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Summary. A correlation function formalism for the calculation of rate constants in
mixed quantum-classical systems is presented. The full quantum equilibrium density
is retained in the rate expressions and quantum-classical Liouville dynamics is used
to propagate the species variables in time. Results for a model two-level system
coupled to a nonlinear oscillator that is coupled to a harmonic bath and for a proton
transfer reaction in a polar liquid solvent are presented. The rate coefficients for these
systems are computed using surface-hopping dynamics based on the solution of the
quantum-classical Liouville equation.
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1 Introduction

A knowledge of the rates of condensed phase chemical reactions is necessary
for an understanding of many problems in chemistry and biology. If one is
interested in the reactive dynamics of a light particle immersed in an envi-
ronment of heavy molecules, a quantum rate theory is required to correctly
describe this dynamics. Consider a proton transfer occurring in a solvent or
large molecule. Due to its light mass, the proton’s thermal deBroglie wave-
length is comparable in length to the distance over which it travels. As a
result, the proton must be treated quantum mechanically and the importance
of such quantum effects is well documented. Experimental evidence suggests
that hydrogen tunneling is important in enzyme catalysis under physiological
conditions [1]. The magnitude of such quantum effects can be gauged by com-
paring the measured or calculated deuterium kinetic isotope effect for these
reactions with that predicted by classical transition state theory. In addition,
quantum effects in the environment surrounding the proton may be signifi-
cant. Quantum phenomena exist in the solvent dynamics associated with the
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transfer of excess protons in liquid water and can explain the anomalously
high mobility of these protons [2, 3].

Although it is not difficult to write a correlation function expression for
the time-dependent rate coefficient of a reacting quantum system [4], a full
quantum dynamical simulation of a condensed phase system containing a
large number of degrees of freedom is not computationally feasible. Calcula-
tions of rate constants for reactive processes occurring in many-body envi-
ronments, which incorporate quantum effects, have been performed using a
variety of computational techniques. The techniques used include influence-
functional [5, 6] and real-time path integral methods [7, 8], methods based
on the stochastic Schrödinger equation [9, 10], centroid dynamics [11], golden
rule and Fokker-Planck formulations [12], mode coupling theories [13, 14],
techniques based on the initial value representation [15, 16, 17, 18, 19, 20, 21,
22], mapping Hamiltonian methods [23, 24], nonadiabatic statistical meth-
ods [25], surface-hopping schemes [26, 27, 28, 29, 30], multi-configuration
time-dependent Hartree methods [31, 32], and methods based on the quantum-
classical Liouville equation [33, 34, 35, 36, 37, 38].

In this chapter, we consider systems for which a description in terms of
quantum-classical dynamics is appropriate [37], i.e. systems in which a subset
of the degrees of freedom are treated quantum mechanically while the dynam-
ics of the remainder of the degrees of freedom can be adequately described by
classical mechanics. We first derive expressions for the quantum mechanical
rate coefficient of a general reaction A ⇀↽ B and then obtain their quantum-
classical analogs. Next, we consider the choice of a reaction coordinate and
the specification of species variables used to monitor the progress of a quan-
tum reaction and discuss the rate expressions which arise from such a choice.
We apply this quantum-classical rate theory to a two-level quantum system
coupled to a classical nonlinear oscillator which is in turn coupled to a clas-
sical harmonic bath, and to the more realistic situation of a proton transfer
reaction occurring in a polar solvent.

2 Rate Theory

Quantum-classical expressions for rate coefficients have been derived [40, 41],
and computed for model systems [40, 41, 42] and proton transfer reactions [43].
An alternate approach to the calculation of quantum transport properties was
described recently [44, 45]. The starting point of this approach is the full quan-
tum mechanical expression for a transport property; however, the evolution of
dynamical variables is carried out in the quantum-classical limit. This scheme
has the advantage that the full quantum mechanical equilibrium structure
of the system, described by a spectral density function, is retained; only the
quantum mechanical time evolution is replaced by quantum-classical time
evolution. The calculation of the quantum equilibrium structure, although a
difficult problem, is far more tractable than that of the quantum time evolu-
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tion of a many-body system. Exact expressions for the reaction rate coefficient
have been derived in this more general context [45]. In many cases, one may
take advantage of convenient features of the system to make approximations
which simplify the computation of these expressions. For each system, the
most applicable reaction coordinate must be identified, along with the dy-
namical variables which characterize the microscopic species involved in the
reaction.

In this section we shall derive a series of quantum mechanical expressions
for the rate coefficient of a general interconversion reaction A ⇀↽ B start-
ing from the flux-flux quantum correlation function. By taking the quantum-
classical limit of these expressions, we obtain formulas that can be computed
using quantum-classical surface-hopping dynamics.

2.1 Quantum Mechanical Rate Expressions

For a quantum mechanical system in thermal equilibrium undergoing a trans-
formation A ⇀↽ B, a rate constant kAB may be calculated from the time
integral of a flux-flux correlation function [46],

kAB =
1

neq
A

∫ ∞

0

dt〈ĵA; ĵB(t)〉 =
1

βneq
A

∫ ∞

0

dt〈 i

h̄
[ĵB(t), Â]〉 , (1)

where Â = N̂A is the A species operator, neq
A is the equilibrium density of

species A, ĵA = ˙̂
A = (i/h̄)[Ĥ, Â] is the flux of Â with Hamiltonian Ĥ, with

an analogous expression for ĵB , [·, ·] is the commutator and the angular brack-
ets 〈Â; B̂〉 = 1

β

∫ β

0
dλ〈eλĤÂe−λĤB̂〉 denote a Kubo transformed correlation

function, with β = (kBT )−1. The equilibrium quantum canonical average is
〈· · ·〉 = Z−1

Q Tr · · · e−βĤ , where ZQ is the partition function. The time evolu-
tion of the reactive flux is given by projected dynamics. In simulations it is
often convenient to consider the time-dependent rate coefficient defined as the
finite time integral of the flux-flux correlation function,

kAB(t) =
1

neq
A

∫ t

0

dt′〈ĵA; ĵB(t′)〉 =
1

neq
A

〈 ˙̂
A ; B̂(t)〉

=
1

βneq
A

〈 i

h̄
[B̂(t), Â]〉 , (2)

where we have replaced projected dynamics by ordinary dynamics and as-
sumed [B̂, Â] = 0.

