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Oscillatory and chaotic dynamics in compartmentalized geometries
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The effects of spatial compartmentalization of a multistep reaction mechaiwdtamowski-Rassler
mode) whose mass action rate law shows oscillations and chaotic dynamics are explored. The mechanism is
decomposed into subsets of reactions that are then assumed to take place in distinct regularly or randomly
distributed spatial domains in the system. The reactive domains are coupled by diffusion. The spatiotemporal
system states are investigated as a function of the system size and geometrical arrangement of the domains. A
compartmentalization is chosen where the isolated domain attractors are simple steady states. It is then shown
that changes in the system size or domain geometry can produce bifurcations leading to simple or period-
doubled oscillatory attractors as well as chaotic states. These bifurcations are analyzed by direct simulations of
the compartmentalized reaction-diffusion equations and by an analysis in terms of integral equations.
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[. INTRODUCTION occur only in the bulk of the medium. The same reaction
may be carried out on specifically designed patterns in a
Spatially extended chemically reacting systems can decatalytic membrang4]. Catalytic oxidation reactions may
velop a variety of spatial and temporal patterns when drivepccur on patterned platinum single-crystal surfaf®g].
far from equilibrium[1]. On macroscopic space and time Compartmentalization of biochemical reactions is common.
scales, the origin and nature of such patterns can be analyz&gny of the reactions in the cell occur in specialized or-
in terms of reaction-diffusion equations where reaction rate§anelles or other localized regions. The effects of compart-
that follow from mass action kinetics are supplemented withmentalization of simple models of biochemical reactions
diffusion terms. In this description one assumes that the sanféave been studied earlier. Compartmentalization can change
reaction mechanism operates in each local region of the mdhbe stability of the steady states and can influence oscillatory
dium. Such homogeneous media are the exception rathélynamics[7-10. Its effects on the stationary states of a
than the rule in nature. Most systems we encounter are inhdstable system have also been investigfed. .
mogeneous. The inhomogeneity can take many forms includ- In this paper, we study the effects of compartmentaliza-
ing spatial variations in system parameters, externally imiion on reaction kinetics whose mass action rate law gives
posed spatial gradients, heterogeneity in the substrates di$e to oscillatory and chaotic dynamics. Since the repertoire
which the reactions take place, etc. of possible behavior is large and investigation of the system
In this paper, we study some general features of a specifigfates involves issues such as the synchronization of regular
type of inhomogeneous chemically reacting system. We su@nd chaotic oscillations in extended inhomogeneous media,
pose that the chemical reaction mechanism comprises sevef@mpartmentalization can have nontrivial effects on the dy-
elementary steps and that subsets of the elementary stepsfmics. In order to illustrate the phenomena we make use of
the full mechanism take place in specific localized spatiathe Willamowski-Rasler (WR) model[12] that exhibits a
regions. Thus, various elements of the reaction are spatiallperiod-doubling cascade to a chaotic attractor. Section Il out-
compartmentalized and these compartmentalized domaidies the WR mechanism, describes the particular form of the
can communicate with each other by diffusion of chemicalcompartmentalization chosen in this study, and gives the
species. For such inhomogeneous media one might expe-é@mpartmentalized reaction-diffusion equations that form the
that the dynamical structure of the system will depend orpasis for the analyzes presented in the subsequent sections. A
geometrical factors that characterize the reactive domaifiumerical study of a regular distribution of reactive domains
configurations and the magnitudes of the diffusion coeffiiS presented in Sec. lll, while Sec. IV gives the results of an
cients of the chemical species. For example, when reactiv@PProximate analytical treatment of regular compartmental-
domains are separated by distances much longer than tigations, which provides insight into the observed phenom-
diffusion length, the domains will act independently. Since€na. Section V describes the dynamical behavior of systems
the reaction mechanisms differ from domain to domain, ond" Which the reactive domains are randomly distributed in
will observe a pattern of different localized attractors. If theOne- and two-dimensional media. The conclusions of the
diffusion length is large compared to the domain distribution,Study are given in Sec. VI.
the domains will act cooperatively and one will see dynamics
akin o that of the full reaction mechanism. . Il. COMPARTMENTALIZED WILLAMOWSKI-RO ~ SSLER
Such compartmentalization of reaction dynamics can oc- MODEL
cur both in laboratory experiments and in nature. Laboratory
examples include the Belousov-Zhabotinsky reaction carried The WR model[12] was constructed to show that a
out in microemulsiong?2,3], where some reactions occur chemical mechanism that involves only bimolecular steps
only within the micelles in the microemulsion and otherscan yield deterministic chaotic dynamics. The mechanism
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The dynamical structure that follows from this rate law
has been studied earlier and we review only some of its most
important feature$13]. Depending on the values of the pa-
rameters in the set ={k. 1 ,K.,,Kk.3,k+4,K+5}, this system
of equations can exhibit fixed points as well as periodic and
chaotic attractors in the three-dimensional concentration
phase space. In the calculations presented below, we
select pu={k;=31.2k,=1.45k;=10.8k,=1.02ks=16.5,
k_,=0.2k_,,k_3=0.12k_4,=0.01k_5=0.5 and takek_,
as the bifurcation parameter.

