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Front explosion in a periodically forced surface reaction
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Resonantly forced oscillatory reaction-diffusion systems can exhibit fronts with complicated interfacial
structure separating phase-locked homogeneous states. For values of the forcing amplitude below a critical
value the front “explodes” and the width of the interfacial zone grows without bound. Such front explosion
phenomena are investigated for a realistic model of catalytic CO oxidation on a Pt(110) surface in the 2:1 and
3:1 resonantly forced regimes. In the 2:1 regime, the fronts are stationary and the front explosion leads to a
defect-mediated turbulent state. In the 3:1 resonantly forced system, the fronts propagate. The front velocity
tends to zero as the front explosion point is reached and the final asymptotic state is a 2:1 resonantly locked
labyrinthine pattern. The front dynamics described here should be observable in experiment since the model
has been shown to capture essential features of the CO oxidation reaction.
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I. INTRODUCTION

Catalytic surface reactions are a large class of chemical
reactions with important applications. They are often accom-
panied by oscillations, and a rich variety of wave patterns, as
well as chemical turbulence, can be observed in such systems
[1,2]. An extensively studied surface reaction is CO oxida-
tion on single crystals of platinum. When the reaction takes
place on the crystallographic plane Pt(110), a structural
phase transition in the top layer of the substrate is coupled to
the reaction, making oscillations and excitability possible.
These kinetic regimes are well reproduced by the theoretical
model of Krischer, Eiswirth, and Ertl [3] where reaction-
induced surface reconstruction is taken into account. The bi-
furcation analysis of this model shows that it has a supercriti-
cal Hopf bifurcation [3]. Moreover, in a region of parameter
space the uniform oscillations in this system may be unstable
with respect to the modulational Benjamin-Feir instability,
leading to the spontaneous development of turbulence [4].
Therefore, in the vicinity of the Hopf bifurcation, the CO
oxidation reaction approximately obeys the complex
Ginzburg-Landau equation (CGLE) [5]. Experimentally, it
may be difficult to maintain the reaction so close to the bi-
furcation line that the oscillations have a harmonic character
and their amplitude is small. Nonetheless, many qualitative
features of the wave patterns typically found in the CGLE
are also observed in the CO oxidation reaction on Pt(110)
under oscillatory conditions. In particular, the spontaneous
development of amplitude turbulence through the nucleation
of spiral wave pairs has been found in this system [6—8].
Thus, the CO oxidation reaction on Pt(110) provides an op-
portunity to experimentally investigate the general phenom-
ena of spatiotemporal chaos in weakly nonlinear oscillatory
reaction-diffusion systems.

To control the CO oxidation reaction, the partial pressure
of CO in the gas above the catalytic surface can be modu-
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lated in time by varying the dosing rate of CO into the reac-
tion chamber. The modulation of the CO pressure changes
reaction conditions in the same way in all surface elements
and, therefore, its effect is global. By making the modulation
dependent on the properties of monitored patterns, global
feedback can be introduced in the reaction system. Suppres-
sion of chemical turbulence and development of new,
feedback-induced wave patterns, including regimes of inter-
mittent spatiotemporal chaos, have been experimentally ob-
served [6,7,9] and theoretically investigated [6,10] for the
CO oxidation reaction.

Alternatively, external periodic modulation of the partial
CO pressure can be applied, leading to a periodic forcing of
this chemical reaction. In experiments [11], entrainment of
CO oscillations by such periodic forcing has been detected,
but spatially resolved observations of concentration wave
patterns on the platinum surface were not then possible. Sub-
sequently, spatially resolved experiments on periodic forcing
of chemical turbulence in this reaction were performed [8].
In addition to full entrainment with uniform oscillations, re-
gimes with oscillating cells or labyrinthine patterns, and cas-
cades of amplitude defects characteristic of spatiotemporal
intermittency, were observed. Effects of periodic forcing
have also been experimentally investigated in the oscillatory
Belousov-Zhabotinsky reaction [12-14], where uniform os-
cillations are, however, always stable and spontaneous devel-
opment of turbulence is not known.