Writing the second equality in Eq. (2) in detail and inserting arbitrary
time variables t1 and t2, we can write the rate coefficient kAB(t) as,

kAB(t) =
1

neq
A βZQ

∫ β

0

dλTr
( ˙̂
A(t1 − ih̄λ)e

i
h̄ Ĥt′B̂(t2)e−

i
h̄ Ĥt′e−βĤ

)
, (3)
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where t′ ≡ t + t1− t2. To insert the times t1 and t2, we used the fact that the
time evolution of an operator Ô is given by Ô(t) = e

i
h̄ ĤtÔe−

i
h̄ Ĥt.

We partition the entire quantum system into a subsystem S plus environ-
ment E so that the Hamiltonian is the sum of the kinetic energy operators
of the subsystem and environment and the potential energy of the entire sys-
tem, Ĥ = P̂ 2/2M + p̂2/2m + V̂ (q̂, Q̂), where lower and upper case symbols
refer to the subsystem and environment, respectively. In the next subsection
we shall show how the rate coefficients for a system partitioned in this way
can be evaluated in the quantum-classical limit. For the present, however, it
is convenient to first make a Wigner transform over all degrees of freedom,
subsystem plus environment, and later single out the subsystem and environ-
mental degrees of freedom for different treatments. Introducing a coordinate
representation {Q} = {q}{Q} of the operators in Eq. (3) (calligraphic sym-
bols denote variables for the entire system), making the change of variables
Q1 = R1 − Z1/2, Q2 = R1 + Z1/2, etc., and then expressing the matrix
elements of the operators in terms of their Wigner transforms, we obtain

kAB(t) =
1

βneq
A

∫ β

0

dλ

∫
dX1dX2(Ȧ)W (X1, t1)BW (X2, t2)

× 1
(2πh̄)2ν

ZQ

∫
dZ1dZ2e

− i
h̄ (P1·Z1+P2·Z2)

×
〈
R1 +

Z1

2

∣∣∣e i
h̄ Ĥ(t′+ih̄λ)

∣∣∣R2 − Z2

2

〉

×
〈
R2 +

Z2

2

∣∣∣e−βĤ− i
h̄ Ĥ(t′+ih̄λ)

∣∣∣R1 − Z1

2

〉
, (4)

where ZQ = (2πh̄)−ν
∫

dX (e−βĤ)W (X ). In writing this equation we used the
fact that the matrix element of an operator Ô(t) can be expressed in terms of
its Wigner transform OW (X , t) as

〈
R− Z

2

∣∣∣Ô(t)
∣∣∣R+

Z
2

〉
=

1
(2πh̄)ν

∫
dPe−

i
h̄P·ZOW (X , t), (5)

where ν is the coordinate space dimension and

OW (X , t) =
∫

dZe
i
h̄P·Z

〈
R− Z

2

∣∣∣Ô(t)
∣∣∣R+

Z
2

〉
, (6)

defines the Wigner transform. We use the notation R = (r,R), P = (p, P ) and
X = (r,R, p, P ), where again the lower case symbols refer to the subsystem
and the upper case symbols refer to the environment.

We define the spectral density by

W (X1,X2, t) =
1

(2πh̄)2ν
ZQ

∫
dZ1dZ2e

− i
h̄ (P1·Z1+P2·Z2)
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×
〈
R1 +

Z1

2

∣∣∣e i
h̄ Ĥt

∣∣∣R2 − Z2

2

〉

×
〈
R2 +

Z2

2

∣∣∣e−βĤ− i
h̄ Ĥt

∣∣∣R1 − Z1

2

〉
. (7)

If we let

W (X1,X2, t) =
1
β

∫ β

0

dλW (X1,X2, t + ih̄λ) (8)

=
2
β

∫ β
2

0

dλReW (X1,X2, t + ih̄λ),

we can write the rate coefficient as

kAB(t) =
1

neq
A

∫
dX1dX2(Ȧ)W (X1, t1)BW (X2, t2)W (X1,X2, t + t1 − t2) .(9)

We may choose the times t1 and t2 to yield various forms for the correlation
function. Since the time evolution of the operator is usually more convenient
than that of the spectral density, we set t1 = 0 and t2 = t to give

kAB(t) =
1

neq
A

∫
dX1dX2(iLW (X1)AW (X1))BW (X2, t)W (X1,X2, 0) . (10)

The quantum Liouville operator in Wigner-transformed form is iLW =
2
h̄HW (X ) sin

(
h̄Λ
2

)
, where Λ is the negative of the Poisson bracket operator.

We can rewrite Eq. (10) as

kAB(t) =
1

neq
A

∫
dXBW (X , t)WA′(X , 0), (11)

where 1

WA′(X , t) =
∫

dX ′(iLW (X ′)AW (X ′))W (X ′,X , t). (12)

¿From the last equality in Eq. (2), we can obtain an alternative form of
the rate coefficient involving the commutator of Â and B̂(t). Performing a set
of manipulations similar to those used above, we may show that kAB(t) is also
given by

kAB(t) =
i

h̄βneq
A

∫
dX1dX2AW (X1)BW (X2, t)

×[W (X1,X2, ih̄β)−W (X1,X2, 0)]

=
2

h̄βneq
A

∫
dX1dX2AW (X1)BW (X2, t)ImW (X1,X2, 0), (13)

1 Here, W A′ corresponds exactly to W A defined in Ref. [47].
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where Im stands for the imaginary part. Using the definition

WA(X , t) =
∫

dX ′AW (X ′)W (X ′,X , t), (14)

we can rewrite kAB(t) as

kAB(t) =
2

h̄βneq
A

∫
dXBW (X , t)ImWA(X , 0). (15)

So far, both Eqs. (11) and (15) for the time-dependent rate coefficient are
exact.