Fork_,>k",=0.1715 the WR reaction has a stable fixed
point. At kﬂz the system undergoes a Hopf bifurcation and a
period-1 limit cycle appears. A period-doubling cascade to
chaos is found ak_, is decreased further. For future refer-

FIG. 1. Reaction network diagram of the Willamowskig3ter
oscillator. The box labeled LV comprises the Lotka-\Volterra ele-
ment and the box labelelcomprises the “switch” element.

comprises the following bimolecular steps: ence, the bifurcations to period-2 and period-4 orbits occur at
k_,~0.1 andk_,~0.085, respectively, while a fully devel-
k1 oped chaotic attractor is found kt ,=0.072.
Ai+U=2U, (o Given the network structure of the WR oscillator it is
k-1 interesting to study a compartmentalized medium in which
Ky there are two types of reactive domain: LV domains where
U+V=2V, 2) reactions(1), (2), and(3) take place, an&d domains where
Kk, reactions(1), (4), and (5) occur. The system can then be
described by a reaction-diffusion equation
ks
As+V=A,, 3 ac(r,t) 2
K_3 pr =DV<c(r,t)+R(c(r,1)), 9
k
UJFW:4 As, (4)  subject to appropriate boundary and initial conditions. Here
k_g4 c(r,t)={cy(r,t)}={u(r,t),v(r,t),w(r,t)} is the vector of
local concentrations at timg D is the diffusion coefficient
ks matrix assumed to be constant and diagonal, Rf(r,t))
AgtW=2W. 5 ={Ry(c(r,1)} is the vector of reaction rates whose elements
k-s can be written as
The speciedA;,A,, ... ,As; are pool chemicals whose con- N
centrations are held constant by flows of reagents into and _ {o} _
out of the system whiléJ,V, andW are the species whose Rk(c(r’t))_izl R (r D)®i(r), (10

concentrations vary with time. From the reaction network

diagram for this model in Fig. 1, one sees that the WRwhere®,(r) is a characteristic function that is unity within
mechanism can be viewed as a coupling between a Lotkatomaini and zero otherwise ani is the total number of
Volterra (LV) oscillator involving the specied andV, and  reactive domains. In this equati(Rf(ai} is the reaction rate

“switch” (S involving specied) andW [13]. _ for speciesk corresponding to the subset of reactidng}
The time e\./olu.tlon of the concentrations is described bythat occur in domaii. For the specific compartmentalization
mass action kinetics, considered here, the reaction terms are
?j_l:=k1u—k_1u2—k2uv+ K 02— kuwrk o, (6  Ru =kau(rh) =k qu(r,H)*=keu(r,ho(r,t) +k_pu(r,H)?
d RyY=kpu(r, o (r,t) —k_pv(r,t)?—kgo(r,t) +k_s,
1%
_— — 2_
gp = Ketv —k_v®—kau +k s, (7) RLV=0, (11
dw ) and
HZ —k4UW+ k_4+ k5W_ k_5W y (8)

RE=kqu(r,t)—k_qu(r,t)®=kau(r,Hyw(r,t)+k_,,
where the concentrations corresponding to the various spe-
cies are denoted by lower case letters; eeg= u. The con- RS=0,
centrations of pool specie&; may be included in the rate
constantsk; ,ks,k_3,k_4, andks. We assume this has been  RS=—k,u(r,t)w(r,t)+k_,+ksw(r,t)—k_sw(r,t)2.
done without change of notation. (12
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In the limit of infinite diffusion the behavior is indepen- 40
dent of the geometrical details of the medium and is equiva-
lent to the well-mixed case. In the limit of low diffusion the 30
reactive domains act independently and the nature of the at-
tractors within the domains is determined by the subset of v 20}

reactive steps that take place in the domains. In particular,
LV domains have a single stable focus whelomains ex-
hibit three different solutions: a stable node wheres al-
most extinct, another stable node wh&realmost vanishes,
and an unstable node that separates the first two stable nodes. o s 10 15 20
The individual reactive domains have a bifurcation structure
that differs from that of the full reaction mechanism and we
investigate how diffusion and geometry determine the dy- FIG. 2. Limit cycles in the compartmentalized WR system pro-
namics of the compartmentalized system. jected onto theiv plane. Concentric limit cycle loops of increasing
size correspond to decreasihg(L=0.756, 0.730, and 0.4). The
outermost cycle corresponds to that for the well-mixed WR model.