Previous theoretical studies [15,16] of fronts separating
different phase-locked states in the periodically forced
CGLE have shown that, under the conditions of the
Benjamin-Feir instability, such fronts may undergo “explo-
sions” as the forcing amplitude is decreased. When such an
explosion occurs, the interfacial region separating the two
locked states grows and eventually fills the entire medium
with a turbulent phase. Similar phenomena were also found
in coupled map lattice models [17,18].

In this paper, the effects of front explosions under 2:1 and
3:1 resonant forcing are studied in the realistic model of CO
oxidation on Pt(110) for parameter values typical for the ex-
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TABLE 1. Parameters of the model.

k 3.14x 10° s! mbar™!
ky 10.21 s7!

k3 283.8 7!

ky 5.860 % 10° s~! mbar™!
ks 1.610 s7!

Sco 1.0

50,1x1 0.6

50,1x2 0.4

Uy, Ou 0.35, 0.05

D 40 um?s~!

Po, 12.0X 107 mbar
Po 4.6219548 X 1075 mbar

Impingement rate of CO
CO desorption rate
Reaction rate
Impingement rate of O,
Phase transition rate
CO sticking coefficient

Oxygen sticking coefficient
on the 1 X1 phase

Oxygen sticking coefficient
on the 1 X2 phase

Parameters for the
structural phase transition

CO diffusion coefficient
O, partial pressure

Base CO partial pressure

periments on this chemical reaction where nonharmonic os-
cillations with substantial amplitudes are observed. As we
show, front explosions occur in very different ways in these
two resonant regimes. Our work provides a framework for
future experimental studies of front explosions in the CO
oxidation reaction.

II. PERIODICALLY FORCED SURFACE REACTION
A. Model

We consider the realistic model [3] of catalytic CO oxi-
dation on a Pt(110) surface. The model takes into account
adsorption of CO and O, molecules, reaction, desorption of
CO molecules, the structural phase transition of the Pt(110)
surface, and the surface diffusion of adsorbed CO molecules.
Letting u(r) and v(r) represent the surface coverage of CO
and O at position r, respectively, and w(r) the local fraction
of the surface area found in the nonreconstructed 1 X 1 form,
the reaction-diffusion equations giving the time evolution of
these fields are

u;,= leCOpCO(l - M3) - kzM - k3MU + DVzu,

Ur=k4l702[50,1x1W+So,lxz(l -w)](1 —u =)’ = kzuv,

1
w,=k5(1 + exp| (ug — u)/ ul _W>‘ )

All three fields can vary in the interval from [0, 1] and we
define ¢(r,7)=(u(r,7),v(r,1),w(r,r)) for future reference.
For an explanation and specification of the values of the
parameters see Table I. Although certain features, such as
surface roughening, faceting, formation of subsurface oxy-
gen, and the effects of internal gas-phase coupling are not
taken into account, this model has proven to be remarkably
successful in describing most aspects of the experimental
observations on this system. In particular, it is able to capture
oscillations in the CO oxidation process seen under some
experimental conditions.

We are interested in situations where the catalytic surface
reaction is subjected to external periodic forcing. Experimen-
tally, it is convenient to periodically modulate the CO partial
pressure pco. Consequently, we assume in this paper that
Pco varies according to the equation

Pcolt) = po(1 —acos wyt), ()

where a is the amplitude of the forcing and w; the frequency
of the forcing. The base value of partial CO pressure is pg. In
the present study the parameter values of the partial pres-
sures are chosen such that in the absence of forcing uniform
oscillations are unstable with respect to small perturbations
and chemical turbulence spontaneously develops in the un-
perturbed system. The reaction itself is oscillatory with pe-
riod Ty=2.550 049 s for a=0.