We find that the following symmetry relations hold for W :

W (X1,X2, t)∗ = W (X2,X1,−t) , (16)
W (X1,X2, t + ih̄λ)∗ = W (X1,X2, t + ih̄(β − λ)) . (17)

Note that W (X ′,X , t + ih̄λ) is real only for λ = β
2 ; namely,

W (X1,X2, t +
ih̄β

2
)∗ = W (X1,X2, t +

ih̄β

2
). (18)

This corresponds to the first order term when W is expanded in terms of β,

W (X1,X2, 0) = W (X1,X2,
ih̄β

2
) +O(β2). (19)

In the high temperature limit, the higher order terms in β become negligible.
Note that the symmetry relations above also hold for WA′(X , t).

In the long time limit, the time-dependent rate coefficient, kAB(t), decays
to zero. However, if there is a large difference between the time scales of the
chemical reaction and the transient microscopic dynamics, the rate coefficient
first decays to a plateau from which the rate constant can be extracted. If
absorbing boundaries are introduced to prevent escape of the trajectory from
the metastable states once they are reached from the barrier top, the rate
coefficient will no longer decay to zero and will assume a constant value at
long times. This can be achieved more rigorously by formulating the rate
expressions using projection operator techniques [46].

2.2 Quantum-Classical Rate Expressions

In this section we show how to take the quantum-classical limit of the general
expressions for the rate coefficient, which treat the system plus environment
fully quantum mechanically. By taking the quantum-classical limit [37] of
these expressions we can obtain rate coefficient expressions that are amenable
to solution using surface-hopping methods. The computation of the initial
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value of W is still a challenging problem but far less formidable than the
solution of the time-dependent Schrödinger equation for the entire quantum
system.

To make a connection with the surface-hopping representation of the so-
lution of the quantum-classical Liouville equation [37], we first observe that
AW (X ) can be written as

AW (X ) =
∫

dz e
i
h̄ p·z < r − z

2
|ÂW (X)|r +

z

2
> , (20)

where ÂW (X) is the partial Wigner transform of Â, defined as in Eq. (6),
but with the transform taken only over the environmental degrees of freedom.
The partial Wigner transform of the Hamiltonian is ĤW = P 2/2M + p̂2/2m+
V̂W (q̂, R) ≡ P 2/2M + ĥW (R), where ĥW (R) is the Hamiltonian of the sub-
system in the fixed field of the environment. The adiabatic eigenstates are the
solutions of the eigenvalue problem, ĥW (R)|α; R >= Eα(R)|α; R >. We may
now express AW (X ) in the adiabatic basis to obtain,

AW (X ) =
∑

αα′

∫
dz e

i
h̄ p·z < r − z

2
|α; R > Aαα′

W (X) < α′; R|r +
z

2
> ,(21)

where Aαα′
W (X) =< α; R|ÂW (X)|α′; R >.

Inserting this expression and its analog for BW (X2) into Eq. (10), we
obtain

kAB(t) =
1

neq
A

∑

αα′

∫
dXBαα′

W (X, t)Wα′α
A′ (X,

ih̄β

2
), (22)

using the approximation prescribed by Eq. (19). The matrix elements of WA′

in the adiabatic basis are given by

Wα′α
A′ (X,

ih̄β

2
) =

∑

α1α′1

∫
dX ′

(
iL(X ′)AW (X ′)

)α1α′1
Wα′1α1α′α(X ′, X,

ih̄β

2
),

(23)
where

Wα′1α1α′α(X ′, X,
ih̄β

2
) =

1
(2πh̄)2νZQ

∫
dZdZ ′e−

i
h̄ (P ·Z+P ′·Z′)

× < α′;R| < R +
Z

2
|e− β

2 Ĥ |R′ − Z ′

2
> |α1;R′ >

× < α′1; R
′| < R′ +

Z ′

2
|e− β

2 Ĥ |R− Z

2
> |α;R > . (24)

¿From Eq. (15), the alternative form of the rate coefficient can be obtained
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kAB(t) =
2

h̄βneq
A

∑

αα′

∫
dX Im[Bαα′

W (X, t)Wα′α
A (X, 0)], (25)

where

Wα′α
A (X, 0) =

∑

α1α′1

∫
dX ′Aα1α′1

W (X ′)Wα′1α1α′α(X ′, X, 0). (26)

In the quantum-classical limit, Bα′α
W (X, t) satisfies the quantum-classical

Heisenberg equation:

d

dt
Bα′α

W (X, t) =
∑

ββ′
iLα′α,β′β(X)Bβ′β

W (X, t). (27)

The quantum-classical Liouville operator, iL, in the adiabatic basis is given
by iLαα′,ββ′(X) = [iωαα′(R) + iLαα′(X)]δαβδα′β′ − Jαα′,ββ′(X) [37], where
the classical evolution operator is defined by

iLαα′ =
P

M

∂

∂R
+

1
2

[
Fα

W (R) + Fα′
W (R)

] ∂

∂P
, (28)

with

Jαα′,ββ′(X) = − P

M
dαβ

[
1 +

1
2
Sαβ(R)

∂

∂P

]
δα′β′

− P

M
d∗α′β′

[
1 +

1
2
S∗α′β′(R)

∂

∂P

]
δαβ . (29)

Here the frequency is ωαα′(R) = [Eα(R)−Eα′(R)]/h̄, the Hellmann-Feynman
force is Fα

W = −
〈
α;R

∣∣∣∂V̂W (q̂, R)/∂R̂
∣∣∣ α; R

〉
, the nonadiabatic coupling ma-

trix element is dαβ = 〈α;R |∇R|β; R〉, and Sαβ = (Eα − Eβ)dαβ [(P/M) ·
dαβ ]−1.