10

25

Ill. REGULAR DISTRIBUTION OF DOMAINS

Consider a one-dimensional medium with lengtlton-  lar in appearance to the behavior of globally averaged con-
taining a simple regular distribution of alternating LV aBd centration fields in oscillatory media where dephasing occurs
domains. The domains have lengdtkL/2 and center-to- for large system sizes, here the nature of the local dynamics
center interdomain distancé=L/2. The diffusion coeffi- itself changes as a result of compartmentalization.
cients of all species were taken to be equal=D,=D,, Fork_,=0.095, where a period-2 cycle exists in the well-
=D. The reaction-diffusion equation was solved using anmixed WR system, wheh is much larger than the diffusion
Euler scheme with periodic boundary conditions. Boundarylength /5, the system again evolves to a stable fixed point
conditions play an important role in determining the naturedetermined by the local stationary states of the independent
of the patterns seen in compartmentalized systems. ThroughV and S domains. AsL decreases, first a period-1 limit
out the paper, with one exception discussed in Sec. IV A, weycle develops. This limit cycle grows until a period-
use periodic boundary conditions to model infinitely ex-doubling bifurcation occurs and the globally averaged con-
tended regular arrays of reactive domains or random districentration field executes a period-2 cycle.
butions in large systems. Figure 3 shows the globally averaged attractorskiop

It is convenient to use scaled time and length units,=0.072, where the well-mixed WR system has a chaotic at-
t—t/7 andx—x/\/D7. In terms of these scaled units, with tractor. As in the previous examples, the system kiptays
=1, the reaction-diffusion equation has the form in ).  the role of a bifurcation parameter and as it decreases one
with D=1, the unit matrix. The diffusion length of the sys- observes a period-doubling sequence and a chaotic attractor.
tem /= /Dt, expressed in these dimensionless units ign this regime the dynamics of the system is very sen;itive to
/ b— e/, wheret, is some characteristic time scale of the the system length. For L =0.283 the attractor is a period-2
problem. A suitable choice df, is the period of one oscilla- limit cycle, while for L=0.2309 it exhibits two-banded
tion of the system which, for the system parameters consideh@0s.
ered below, lies in the range B5./7=5 and thus 1.2
=/,=2.2. Given this scaling we may investigate the behav- a b
ior of the compartmentalized WR system for different values
of scaled system length The results reported in the text and
figures are presented in terms of these dimensionless space
and time units; chemical concentrations are also dimension-
less and determined by the values of the rate constants given
in the preceding section.

Figure 2 shows theu,v,w) phase-space trajectories of
the globally averaged concentration fields projected onto the
uv plane fork_,=0.11 and different values @f. The well-
mixed WR system has a period-1 limit cycle for this value of
k_,. While a period-1 limit cycle is observed for very small
system sizes, for large the system instead evolves to a
stable fixed point determined by the stationary states of the
independent LV and domains. A limit cycle develops at
=0.777 and, ad. decreases, the size of the limit cycle in
phase space grows until it resembles that of the well-mixed
WR system. The period of the limit cycle remains nearly FIG. 3. Development of a chaotic attractor in the compartmen-
constant afT=1.74 for 0.77&L<0.090, the system size talized WR system fok_,=0.072. Figurega)—(d) correspond, re-
range that was investigated. While the phenomenon is simispectively, toL =0.283, 0.258, 0.2309, and 0.179.

0 20 40 60
u
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IV. INTEGRAL REPRESENTATION accounts for the effects arising from the system’s boundaries.