Numerical simulations of the model were performed us-
ing a first-order finite difference scheme for the spatial dis-
cretization with a grid resolution of Ax=4 um. For the tem-
poral discretization an explicit Euler scheme with a fixed
time step Ar=0.0001 s was used. The system size was
L?>=0.4X0.4 mm? and no-flux boundary conditions were
imposed.

B. Fronts separating resonantly locked states

We suppose that when periodic forcing is applied to the
system it is locked in an n:m resonance. In this case there are
n distinct phases of the oscillation. Chemical fronts separat-
ing pairs of these n resonantly locked states can be formed
by a suitable choice of initial conditions. In particular, in a
two-dimensional domain, we choose initial conditions such
that the left and the right half planes are homogeneous but in
two different phases, respectively, and separated by a small
interfacial zone where the field values are chosen at random.

Under conditions where the unforced system is Benjamin-
Feir unstable and the forcing amplitude is sufficiently large,
such initial conditions generate a front separating the homo-
geneous phases which has the form of an interfacial zone
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FIG. 1. Sketch of a phase front separating homogeneous do-
mains of two resonantly locked phases. The interfacial zone is de-
limited by left and right profiles /; and kg, respectively.

delineated by left and right profiles. The situation is depicted
in Fig. 1. We let h,(y,/)=min{x:|e(x,y,?)—c5(t)| =€} and
hg(y,t)=max{x:|c(x,y,t)—cd(1)| = € (see Fig. 1). Here ¢{(z)
and cé(t) are the concentration fields in the two mode locked
states that the front separates and € is a small numerical
value which is chosen to be 0.01 in the simulations presented
below. We can thus define the interfacial zone as
1(0)={(x,y):hy(y, ) < x<hg(y,D)}.

The dynamics of the front can be analyzed in terms of
several quantities that characterize its structure. The instan-
taneous intrinsic thickness of the interfacial zone at position
y along the front is given by

A(y’t)=hR(y7t)_hL(y7t)- (3)

The spatial average (A)(¢) of the intrinsic thickness may be
computed from

L

W=7 f dy Ay, )

0

where, henceforth, the angular brackets will refer to a spatial
average along y. We also define the instantaneous position of
the front at a point y along the front by

x}‘(yst) = [hR(y’t) + hL(y’t)]/zs (5)

and the instantaneous mean position as (x/)(t). After a tran-
sient time, the phase front dynamics is observed to enter a
statistically stationary regime where the temporal average of
the time derivatives of (x)(r) and (A)(z) are independent of
time. These quantities are called the front velocity v, and
the interface growth rate v,, respectively. If vA=0 then
the interface has an average finite thickness which is denoted
by A().

Studies of the 3:1 resonantly forced complex Ginzburg-
Landau equation have shown that if the amplitude of the
forcing is reduced, a critical value is reached where the av-
erage thickness of the interfacial zone A is no longer finite.
For such values of the forcing, when the system starts from
the two-phase initial conditions described above, the interfa-
cial zone grows to fill the entire domain. We term this phe-
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FIG. 2. Snapshots of u(r) in the asymptotic state for T
=1.275 s without front explosion (left, a=0.0138) and with front
explosion (right, =0.008 64). Black corresponds to small values of
u and white to large values of u.

nomenon a “front explosion.” We now investigate this phe-
nomenon for the resonantly forced catalytic surface
oxidation reaction.

III. 2:1 FORCING

In this section we study the front dynamics when the sys-
tem is close to the 2:1 resonance, i.e., Ti= Ty/2 and, hence,
w;=2@,. In the 2:1 resonance regime we have two distinct
equivalent phases that differ by a phase shift of 7. An ex-
ample of a front separating the two phase states is shown in
the left panel of Fig. 2. The front is stationary with finite
average width Aj. As the amplitude of the forcing is de-
creased we observe that A, grows and, for amplitudes lower
than a critical value, the interfacial zone grows without
bound and the front explodes. An example of an exploding
front is shown in Fig. 3. In this case the turbulent zone grows
to fill the finite domain leading to turbulent dynamics in the
entire system as shown in the right panel of Fig. 2.