It should be noted that W
α′α
A′ (X, t) and Wα′α

A (X, t) satisfy the following
symmetry relations:

W
α′α
A′ (X, t)∗ = W

αα′

A′ (X, t), (30)

Wα′α
A (X, t + ih̄λ)∗ = Wαα′

A (X, t + ih̄(β − λ)). (31)

It follows that

{Wα′α
A′ (X, t) + W

αα′

A′ (X, t)}∗ = W
α′α
A′ (X, t) + W

αα′

A′ (X, t), (32)

and
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{Wα′α
A (X, t + ih̄λ) + Wαα′

A (X, t + ih̄λ)}∗ (33)

= Wα′α
A (X, t + ih̄(β − λ)) + Wαα′

A (X, t + ih̄(β − λ)).

Using these properties, we may write kAB(t) from Eqs. (22) and (25) as

kAB(t) =
1

neq
A

∑
α

∑

α′≥α

(2− δα′α)
∫

dX Re[Bαα′
W (X, t)Wα′α

A′ (X,
ih̄β

2
)],(34)

or

kAB(t) =
2

h̄βneq
A

∑
α

∫
dX

(
Bαα

W (X, t)ImWαα
A (X, 0)

+
∑

α′>α

Im[Bαα′
W (X, t){Wα′α

A (X, 0)−Wαα′
A (X, 0)∗}]). (35)

These rate coefficient expressions involve quantum-classical evolution of the
matrix element Bαα′

W (X, t) but retain the full quantum equilibrium structure
of the system. We now derive specific forms of the rate coefficient based on
different choices of dynamical variables BW (X, t).

3 Species Variables

We now have to choose specific forms of the dynamical variables AW and BW

which characterize the chemical species in the reacting mixture, but first we
need some insight into how to choose them. This will be the topic of the next
subsection.

3.1 Reaction Coordinate and Free Energy

To illustrate how one chooses a particular species variable, we consider a two-
level quantum subsystem coupled to an environment with many degrees of
freedom. This is an interesting case since many features of condensed phase
proton and electron transfer processes can often be captured by such two-
level models. In many situations, due to the nature of the coupling between
the quantum and classical degrees of freedom, one may choose a reaction co-
ordinate, ξ(R), which depends solely (either directly or parametrically) on the
classical coordinates. In such a case, reactive events in the quantum subsys-
tem are reflected by changes in a function of the classical coordinates. The
reaction coordinate must be appropriate in the sense that it will be able to
detect the formation of the various chemical species in the reacting mixture, if
monitored along the course of a reaction. The guide to the specification of the
relevant species variables for our two-level model is provided by the structure
of the ground and first excited state free energy profiles along ξ(R).
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The free energy along the reaction coordinate can be obtained analyti-
cally for simple two-level systems [40] or, more generally, generated from long
constant temperature trajectories on the different adiabatic surfaces. The free
energy corresponding to adiabatic surface α is given by

βWα(ξ′) = − ln
Pα(ξ′)

Pu
, (36)

where Pu is the uniform probability density of ξ, and

Pα(ξ′) =
∫

dRdP δ(ξ(R)− ξ′)e−βHα

∑
α

∫
dRdP e−βHα

, (37)

is the probability density for finding the numerical value ξ′ of ξ(R) when
the system is in adiabatic state α with Hamiltonian Hα =

∑
i P 2

i /(2Mi) +
Eα(R), where the sum runs over all classical particles i, and Pi and Mi are
the momentum and mass of the ith particle, respectively. We may then write
the free energy as

βWα(ξ′) = − ln
〈δ(ξ(R)− ξ′)〉α

Pu
− ln

pα

p1
, (38)

where 〈δ(ξ(R)− ξ′)〉α is defined by,

〈δ(ξ(R)− ξ′)〉α =
∫

dRdP δ(ξ(R)− ξ′)e−βHα∫
dRdP e−βHα

. (39)

and can be estimated by binning ξ(R) along a long trajectory on adiabatic
surface α. The probability that the system is in state α is pα =

∫
dξ′ Pα(ξ′),

and therefore
pα

p1
=

∫
dRdPe−β(Eα−E1)e−βH1∫

dRdPe−βH1
. (40)

This factor is related to the relative probability that the system is in state α
(regardless of the value of ξ), and can be determined from a long adiabatic
trajectory on the ground state surface.

Figure 1 schematically shows two sets of free energy profiles for a two-
level system; they correspond to systems in which there is weak (left panel)
and strong (right panel) coupling between the quantum subsystem and the
reaction coordinate, respectively. In both, the ground state surface has two
minima corresponding to two stable species separated by a high barrier at
ξ(R) = ξ‡. In the left panel, the excited state surface is nearly parallel to
the ground state surface, whereas in the right panel it has a single minimum.
Since transitions between the two stable species will occur on a long time scale
(due to the high barrier and excitations to higher states), we may identify the
values of ξ(R) greater than and less than ξ‡ with species A and B, respectively.
Hence, we may use the Heaviside functions θ(ξ(R)− ξ‡) and θ(ξ‡ − ξ(R)) as
variables which correspond to species A and B, respectively.
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W
(ξ

)

ξ

ξ=ξ‡ ξ=ξ‡

Fig. 1. A schematic illustration of two contrasting sets of free energy (W ) profiles
along a reaction coordinate ξ. The left and right panels respectively depict situa-
tions of weak and strong coupling between the quantum subsystem and reaction
coordinate. The dotted lines at ξ = ξ‡ indicate the position of the barrier top.