A. Time-dependent case The prefactorsy, ;; are given by

In order to gain further insight into the nature of the dy-
namics in compartmentalized reacting media, it is useful to
adopt an alternative approach that is based on an integral
representation of the formal solution of the reaction-diffusion
equation11]. The formal solution of Eq(9) for the concen-
tration of specie is [14]

1
oy ji(t,tg) = vf fﬂ G(r,t;rg,to)d%rodr &,
J j

+j G(r,t;ry,to)d°r (1—5j). (18

Q;

In order to proceed further the Green function must be
B ) s specified. For finite one-dimensional systems, with homoge-
Ck(r’t)_f G(r,t:r0,0) f(r0)dro neous or zero-flux boundary conditions, the Green function
. may be written as an infinite series. Although calculations
+f f G(r,t;T o, to) Ri(C(r o) )dSrodt, may be carried out for such boundary conditions, use of_this
0 complex form of the Green function obscures the analysis of
. the results. For this reason, we examine a simpler situation,

+ Dkf jg [G(r,t:ro,t0) Y, CilTo,to) an infinite system W_ith zero concentrationxat =, where

0 0 the Green function is given by

—c(ro.to)V, G, tifo,to) |- NdSydty.  (13) e% (X—Xo)?

4(t—to)
The time-dependen:[ Green functior@gr,t;rq,tg), ¢i(r) is zm :
the initial condition,n is the unit vector normal to the bound- - . )
ary surface of the system, add, is a differential element of I writing Eq. (19) we have used the scaled variables intro-
the surface area of the System_ duced in Sec. ”l, Wher®k=1 for all SpeCie§<. As a result
Rather than considering the entire space and timethewy; factors do not depend dnand we drop this symbol
dependent concentration field, we focus on the concentratioand refer to these quantities ag . Substituting this expres-

field of speciek averaged over reactive domgin sion in Eq.(18) and performing the integrations for a me-
dium with domains of length separated distancek; , the

prefactors are

2 [t—t,
wi(tto) =7V —— {exd —1%/4(t—to)]— 1}

G(X,Xg;t,tg) = (19

1 S
ck,j(t)zij“jck(r,t)(aj(r)d r, (14

whereV; is the volume of domain and®;(r) is a charac-

teristic function that is unity within domai); and zero +erf(1/2yt—tg),

otherwise. Using the approximations introduced eafld,

namely, a multipole expansion of the characteristic functions 1 2d;; +1 2d;;—|

for domains different fronj and an assumption of uniformity wij(ttg) =5 | erf —erf , (20
within domainj, the evolution of the domain volume average W=t Wit=to

of the concentrations is given by where erf() is the error function.

N We may now apply this general formalism to the compart-
B t o mentalized WR system and, for simplicity, we gfgt=0 so
Ck'i(t)zlﬁbyi Dl +i§1 jowkvii(t’IO)Ri }(Ci(tO))dtO’ that only the third term in Eq15) remains. We suppose that
(15  the infinite medium contains two domains, one of type LV
(domain 1, and the other of typ& (domain 2. Under these
where conditions, remembering th&t,f:R\}V:O, Eq. (15 simpli-
fies to the set of integral equations

1
¢ _ . X S S
|k,j——vjf fG(r,t,ro,O)sbk(ro)@J(r)d rod’r, (16) uj(t)zj;wjl(t—to)Rﬁ(cl(to))dto

accounts for the effect of the initial concentration fiesg, .
and +waJZ(t_to)Rﬁ(cz(to))dto,
B _ 1t i ¢
Ik,j_vjjof 3€[G(I’,t,l’o,to)VrOCk(ro,to) vj(t)=fowjl(t—to)Ri(Cl(to))dto,
—Cu(ro,to) Vi G(1,t;10,t0)]- NO;(r)d Sydrdty, t
(17) Wj(t):fowjz(t_to)Rsv(Cz(to))dto, (21)
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1 - - This time gap increases monotonically, faster than linearly,
with the separation between the domadns

We have solved Eq21) for values ofa ranging from that
for widely separated reactive domains to adjacent reactive
domains. In all cases the attractor was an inhomogeneous
stationary state. Figure 4 provides insight into the reason that
oscillations are not observed. The self contributions from
reactive domains are always much larger than the contribu-
tions from the neighboring domain wheg—t, except for
very smalll, but then all prefactors tend to zero and the
boundaries dominate. Thus, the strong boundary effects pre-
clude the appearance of oscillations when the reactive do-
mains are strongly coupled.