The turbulent state that emerges when the interfacial zone
explodes has the characteristics of defect-mediated turbu-
lence, where the dynamics of a pattern is dominated by the
rapid motion, nucleation and annihilation of point defects
(vortices or dislocations) [19]. A defect is characterized by its
integer topological charge (or winding number) m,,,, which is
defined by (1/2m)$V é(r,1)-dl=+m,,, [20], where ¢(r,?) is
the local phase and the integral is taken along a closed curve
surrounding the defect. A topological defect, thus, corre-
sponds to a point in the medium where the local amplitude is

FIG. 3. Snapshot series of u(r) for a=0.0130 showing a typical
front explosion. Left, z=5Tf; right, t=20Tf with Ty= 1.275 s. Color
coding as in Fig. 2.

046214-3



DAVIDSEN, MIKHAILOV, AND KAPRAL

PR I I I 1 L L
0 20 40 60 80 100 10 20 30 40 50
t/T, n,

FIG. 4. (Color online) Left: Number of defects ny
as a function of time (same forcing as in the right panel of
Fig. 2) for ¢(r,r)=arctan{{w(r,r)—w°]/[u(r,)-u]} with (w°,u")
=(0.354,0.487) as the center of rotation. Right: Probability distri-
bution of the number of defects with positive topological charge n,
[(red) circles]. It is clearly different from a squared Poissonian
[(black) triangles] [21] but shows very good agreement with a
Gaussian [(blue) diamonds].

zero and the phase is not defined. In the CGLE only topo-
logical defects with m,,,=+1 are observed and that is also
the case here. In Fig. 4 (left panel) we see that the number of
defects fluctuates about a statistically stationary average
value. The probability distribution of defects with positive
topological charge shown in the right panel of this figure has
an approximate Gaussian form. This is in accord with a
simple model of defect dynamics based on rate equations and
taking into account no-flux boundary conditions [21,22]. The
model predicts a modified Poissonian distribution which, in
the limit of large mean defect numbers, converges to a
Gaussian.

A quantitative characterization of the transition from a
stationary front with finite width (v,=v,=0) to an exploding
front (v,=0 and v, >0) is given in Fig. 5 which plots both
Ay and v, versus the forcing amplitude a. The transition
occurs at a critical value a; which coincides, within the nu-
merical resolution, with a bifurcation leading to the coexist-
ence and bistability of homogeneous oscillatory states and
turbulent states. The homogeneous oscillatory states become
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FIG. 6. (Color online) Dynamics of the fields ¢(r)
=(u(r),v(r),w(r)) averaged over the interfacial zone (), denoted
as {(c);, for T;=1.275 and different values of the forcing amplitude
a>a; corresponding to different states of the system [a=0.0173
(2:1), a=0.0155 (4:1), a=0.0147 (8:1), a=0.0138 (chaos)]. The in-
terface dynamics undergoes a period-doubling cascade into chaos
while the dynamics of the homogeneous oscillations outside the
interfacial zone (solid black curve) has only a single period-
doubling bifurcation at a% ~(.0162. The limit cycle of the homoge-
neous oscillations is basically the same for the subfigures denoted
4:1, 8:1, and chaos.

unstable only for values of @ much smaller than a;, namely,
at a=0.0006.