Let us consider a system in which only one classical coordinate, R0, is
directly coupled to the quantum subsystem. In this case, the progress of
the quantum reaction can be simply monitored by the reaction coordinate
ξ(R) = R0. For the remainder of this section, all the derivations are carried
out using this reaction coordinate because the mathematical manipulations
are less cumbersome using this reaction coordinate.

3.2 Reactive Flux Operator

The A and B species operators may be defined as ÂW = θ(−R0) and B̂W =
θ(R0), where θ is the Heaviside function and the dividing surface is located at
ξ‡ = 0. For this choice of species variable, Wα′α

A′ (X, ih̄β
2 ) defined in Eq. (23),

can be simplified by taking advantage of the fact that integrations over all X ′

coordinates can be performed to obtain,

Wα′α
A′ (X,

ih̄β

2
) =

1
(2πh̄)ν

ZQ

ih̄

M0

∫
dZdZ ′0(∂δ(Z ′0)/∂Z ′0)e

− i
h̄ P ·Z

× < α′; R0|
〈

R +
Z

2

∣∣∣e− β
2 Ĥ

∣∣∣− Z ′0
2

〉

×
〈

Z ′0
2

∣∣∣e− β
2 Ĥ

∣∣∣ R− Z

2

〉
|α; R0 > . (41)

In this equation the adiabatic eigenstates depend parametrically only on R0

since the subsystem S couples directly only to the coordinate R0.
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In order to compute the rate, we need to carry out quantum-classical
evolution of Bαα′

W (X, t), as dictated by Eq. (27), and sample from an initial
quantum distribution with weights determined by Wα′α

A′ (X, ih̄β
2 ). The imagi-

nary time propagators in Wα′α
A′ (X, ih̄β

2 ) can, in principle, be computed using
quantum path integral methods [48] or approximations such as linearization
methods [23, 24, 49, 50]. Below we show how one may construct approxi-
mate analytical expressions for this quantity, which will be used to obtain the
numerical results in the next section.

Parabolic potential in barrier region

In activated rate processes a knowledge of the dynamics of a system in the
vicinity of its potential energy barrier is crucial for the calculation of the
rate constant. In many situations the potential is locally parabolic in the
barrier region and such harmonic barrier approximations have been employed
frequently in the study of quantum and classical reaction rates [17, 51, 52, 53,
54, 55]. Here we show how the local harmonic character of the barrier along
the reaction coordinate R0 can be exploited to construct an approximate form
for Wα′α

A (X, ih̄β
2 ), which is useful for the situation depicted in the left panel

of Fig. 1.
To proceed with the analytical calculation, we first partition the Hamil-

tonian into Ĥ = Ĥsn + Ĥb(n), where Ĥsn = Ĥs + Ĥn + V̂sn is the Hamiltonian
of the subsystem plus a subset of degrees of freedom N plus the coupling
between them, and Ĥb(n) is the Hamiltonian of the bath B in the field of
N . For our model the subset N is just that associated with the R0 coor-
dinate. Then, we assume that the imaginary time propagator may be writ-
ten as exp(−βĤ/2) ≈ exp(−βĤsn/2) exp(−βĤb(n)/2), so that Eq. (41) for
Wα′α

A′ (X, ih̄β
2 ) is given by

Wα′α
A′ (X,

ih̄β

2
) =

1
ZQ

i

2πM0

∫
dZ0dZ

′
0δ
′(Z ′0)e

− i
h̄ P0·Z0

× < α′; R0|
〈

R0 +
Z0

2

∣∣∣e− β
2 Ĥsn

∣∣∣− Z ′0
2

〉

×
〈

Z ′0
2

∣∣∣e− β
2 Ĥsn

∣∣∣ R0 − Z0

2

〉
|α; R0 > ρb(Pb, Rb; R0),

(42)

where ρb(Pb, Rb;R0) is proportional to the Wigner transform of the canonical
equilibrium density matrix for the bath in the field of the R0 coordinates,

ρb(Pb, Rb; R0) =
1

(2πh̄)ν−1

∫
dZbe

− i
h̄ Pb·Zb

×
〈

Rb +
Zb

2

∣∣∣e−βĤb(n)

∣∣∣ Rb − Zb

2

〉
. (43)
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Next, we single out the barrier region around R0 = 0 for special con-
sideration. Separating the Hamiltonian Ĥsn into a harmonic term Ĥh0 =
P 2

0 /2M0 − 1
2M0ω

‡2R2
0 (where ω‡ is the frequency at the barrier top) and re-

mainder terms ĥsn, we can write Ĥsn = Ĥh0 + ĥsn. The eigenstates of ĥsn

are |α; R0 > as above but the eigenvalues, denoted by εα(R0), are related
to the Eα(R0) introduced earlier by εα(R0) = Eα(R0) + 1

2M0ω
‡2R2

0. Tak-
ing exp(−βĤsn/2) ≈ exp(−βĤh0/2) exp(−βĥsn/2), the matrix elements in
Eq. (42) can then be written as

< α′; R0| < R0 +
Z0

2
|e− β

2 Ĥsn | − Z ′0
2

><
Z ′0
2
|e− β

2 Ĥsn |R0 − Z0

2
> |α; R0 >

=< R0 +
Z0

2
|e− β

2 Ĥh0 | − Z ′0
2

><
Z ′0
2
|e− β

2 Ĥh0 |R0 − Z0

2
>

× < α′; R0|e−
β
2 ĥsn(R0+

Z0
2 )e−

β
2 ĥsn(R0−Z0

2 )|α; R0 > . (44)

Using the representation of ĥsn in the adiabatic basis, e−
β
2 ĥsn(R0) =

∑
α |α; R0 >

e−
β
2 εα(R0) < α; R0|, expressing the matrix element in a Taylor series in Z0 and

retaining up to first order terms in Z0, we find

< α′; R0|e−
β
2 hsn(R0+

Z0
2 )e−

β
2 hsn(R0−Z0

2 )|α; R0 >

= e−βεα(R0)