08

0.6

0.4

02

FIG. 4. Prefactorsy;; and w;; as a function ofz. For the off- Oscillations were found for a system with a single domain
diagonal term, the dotted line correspondsite2 and the continu-  supporting the full reaction mechanism. The methodology
ous line corresponds ta=1. developed above may be applied to study the effect of the

domain sizd on the dynamics of this isolated domain. For a
for j=1,2. large enough domain, for instande=63.2, the domain-

Several features of these equations are worth noting. Alhveraged concentrations execute a chaotic trajectory in phase
spatial aspects of the medium are taken into account in thgpace. For a sufficiently small for instance, fol =1.414,
prefactorsw. The values of the concentrations at tilmare  the system loses its oscillatory behavior and evolves to a
obtained by integration of the reactive terms over all earlieffixed point. For intermediate lengths, we have observed limit
times t,, weighted by the factorsv;;. Thus, the factor cycles of different periodicity; e.g., a period-2 cycle is ob-
wji(t,tp) can be interpreted as the influence that the reactionserved forl=20 and a period-1 cycle for=6.324. This
in domaini at timety exert on domair at timet. It can be  behavior is the opposite of that found for a compartmental-
shown thatw;;(t,t)=1 andw;i(t,t)=0. Making use of the ized medium, where the more complex behavior is seen for
change of variablez=1/\4(t—ty), the prefactors can be smaller system sizes.

written as
B. Time-independent case
wii(2)= i[e,zz_ 1]+erf(z) ~ Ifthe attractor is a stationary state, one can use the time-
z\m independent form of Eq15) to study the solution structure.
For a finite medium of length with two reactive domains
1 1 1 and fixed concentrations at the boundaries, we obtain the set
wij(z,a;)= E{eri{z ajj +§ —eri{z aj;— 5)” of equations,

22
(22 uijjSlRﬁ-i— w]-SZRLZI-i— Uo,

where the parametes; is the distance between domains in

. . , . _ s pl S P2
units of the domain length, d;;=a;;l. Since we have only vi=wj R+ 0pRR v,
two domains,d;;=al. For nonoverlapping domains<la 1 )
<00, Wj = a)jisW-i- Q)}SZRW'F Wo, (25)

The variation of thew;; with z is shown in Fig. 4. The o )
diagonal termso;; increase monotonically witk while each ~ fOr Siteésj=1,2, whereug,vo, andw, are the concentrations
off-diagonal termaw;; has a maximum. In the limiz—<, at the bpundarles. The superscript on thg prefactors is
;i—1, whereas the off-diagonal termg; — 0. In this limit used to _|nd|c_ate that these quantities are calculated using the
we recover from Eqs(21), the simple solutions correspond- @ppropriate time-independent Green funct®(x,xo),
ing to independent domains. However, B+ 0, these equa-
tions reduce identically te=0, which is the concentration (1_ @)x if x<X
imposed at the boundary. The valueszoforresponding to L
the maxima inw;; are given by G(X,x0) = (26)

X .
1—E Xo If X=Xg.

[1 2a+1
=\/z—=In— 2
Zm 2a n2a—1’ @39 Equations(25) are further simplified using the fact that

RL=R?=0. Furthermore, settingo=(U;+U,)/2, vo= (v,
and substituting this result into the definitionfwe obtain  43,,)/2, andw,= (w; +w,)/2, we establish periodic bound-

an expression for the time gap at the maxima, ary conditions for a regular distribution of domains. Manipu-
) lating Eqgs.(25) we find that the stationary solutions of the
al (24) reaction-diffusion problem are given by the solutions of the

(t=tom=3 In[(2a+1)/(2a—1)]" set of algebraic equations,
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9 T T . TABLE |. Comparison of the concentrations averaged over the
different types of domain, obtained by solving the reaction-
diffusion (RD) equations and the integral representation approxima-
tion (Integra).

u.(x)
s Us Us Ws
7 L
LV (RD) 7.157 8.489 18.401
LV (Integra) 7.158 8.511 18.398
6 s . . S (RD) 8.083 8.508 18.374
20 40 60 80 S (Integra) 8.084 8.511 18.398

X

FIG. 5. Stationary spatial profile of the concentration of the
field for k_,=0.11 and =0.4472. The continuous line is the result Stationary concentrations, v, andws averaged over thg
from the direct numerical solution of the reaction-diffusion equa-and LV domains are presented in Table |
tion. The dashed line is the approximate solution for the domain- Equations(27) can be used to obtain an estimate of the

averaged concentrations using the integral representation. value of the length of the domain corresponding to the onset

of oscillations. For large values &f these equations exhibit

Riz 0, three solutions. Two of the solutions collide at a critical value
of I, I, leaving only one real solution. For the system con-

R\fv:o, sidered in this section we find=0.40, which is to be com-
pared withl,=0.38, the numerical estimate of the critical

Rl+R2=0, value obtained from the simulation of the reaction-diffusion
equation.
Y(RI—R) =u1—Us, 27