There are a number of interesting features of the dynam-
ics as the system approaches the front explosion point. Ap-
proaching a; from above, the front explosion is preceded by
a period-doubling bifurcation at a%. Figure 6 shows that the
bifurcation occurs in the homogeneously oscillating domains
as well as in the interfacial zone. This is in accord with the
behavior of a single oscillator close to the 2:1 resonance. The
phase diagram showing its states as a function of the forcing
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FIG. 5. (Color online) Plot of the interface width A, [(red)
circles] and the interface growth rate v, [(blue) stars] as a function
of the forcing amplitude a for T;=1.275 s. The statistical errors are
less than the size of the symbols. Three different regimes can be
identified. See text for details.
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FIG. 7. (Color online) 2:1 Arnold tongue for a single oscillator.
Note the appearance of a period-doubling cascade within the
tongue—well below the 1:1 tongue. For w;/wy=2, only the first
period-doubling bifurcation is present. Its location compares very
well with the observed location for the spatially extended system.
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frequency and amplitude near the 2:1 resonance is given in
Fig. 7. As the forcing amplitude is increased at w,/wy=2
one crosses a parameter region where period doubling
occurs. For the spatially distributed system, within this
period-doubled or 4:1 regime, the interface dynamics
(c},:AI_1 Jidre(r,t) undergoes further period-doubling bi-
furcations into chaos before the front explodes (see Fig. 6).
Here A, is the area of the interfacial zone. Note that in the
4:1 regime two different types of fronts can exist, namely 7
and 7/2 fronts. Here, we have focused on the 7/2 fronts
since they directly correspond to the (7r) fronts present in the
2:1 regime. Simulations show that 7 fronts do not explode at
a=a,. They are stationary even below a, and do not become
unstable within the 4:1 regime.

Phase fronts can also be observed for random initial con-
ditions. As long as a >a;, the turbulent phase is unstable and
homogeneous domains separated by phase fronts are nucle-
ated. If these fronts are sufficiently curved they are not sta-
tionary but propagate. In a finite system as considered here,
this can eventually lead to the generation of a spatially ho-
mogeneous state without any fronts. Interestingly, 7/2 fronts
survive much longer than 7 fronts.

Most of the results presented in this section do not quali-
tatively depend on the exact forcing frequency as long as w;
is close to 2w,. Restricting ourselves to the range of forcing
frequencies present in Fig. 7, only the features of the dynam-
ics as the system approaches the front explosion point from
above depend on ;. If w, is too small, the period doubling
of the dynamics within homogeneous domains and interfa-
cial zones is absent. If w, is too large, a cascade of period-
doubling bifurcations can be observed in the homogeneous
domains as well. In general, a, increases with increasing
detuning from the resonance.

IV. 3:1 FORCING

Near the 3:1 resonance where T;=T,/3 (w;=3w,) the
front dynamics exhibits a number of features which differ
from those described above for the 2:1 resonance. In the 3:1
resonance regime the broken translational symmetry gives
rise to three distinct phases that differ by a phase shifts of
2/3; consequently, fronts separating any two of these three
phases will propagate with finite velocity v,. For sufficiently
large forcing amplitudes, these propagating fronts are nearly
planar with only small transverse structure.

As the forcing amplitude decreases, the front width A,
increases in magnitude and, for amplitudes lower than a criti-
cal value a;, the interfacial zone grows without bound and
the front explodes. When the interfacial zone exhibits un-
bounded growth, the mean velocity of the front is zero,
v;=0. A simulation of an exploding front is shown in top
two panels of Fig. 8. In contrast to the exploding front in the
2:1 resonantly forced regime, the expanding interfacial zone
does not display spatiotemporal turbulent dynamics, instead,
a labyrinthine patterns develops. This can be seen in bottom
two panels of Fig. 8 which shows the formation of a laby-
rinthine pattern after the interfacial zone fills the simulation
domain. Examination of the local dynamics indicates that the
labyrinthine pattern is locked 2:1 to the applied forcing.

PHYSICAL REVIEW E 72, 046214 (2005)

FIG. 8. Series of snapshots of the u(r,?) field for a=0.0354 and
T;=0.85 s showing the exploding front and the eventual formation
of a labyrinthine pattern. From left to right and top to bottom:
1=40Ty, 7607y, 43607, and 10 6007. Color coding as in Fig. 2.
Note that due to the initial conditions and the no-flux boundary
conditions certain symmetries persist in the pattern.