[
δαα′ +

Z0

2
Oα′α(R0)dα′α(R0) +O(Z2

0 )
]

,

(45)

where Oα′α(R0) =
(
1− e−

β
2 εα′α(R0)

)2

and εα′α = εα′ − εα.
Finally, using the expression for the matrix elements of the harmonic os-

cillator imaginary time propagator,

< R0|e−
β
2 Ĥh0 |R′0 >=

√
2aM0u

π sinu
exp[−aM0u

{−(R0 + R′0)
2 tan

u

2
+ (R0 −R′0)

2 cot
u

2
}], (46)

where u = βh̄ω‡/2 and a = (2βh̄2)−1, and carrying out the integrations over
Z0 and Z ′0, we have

Wα′α
A′ (X,

ih̄β

2
) =

1
2πh̄ZQ

1
cos2 u

√
2M0u′

βh̄2π
e
− 2M0u′

βh̄2 R2
0

× P0

M0
e
− βP2

0
2M0u′ Fα′α(R0)ρb(Pb, Rb;R0), (47)

where u′ ≡ u cotu and

Fα′α(R0) = e−βεα(R0)

(
δα′α +

1
2
(1− βP 2

0

M0u′
)
ih̄

P0
dα′αOα′α

)
. (48)
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The off-diagonal contribution to WA′ is imaginary and therefore, from Eq. (34),
only the imaginary part of Bαα′

W (X, t) contributes to the rate.

Partitioning of the propagator

When the ground and excited states have different structures in the barrier re-
gion (as in the right panel of Fig. 1), the parabolic approximation used above
is no longer valid and another approximation must be made. In this connec-
tion, instead of singling out the harmonic part of Ĥsn in the barrier region, one
may partition Ĥsn into kinetic plus potential terms as Ĥsn = P̂ 2

0 /2M0 + ĥ0.
Then approximating the propagator in Eq. (42) as eβĤsn/2 ≈ eβP̂ 2

0 /4M0eβĥ0/2,
and carrying out a series of calculations similar to those outlined above, we
obtain

Wα′α
A′ (X,

ih̄β

2
) =

1
2πh̄ZQ

√
2M0

βh̄2π
e
− 2M0

βh̄2 R2
0

× P0

M0
e−

βP2
0

2M0 Fα′α(R0)ρb(Pb, Rb; R0), (49)

where Fα′α has a definition similar to that of Fα′α but with εα(R0) replaced
by Eα(R0),

Fα′α(R0) = e−βEα(R0)

(
δα′α +

1
2
(1− βP 2

0

M0
)
ih̄

P0
dα′αOα′α

)
. (50)

Likewise, Oα′α has a definition analogous to that of Oα′α with εα(R0) replaced
by Eα(R0).

The advantages of the two methods based on Eqs. (47) and (49) are worth
noting. Equation (49) does not assume a particular form for the potential in
the barrier region, while in Eq. (47), a harmonic form is assumed. However,
Eq. (47) retains the quantum effects resulting from the coupling between the
potential and kinetic terms unlike Eq. (49).

Classical treatment of environmental coordinates

Making the high temperature approximation limβ→0

√
a

βπ e−
a
β R2

0 = δ(R0) and

using the classical analog of Eq. (43), ρcl
b (Pb, Rb; R0) = e

−βHb(n)

(2πh̄)ν−1 , Eq. (49)
reduces to

Wα′α
A′ (X,

ih̄β

2
) =

1
2πh̄ZQ

δ(R0)
P0

M0
e−

βP2
0

2M0 Fα′α(R0)ρcl
b (Pb, Rb;R0)

=
1

(2πh̄)νZQ
δ(R0)

P0

M0
e−βHα(X)

×
(

δα′α +
1
2
(1− βP 2

0

M0
)
ih̄

P0
dα′αOα′α

)
, (51)
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where Hα(X) = Hb(n) +Eα(R0). This result may be substituted into Eq. (34)
to obtain an expression for the rate coefficient:

kAB(t) = kd
AB(t) + ko

AB(t), (52)

where the diagonal contribution is

kd
AB(t) =

−1
neq

A (2πh̄)νZQ

∑
α

∫
dXBαα

W (X, t)δ(R0)
P0

M0
e−βHα(X), (53)

and the off-diagonal contribution is

ko
AB(t) =

1
neq

A (2πh̄)νZQ

∑

α′>α

∫
dXIm{Bαα′

W (X, t)}δ(R0)
P0

M0
e−βHα(X)

×(1− βP 2
0

M0
)

h̄

P0
dα′αOα′α. (54)

The diagonal contribution agrees with the result obtained earlier using quantum-
classical linear response theory [40], while the off-diagonal contribution does
not due to the inherent differences in the approximations made. For a general
reaction coordinate, ξ(R), the high temperature approximation leads to

kd
AB(t) =

−1
neq

A (2πh̄)νZQ

∑
α

∫
dX

P

M
· ∇Rξ(R)Bαα

W (X, t)

×δ(ξ(R)− ξ‡)e−βHα(X) , (55)

and

ko
AB(t) =

1
neq

A (2πh̄)νZQ

∑

α′>α

∫
dXIm{Bαα′

W (X, t)}δ(ξ(R)− ξ‡)e−βHα(X)

×
( ∑

j

∇Rj ξ(R)
Mj

[
dj

α′α − βPj

( P

M
· dα′α

)])
h̄Oα′α. (56)

4 Applications

In order to compute the rate constants of processes such as proton and elec-
tron transport in condensed phases, one must account for the effects of the
environmental degrees of freedom. The theory presented in the previous sec-
tions provides a convenient framework in which a rate study of such systems
can be performed.