V. RANDOM DISTRIBUTION OF DOMAINS
where y= 03,;— 03,=X,1d/L—1%/6 and, as usuald is the
distance between the reactive domains higltheir length.
Theri prefactors for these conditions are We have also studied random distributions of LV &d

reactive domains. The one-dimensional random medium was
X; 12 . constructed in the following way. The total number of reac-
(1_ f) xjl = 5 it xi=x tive domains was fixed aN. A numberN of points was
wji = (29 chosen at random from a uniform distribution [@hL] and
(1_ ﬁ)x-l i X <x: each point was taken to be the center of an L\Sgeactive
L™ o domain of lengtH. The domain types, LV an8, were cho-
sen with probabilitiesp and 1—p, respectively, allowing
wherex; denotes the position of the center of reactive do-overlapping of domains if the distance between two centers
maini. was less than. The overlapping regions were assumed to
The first three equations in Eq&7) simply reflect the  support the full WR reaction mechanism and constitute a
fact that the stationary state is reached when the nehird type of reactive domain with label. The value of
production/consumption of all species is zero. In addition, itk_,=0.072, where the well-mixed system is in the chaotic
can be shown that; =v, andw; =w,; thus, the solution of regime, was chosen for all of the one- and two-dimensional
the system of equation®7) gives the six stationary state simulations reported in this section.
concentrations of the problem. Even thoughN is fixed, since domains may overlap, fluc-
The validity of the approximations made in the course oftuations exist in the densities of reactive domains. The den-
developing these equations can be tested in several ways. Fsities of each type of domain are denoteddy p, v, ps,
instance, fory=0 we obtainu;=u, and recover the well- and pc, for inactive LV, S, and C domains, respectively,
mixed case. Also, notice that far=cc, we obtain from Eqgs. wherep;=L;/L with L; the length occupied by domains of
(27) that Rﬁz Rﬁzo, i.e., each domain attains its local sta- typeJ. Also, although LV andS domains with a fixed length
tionary state independently. | are randomly placed in the system, due to the fact that
For intermediate values of one can solve Eq$27) and  domains may overlap to generate typedomains, the do-
compare with the numerical solution of the reaction-mains that result from this random process do not have a
diffusion equations in nonoscillatory regimes. Good agree<constant length, in contrast with the regular domain configu-
ment is found. Figure 5 shows the results kgr=0.11 and  rations considered in the previous sections.
| =0.4472. This domain length is too large to support oscil- The evolution of the WR system with such random com-
lations in the compartmentalized medium and the systenpartmentalization was investigated. Different realizations of
rapidly evolves to the final stationary spatial profile exhibitedthe random process were generated for a system ofLsize
in the figure. Only the profile fou is shown but similar taking |=L/50 andp=0.5. Two values ofN were consid-
agreement is found for all other concentration fields. Theered:N=26, where there is a very low average density of

A. One-dimensional media

056203-6



OSCILLATORY AND CHAOTIC DYNAMICS IN . .. PHYSICAL REVIEW E 65 056203

e ———EEEEE———
t | | t
| I
X

X X X
5 80
u
40
u

4

0

0 40 80 0 40 80
0 10 20 0 10 20 t t

t t

FIG. 6. Space-time plots for one realization of the random me- FIG. 7. Space-time plots of the random medium o 26 for
dium for N=26 andL =200 (top left) and L=115.47(top righy. ~ SmallL: L=2.82(upper lef andL =2.39 (upper righi. Coding is
Time increases from bottom to top; time interval of five, time units the same as that in Fig. 6. A time interval of twenty, time units is
shown. The gray shades code the magnitudes ofutfield. The shown in both panels. Phase plane plots of the globally avenaged
globally averagedi fields versus time corresponding to these two @ndv fields for the systems shown in the upper panels:2.82
systems are shown in the lower left and right panels, respectively, dfower leff), L =2.39 (lower righy.
this figure.

those observed for larger valueslofThe dynamics depends

more sensitively on the detailed geometry of the realization:
the phase-space shape of the global attractor can vary and
dome realizations may not even exhibit oscillations. For ex-
ample, only two out of five realizations exhibited global os-
cillations with average periodT)=4.72, five times larger
than that in the largé regime. In this regime diffusion is
ong enough to yield coherent oscillations over the entire
edium(see Fig. 7.