Insight into origin of this behavior can be obtained by
considering the dynamics of a resonantly forced single oscil-
lator. The phase diagram showing its states as a function of
the forcing frequency and amplitude near the 3:1 resonance
is given in Fig. 9. This phase diagram has a number of fea-
tures that differ from those of the 2:1 Arnold tongue shown
earlier in Fig. 7. The period doubling region within the Ar-
nold tongue does not intersect the wy=3wy line. In addition,
there is a region, indicated by the cross pattern, where there
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FIG. 9. (Color online) 3:1 Arnold tongue for a resonantly forced
single oscillator. The period-doubling bifurcation within the tongue
is shown as a region shaded with parallel lines. Note that this region
does not intersect the 3:1 resonance line (vertical line in the figure)
in contrast to the case of 2:1 forcing. The transition from 3:1 to 2:1
locking (solid line with asterisks) is subcritical and the region of
bistability is marked by the (orange) cross pattern.
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FIG. 10. (Color online) Plot of the mean interface width A,
(open circles), the mean front velocity v, (open diamonds), and the
interface growth rate v, (stars) as a function of the amplitude of the
forcing a for Ty=0.85 s. The statistical errors are less than the size
of the symbols. Three different regimes can be identified. See text
for details.

is bistability between 3:1 and 2:1 locking. In the spatially
extended system, the values of the forcing amplitude used to
obtain the exploding front are well within the area of bista-
bility and coexistence of 3:1 and 2:1 states for a single os-
cillator, suggesting the possibility of appearance of a 2:1
resonantly locked state as observed in the simulation. Of
course, the single oscillator phase diagram does not provide
information on the spatial structure of the pattern and the
Arnold tongue for the spatially distributed system may dis-
play a richer structure. Our simulation result confirms the
existence of a 2:1 state with a labyrinthine pattern within the
3:1 resonance tongue.

The front explosion can again be characterized quantita-
tively by plotting the mean interfacial width, A, the growth

R T T R

1
I
I
I
L}
I
[}
I
I
1
I
1
')
I

'\;‘v}w
| 'vy'
AL 1%
i f
il b Ly YUY Y AL
10y WLt

<A>/ Ax

P U RS RR IS AT
00 50 100 150 200 250 300

t/T,

FIG. 11. (Color online) Temporal evolution of the average width
(A) and position {x;) of the interfacial zone for Ty=0.85 and differ-
ent values of the forcing amplitude a>a3 The thin light (green)
curves correspond to @=0.038 87 and the thick black ones to
a=0.038 65. Two regimes are visible. At short times, a thick and
slowly propagating front is present which transforms into a thin and
fast propagating front at 7. The transient time 7 is shown as the
dashed lines and increases with decreasing a.
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rate of the mean interfacial width, v,, and the mean front
velocity, v, as a function of the forcing amplitude. The data
in Fig. 10 show that there is a transition from a propagating
front with v;#0 and vA=0 to an exploding front with
v;=0 and v, >0 at a critical value ds.

This figure also shows that there are a number of interest-
ing features of the dynamics in the vicinity of the front ex-
plosion. Approaching a3 from above, the front explos1on is
preceded by a transition of the front itself. At a3, the front
velocity suddenly drops while the width of the interfacial
zone increases. As a is reduced for ay<a<aj, the width
increases and the front velocity decreases up to the transition
pomt a2 where v,;=0. The sudden change in v, and A, at
aq~0 038546 is signalled by behavior of the transient time
needed to establish the interface. Figure 11 plots the tempo-
ral evolution of the average width and location of the inter-
facial zone for 7,=0.85 and different values of the forcing
amplitude. For both values of the forcing amplitude two re-
gimes may be distinguished in the figure. For short times a
relatively thick and slowly propagating front is observed
which persists for a transient time ¢ indicated by the dashed
lines in the figure. For times ¢ > ¢, the front transforms into a
faster moving thin front. The evolution of the interfacial zone
for t<<t° is very similar to that observed for a<a3 As a
approaches a3 from above, the transient time #° increases as
shown in the figure. For a < a3, no evidence for a finite ¢ has
been found. Thus, these data suggest that transient time #¢
diverges at ag leading to a distinctly different front types
below and above ag.