In this section, we show the results of a rate coefficient calculation for a
proton transfer reaction occurring in a linear hydrogen-bonded complex dis-
solved in a polar solvent. The proton is treated quantum mechanically and the
remainder of the degrees of freedom is treated classically. Valuable insight into
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such rate processes can also be obtained, more efficiently, by studying simple
transfer reaction models which simulate the effect of a condensed phase envi-
ronment on a reaction coordinate. In this connection, we first show rate results
for a two-level quantum system coupled to a classical nonlinear oscillator that
is in turn coupled to classical harmonic bath. For these two applications, an
appropriate choice of reaction coordinate and species variables is made and
quantum-classical Liouville dynamics is used to evolve the species variables.

4.1 Two-level model for transfer reactions

Spin-boson-type models, where a two-level quantum system is bilinearly cou-
pled to a bath of independent harmonic oscillators, have often been used to
compute nonadiabatic reaction rates [8, 16, 23, 48, 56, 57]. For such spin-boson
systems quantum-classical dynamics is exact and our simulation algorithms
that employ quantum-classical trajectories have been shown [58] to reproduce
the exact quantum results [56]. The rate constant for such spin-boson systems,
when computed using quantum-classical dynamics and sampling from quan-
tum initial states, corresponds to that obtained in a full quantum treatment
[45, 47]. Here we consider a more complex model involving coupling between
the two-level system, a nonlinear oscillator and a bath of harmonic oscilla-
tors as a more realistic model for quantum particle transfer in the condensed
phase. No exact results are available for this model.

Model

The model system we consider has the Hamiltonian operator, expressed in the
diabatic basis {|L〉, |R〉} [40]

H =
(

Vn(R0) + h̄γ0R0 −h̄Ω
−h̄Ω Vn(R0)− h̄γ0R0

)

+


 P 2

0

2M0
+

N∑

j=1

P 2
j

2Mj
+

N∑

j=1

Mj

2
ω2

j

(
Rj − cj

Mjω2
j

R0

)2

 I .

(57)

In this model, a two-level system is coupled to a classical nonlinear oscillator
with mass M0 and phase space coordinates (R0, P0). This coupling is given
by h̄γ0R0 = h̄γ(R0). The nonlinear oscillator, which has a quartic poten-
tial energy function Vn(R0) = aR4

0/4 − M0ω
‡2R2

0/2, is then bilinearly cou-
pled to a bath of N independent harmonic oscillators. From the first ma-
trix in Eq. (57), we see that the diabatic energies are given by Ed

1,2(R0) =
Vn(R0) ± h̄γ0R0 and the coupling between the diabatic states is −h̄Ω. The
bath harmonic oscillators labelled j = 1, ..., N have masses Mj and frequen-
cies ωj . The bilinear coupling is characterized by an Ohmic spectral density
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[56, 57], J(ω) = π
∑N

j=1(c
2
j/(2Mjω

2
j )δ(ω − ωj), where cj = (ξh̄ω0Mj)1/2ωj ,

ωj = −ωc ln (1− jω0/ωc) and ω0 = ωc

N

(
1− e−ωmax/ωc

)
, with ωc a cut-off

frequency.
The adiabatic states obtained from the diagonalization of Hamiltonian (57)

are given by

|1;R0〉 =
1
N [(1 + G)|L〉+ (1−G)|R〉]

|2;R0〉 =
1
N [−(1−G)|L〉+ (1 + G)|R〉] , (58)

where N (R0) =
√

2(1 + G2(R0)) and

G(R0) = γ(R0)−1
[
−Ω +

√
Ω2 + γ2(R0)

]
. (59)

The corresponding adiabatic energies are E1,2(R) = Vb(R)∓
√

Ω2 + γ2(R0),
where

Vb(R) = Vn(R0) +
N∑

j=0

P 2
j

2Mj
+

N∑

j=1

Mj

2
ω2

j

(
R2

j −
cj

Mjω2
j

R0

)2

. (60)

Insight into the nature of the quantum reaction dynamics can be gained
by considering the ground and first excited adiabatic free energies along the
R0 coordinate, as given by

Wα(R0) = −β−1 ln




∫ N∏

j=1

dRj Z−1
α e−βEα(R)




= β−1 ln Zα + Vn(R0)∓
√

Ω2 + γ2
0R2

0 , (61)

where Zα =
∫

dR exp(−βEα(R)) and α = 1, 2. They are plotted in Fig. 1
for both a small (left) and large (right) value of γ0. Based on the structure
of these profiles, we may choose θ(R0) and θ(−R0) for the A and B species
variables, respectively.

For small values of γ0, the potential in the reactant region is approximately
harmonic, making the ground and excited free energy surfaces nearly paral-
lel. As a result, the partition function for the reactant state, neq

A ZQ, can be
approximated using the mean free energy surface and given by

(neq
A ZQ)−1 ≈ eβVr sinh(βh̄ωr/2)

N∏

j=1

2 sinh(βh̄ωj/2), (62)

where ωr is the frequency in the reactant well and Vr is the bare potential at
the bottom of it. Using the high temperature form of Eq. (62) in the transition
state theory (t = 0+) form of Eq. (53) we obtain
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kTST
AB ≈ ωre

βVr

2π

e−βΩ + eβΩ

2
, (63)

which will be used to scale the results presented in the figures. When the
coupling between the two-level system and the quartic oscillator is negligible,
Ω is also negligible, and kTST

AB becomes the well-known value of ωre
βVr/2π.