For systems with a higher average density of overlapping
mains(pc)=0.43, the medium contains larger clusters of
domains and clusters close to each other tend to synchro-
nize. The left panel of Fig. 8 shows a space-time plot of the
dynamics in this regime foL.=200. The three oscillating

) . ) regions near the right border of the system are synchronized,
lations are no longer confined to tiiedomains but extend 0 the two oscillating regions near the left border emit

into the ne|_ghbor|ng LV ands do_mams._ These o§C|IIat|ng waves. For intermediate values bfthe nonoscillatory re-
centers emit waves that are quickly dissipated in the sur:

) X L 2 . gime discussed above for the low concentration case is not
rounding medium. The oscillations in this regime are local-
ized and their period is short; e.g., the period averaged over a——
five realizations of the random process(iE)=0.89 while \/w /'
the period for bulk oscillations is several times longer. For / {
the same domain configuration as in the upper left panel of 4
Fig. 6, forL=115.47, one sees that the oscillations in five of t ‘J

overlapping sites(pc)=0.053, andN=80, where (pc)

realizations of the random compartmentalization process.
For systems with lowpc)=0.053, in the limit of large.,
the dynamics on LV an& domains evolves to the stationary
states that are determined by the partial WR mechanisms th
operate on these domain types. However, oscillations are opﬁ
served on th& domains where the full WR mechanism op-
erates. This behavior is seen in the space-time plots shown 510
the top two panels of Fig. 6 for one realization of the randomC
compartmentalization. The realization for=200 shown in
this figure has six oscillating domairileft pane). Since the
scaled diffusion lengtlr is fixed, asL decreases, the oscil-

A T
W e

’
u «Nu

1RR)

(] ﬁll‘l‘ v

these domains have been extinguistiedper right panel .

. . . . W L ('IAR]
For smaller values ok, oscillations in all domains are ex- v /‘, W ‘ !V"'
tinguished and the system exhibits a stable nonuniform sta- ‘/\ 1. |l .‘“, I‘mm
tionary state. Although the qualitative aspects of the behavior NWIRR LY

described above do not depend strongly on the particular X X

rea“zatlon Of the I’andom med'um, the Spat'al pl‘OfI|e Of the FIG. 8. Space_time p|0ts for one rea”zation Of the random me-
stationary state does depend on the geometric details of thum for N=80: L =200, time interval of five, time units shown
realization. (left) andL =0.70, time interval of twenty, time units showright)

Further decrease df leads to a region of global oscilla- which corresponds to Fig. @ower right. Coding is the same as
tions whenL~/5. These oscillations are different from that in Fig. 6.
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FIG. 9. Phase plane plots of the globally averageshdv fields FIG. 10. Top left: One realization of the random configuration
for N=80 andL=2.0 (upper lef}, 1.41 (upper righ}, 1.15(lower  of LV, S, andC domains. The domain type is color coded by shades
left), and 0.70(lower righy. of gray; the darkest shades correspond to inactive areas of the me-

. L _dium and the lightest tdC-type overlapping domains. The other
observed and globally synchronized oscillations occur ifyanels are instantaneous configurations of uhfield for L =112
most of the realizations. The period of the global oscillations,iqp, righy, 35.42 (bottom lefy, and L =11.20 (bottom righ}. The
averaged over five realizations of the random process, Wagagnitude ofu is proportional to the intensity of gray shade.
found to be(T)=1.36, which is considerably faster than that
for low pc. This behavior is expected since a larger propor- . o
tion of I(chdomains should Ieacl;) to faster gIobaIgdyn%m?cs;qverla_pp'ngpe:N”rZ/LZ' In our realization the JMA equa-
however, it is still true that the phase-space shapes of théon Yields p=0.8650. The percolation threshojer for
observed attractors depend on the details of the domain di§verlapping circles has been determined earlier by means of
tribution. The right panel of Fig. 8 is a space-time plot whencomputer simulation§17] and Monte Carlo position space
the system is in the globally synchronized chaotic regimerenormalization group calculatiorjd8]. The results in the
Figure 9 shows the global attractors for a particular realizaliterature give a value opy between 0.67 and 0.688, thus
tion for different sizes of the system. The globally averagedur medium exhibits an area fraction covered well above the
dynamics shows a partial period-doubling cascade and a cheareshold. However, while the discs percolate the overlap-
otic attractor corresponding to the dynamics in the rightping C-type regions do not. In the figure one can see that the
panel of Fig. 8. medium contains six large clusters @fdomains and a few

additional smaller ones.
B. Two-dimensional media The remainder of the panels in this figure show instanta-

A two-dimensional random compartmentalized mediumn€ous configurations of the concentration fielbr different
can be constructed by placing a totalMfcircular domains ~ vValues of the system size:= 112 (top right, 35.42(bottom
of radiusr at random in a system of sizex L with periodic  left), andL=11.20(bottom righ}. The evolution of the sys-
boundary conditions. Again, the discs are chosen to be dem for largelL is characterized by a sequence of concentra-
type LV with probabiliy p=0.5 andS with probability 1  tion fronts propagating within the overlapping clusters. The
—p. The overlapping regions are of tyfig where the full  fronts are generated at the borders of the clusters and propa-
WR mechanism operates. gate until they collide and annhilate with an incoming front