Another interesting feature of the dynamics in the vicinity
of the front explosion is that, approaching a; from above, the
front explosion is preceded by a sequence of period-doubling
and inverse period-doubling bifurcations in the dynamics of
the interfacial zone characterized by the behavior of (c),(7).
Depending on the value of a, {c),(r) is locked either 3:1 or
6:1 to the forcing; however, there is no period-doubling bi-
furcation of the homogeneous oscillations outside the inter-
facial zone in contrast to the case of 2:1 forcing. This obser-
vation is expected, based on the phase diagram for a single
oscillator given in Fig. 9 which does not show a period-
doubling bifurcation close to the 3:1 resonance.

Finally, we observe that if random initial conditions are
chosen, labyrinthine patterns form for a <a§ while homoge-
neous domains locked 3:1 to the forcing and separated by
phase fronts occur for a>a3 In the latter case, due to the
propagation of the fronts, these inhomogeneous states gener-
ally evolve to homogeneous asymptotic states in a finite
system.

V. CONCLUSIONS AND DISCUSSION

The results presented in this paper show that while front
“explosions” occur in a realistic model for catalytic CO sur-
face oxidation reactions, a number of new phenomena are
observed. In the 3:1 regime of the resonantly forced CGLE,
when the underlying unforced system is Benjamin-Feir un-
stable [15,16], and also for the period-3 piecewise linear
coupled maps [17,18], propagating fronts have a turbulent
interfacial zone separating homogeneous resonantly locked
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states. The interfacial zone grows in this case as a power law
when the magnitude of the forcing amplitude is decreased. In
the CO oxidation reaction, on the other hand, the interfacial
zone in the propagating front is much more structured and
front explosion leads to the formation of a labyrinthine pat-
tern with 2:1 locking. Investigations of the front explosion
dynamics in the 2:1 regime of the CGLE with the Benjamin-
Feir instability reveal propagating Bloch fronts with a turbu-
lent interfacial zone which grows without bound beyond a
certain critical value of the forcing amplitude [23]. In both
the 2:1 CGLE and in period-2 coupled maps, poorly charac-
terized front explosions of stationary fronts have also been
observed. In the 2:1 resonantly forced CO surface oxidation
reaction, the stationary front separating the two homoge-
neous resonantly locked states has a turbulent interfacial
zone. As the forcing amplitude is decreased, beyond a critical
value the interfacial zone grows without bound leading to a
defect-mediated turbulent state.

Although spatially-resolved experiments with periodic
forcing of the CO oxidation reaction have already been per-
formed [8], the behavior of fronts was not studied. To create
a front, special initial conditions are needed, which were not
implemented in these experiments where forcing was always
applied starting from the turbulent initial state. An additional
difficulty was that, in the experiments, the frequency of uni-
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form oscillations in absence of forcing could not be exactly
measured, because such oscillations were unstable and led to
turbulence. In these experimental investigations, the atten-
tion was focused on qualitative properties of different pat-
terns induced by forcing. Remarkably, irregular stripe pat-
terns with the 2:1 locking were found then for high forcing
frequencies corresponding to 3:1 forcing [8]. Such irregular
stripe patterns were interpreted as labyrinthine patterns af-
fected by strong surface anisotropy. In the present theoretical
study, we have indeed found that the 2:1 locked labyrinthine
patterns should exist under 3:1 resonant forcing in the CO
oxidation system.

Our analysis of front explosions provides a theoretical
framework for future experimental studies of the CO oxida-
tion reaction under resonant periodic forcing. Generally, it
provides an example of the front explosion phenomena for a
system with nonharmonic oscillations and more complex dy-
namics, different from the ideal situation described by the
complex Ginzburg-Landau equation.
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