes 
when r > 21/6σ. The interaction strengths are chosen as εA = εB = 1.0.

The nonequilibrium steady states discussed in the main text are established by 
considering a spherical region with radius r = L = 24 σ centered on the Janus motor. 
The region outside of r  =  L is modeled as a reservoir with prescribed concentrations of 
A and B species, which can be controlled by changing the species type to A or B with 
probabilities p̄A and p̄B with c̄A = p̄Ac0 and c̄B = p̄Bc0. In the simulations we consider 
(a) p̄A = 0.8 and p̄B = 0.2 and (b) p̄A = 0.6 and p̄B = 0.4. Note that there is no change 
of species for inert S particles at the boundary r  =  L.

The dynamics of fluid particles is described by multiparticle collision dynamics com-
prising streaming and collision steps at discrete time intervals τ = 0.1 t0. The collisions 
are carried out by first sorting the particles into a grid of cubic cells with linear size σ 
and the postcollision velocities of particle i in a cell ξ are given by v′

i = Vξ + R̂(vi −Vξ), 
where Vξ is the center of mass velocity of particles in cell ξ and R̂ is a rotation opera-
tor about a random axis by an angle of 120◦. Between two consecutive collisions, the 
system evolves by Newton’s equation of motion with forces determined from the total 
potential energy of the system using a time step of δt = 0.005 t0. The common diusion 
coecient of fluid particles is found to be D  =  0.0596. Simulation results are reported 
in dimensionless units where mass is in units of m, length in units of σ, energies in units 

of kBT  and time in units of t0 =
√

mσ2/kBT .
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Appendix C. Discretization of the diusion equations (74) and the boundary  
conditions (75)

The numerical method for solving equations (74) and (75) for vkl(r, t) is as follows. 
We suppose the diusion coecients and the rate constants are equal, D ≡ DA = DB 
and κ ≡ κ± and, therefore, one obtains vl(r, t) ≡ vAl(r, t) = vBl(r, t). The discretized 
diusion equation for vl(r, t) is

vl(r, t+∆t) =

[
1− 2

D∆t

∆r2
− l(l + 1)

r2
D∆t

]
vl(r, t) +

D∆t

∆r2

[
vl(r +∆r, t) + vl(r −∆r, t)

]
, (C.1)

subjected to the boundary condition at r  =  L, vl(r = L, t) = 0, and the boundary condi-
tion at r  =  R,

vl(R, t) =
∞∑
l′=0

(
M̃

−1
)
ll′
vl′(R +∆r, t) , (C.2)

where

(
M̃
)
ll′
=

(
1 +

∆r

R

)
δll′ + (2l + 1)

κ∆r

D

∫ 1

0

Pl(ξ)Pl′(ξ) dξ (C.3)

with the Kronecker delta symbol δll′.
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