The upper left panel in Fig. 10 shows one realization ofor reach another border. The shapes of these fronts are ir-
the random medium foN=80 andr=L/11.2. The domain regular and are dictated by the shapes of the borders where
type is color coded by gray shadésee caption In this  they are generated. Diffusive coupling is not strong enough
realization the densities of the different domains @ie  to homogeneize the interiors of the clusters. The clusters of
=0.1236, p_y=0.1432, ps=0.2894, andp=0.4438. The LV and S domains attain their steady states and are only
total area fraction covered in this realization psy+ps  weakly affected by the activity inside th@ clusters. The
+pc=p7=0.8764. The Johnson-Mehl-AvrariiMA) equa-  time series of the globally averagexfield is characterized
tion, which has been used extensively in the materials scipy jrregular oscillations of short period and small amplitude.
ence literatur¢15,16|, expressepr in terms of the extended  ag | decreases larger regions of the medium synchronize.
area fractiorp, as The clusters ofC domains cease emitting pulses and begin
(29) oscillating uniformly and act as pacemakers. In Fig.(46t-

tom right), one such large pacemaker is visible near the

wherep, is the area fraction covered by the circles ignoringupper-right corner. IfL is decreased further diffusive cou-

pT= 1— e_Pe'
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pling is able to synchronize the entire medium and the syseients are the same for all species and are independent of
tem enters a regime of global oscillations, which have longspatial coordinates. This has allowed us to focus on effects

period and large amplitude. arising solely from compartmentalization of the reaction
mechanism. When spatial variations in diffusion coefficients
VI. CONCLUSIONS are accounted for, new dynamics is likely to arise.

Compartmentalized geometries can play a role in reac-
When the reaction mechanism comprises several stefons on composite catalytic surfaces, in microemulsions or
and can support oscillatory or chaotic dynamics, compartother inhomogeneous media, and cellular biological systems;
mentalization can lead to a variety of spatiotemporal Stateﬁqus, the phenomena we have described in this paper can be
not observed either in the underlying well-mixed system orsought in experiments on chemical and biochemical systems.
in the reaction-diffusion system without compartmentaliza-|n this work we have chosen to use a set of scaled dimen-
tion. The complexity of these systems arises from the intersjonless variables in terms of which the diffusion coefficient
play between the compartmentalization of specific subsets qg D=1. The system size in dimensional unitss given by
the reaction mechanism in distinct spatial domains and th

diffusive coupling among such domains. We have showrf:: VDL and the diffusion length by’ =D7/p. The

how system size or diffusion and domain geometry can act a\éalues. of diffusion 9oeﬁicients in systems of int_erest can
ary widely, depending on the nature of the medi(sulu-

bifurcation parameters to produce new spatiotemporal state¥’ . ; e
The results show that the spatial and temporal patterns ofilon, gel, solid surfaqe, ce)lin Wh'.Ch diffusion takes plaqe,

served in a given system are determined by geometrical fa nd the characterl_stlc reaction “T“es can al_so vary widely.
tors. As a result one cannot simply deduce the nature of th he space scales in systems of interest typically vary from

dynamics from a knowledge of the mass action kinetics that™ to ¢m ranges. Since many of the phenomeng we have
follows from the reaction mechanism. described arise from accessible length scale, diffusion or

The WR mechanism and the specific compartmentalizageometrical factor changes, the bifurcations discussed above

tion we have studied in some detail in this paper should béhotl:ld Ee obst_ervable ml prenm_enta:c studr:es deS|gne|d to
regarded as an illustration, that demonstrates the types §fOP€ the spatiotemporal dynamics of such systems. It Is

phenomena that can be seen in compartmentalized reactiof®"/ often possible_to taylo_r th_e geometrical features of.in-
diffusion systems in the far-from-equilibrium domain. As omogeneous media, making it possible to probe the bifur-

such, even though this system was chosen because it exhibt §t|c(>jnﬁstructuret§hflt arises frc:m gegmetr(;cal fgaturgs, sun;_h as
a variety of attractors in its well-mixed form, a restricted € difterences between regufar and random domain contigu-

perspective was taken in some parts of the study. Comparff"tions' The work presented here should provide guides to

mentalization often entails not only partitioning of reactive SUCh studies.

steps of the mecham;m in spatial quams, but aI;o concomi- ACKNOWLEDGMENT
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