In this regime, a symmetric oscillator has the frequency ωr ≈
√

2ω‡. Using
these results and Eqs. (34) and (47) for kAB(t), the transmission coefficient,
κAB(t) = kAB(t)/kTST

AB , takes the form

κAB(t) = −
∑
α

∑

α′≥α

(2− δα′α)
∫

dXRe[Bαα′
W (X, t)wα′α

QRB(X)], (64)

where

wα′α
QRB(X) =

2u

sin 2u

sinhur

ur

P0

M0

√
πM0β

2u′
Fα′α∑

α e−βεα(0)

×Ga(R0;
2M0u

′

βh̄2 )Ga(P0;
β

2M0u′
)

×
N∏

j=1

Ga(Rj − cjR0

Mjω2
j

;
β

2u
′′
j

Mjω
2
j )Ga(Pj ;

β

2Mju
′′
j

),

(65)

the Gaussian function Ga is defined by Ga(x; b) =
√

b
π exp(−bx2), and

u
′′
j = uj cothuj with uj = βh̄ωj/2. We label the results obtained using this

formula, which treats the initial distribution of the reaction coordinate and
bath quantum mechanically, by QRB.

When the initial distribution of the reaction coordinate and bath is treated
classically, we can use Eq. (51) for Wα′α

A to obtain

wαα′
CRB(X) =

P0

M0

√
πM0β

2
δ(R0)Ga(P0;

β

2M0
)

Fα′α∑
α e−βEα(0)

×
N∏

j=1

Ga(Rj ;
β

2
Mjω

2
j )Ga(Pj ;

β

2Mj
). (66)

Results obtained using this formula are labeled by CRB.
We used a convenient set of dimensionless coordinates and parameters,

which is given in Ref. [40]. The calculations were performed for a bath of
N = 100 harmonic oscillators with the following values of the parameters:
ωmax = 3, Ω = 0.1, γ0 = 0.1, a = 0.05, and ω‡ = 1. The simulation scheme
for carrying out quantum-classical molecular dynamics has been described in
detail earlier [43, 40, 58, 59], so only a few comments about the calculations
are needed here. The initial distribution of X for the QRB and CRB results



Quantum-classical reaction rate theory 19

was sampled from weights determined by Eqs. (65) and (66), respectively.
The time evolution of the species variable, Bαα′

W (X, t), is determined from
constant energy quantum-classical trajectories generated using the sequential
short-time propagation algorithm [58].

Results

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

κ(
t)

β=2.0

1 2 3 4 5

t

β=0.1

QRB
CRB

Fig. 2. Comparison between the time-dependent transmission coefficient of the
case where the equilibrium structure of the reaction coordinate and bath is treated
quantum mechanically (QRB) and that of the case where it is treated classically
(CRB). Parameters values: β = 2 (left), β = 0.1 (right), γ0 = 0.1, Ω = 0.1, and
ξ = 3.

First, we compare the QRB and CRB rate results for two temperatures in
Fig. 2. For high temperatures (β = 0.1), both the QRB and CRB results are
indistinguishable, except at very short times. At t = 0, the CRB result for the
time-dependent transmission coefficient, κ(t), is non-zero and equal to unity,
which yields the transition state theory value of the rate constant. The QRB
results for the time-dependent transmission coefficient are zero at t = 0, which
is expected from quantum rate processes [46]. At lower temperatures (β = 2),
where quantum effects are more pronounced, one sees that the QRB formula
yields a larger rate constant than does the CRB one. This enhancement of
the quantum rate has also been observed in other studies [15, 48, 60].

In Fig. 3, the QRB results for the transmission coefficient κAB , obtained
from the plateau value of κAB(t), are plotted as a function of the Kondo



20 G. Hanna, H. Kim, and R. Kapral

parameter ξ, which when increased, creates more friction in the bath. As the
friction is increased from zero, the rate initially increases to a maximum and
then continuously decreases, capturing the well-known turnover behavior [61].
This initial increase at low values of ξ is solely due to quantum effects.

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3

κ

ξ

Fig. 3. Transmission coefficient (κ) vs. the Kondo parameter (ξ) for β = 2,γ0 = 0.1,
and Ω = 0.1.

4.2 Proton transfer

Model

Proton transfer dynamics plays an important role in many chemical and bio-
logical systems. Therefore, an accurate picture of the global dynamics of these
systems requires a careful treatment of the proton in the context of its environ-
ment. Since these systems are usually too complex and too large to simulate,
one can resort to simplified models in order to gain valuable insights. In this
connection, we studied a model for a proton transfer reaction (AH-B ⇀↽ A−–
H+B) in a hydrogen-bonded complex (AHB) dissolved in a polar solvent. All
the details of the model can be found in Ref. [43] and references therein, so
we will only mention a few main aspects of it. This model has been used as a
benchmark for testing a variety of techniques [62, 63, 64, 65, 66, 67, 68].

The potential energy describing the hydrogen bonding interaction within
the complex in the absence of a solvent, which is a function of the protonic
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coordinate, models a slightly strongly hydrogen-bonded phenol (A) trimethy-
lamine (B) complex. The parameters which control the strength of the A−B
bond were chosen to yield an equilibrium A − B separation of RAB = 2.7
Å. For this value of RAB , the potential energy function has two minima, the
deeper minimum corresponding to the stable covalent state and the shallower
minimum corresponding to the metastable ionic state. We have constrained
RAB to be 2.7 Å in our simulations. The AHB complex is dissolved in a solvent
composed of 255 polar, nonpolarizable model methyl chloride molecules. The
temperature of the system in the simulations performed was approximately
250 K.

The time evolution of the system is determined using quantum-classical
Liouville dynamics in which the complex and solvent are treated classically
and the proton, quantum mechanically. The Hamiltonian operator, which is
partially Wigner transformed over the solvent and A and B groups of the
complex, can be found in Ref. [43].

Proton transfer dynamics in polar liquids is usually monitored [69, 70] by
the solvent polarization, ∆E(R),

∆E(R) =
∑

i,a

zae

(
1

|Ra
i − s| −

1
|Ra

i − s′|
)

, (67)

where zae (e = 1.602 × 10−19 C) is the charge on solvent atom a, and s and
s′ are two points within the complex, one at the center of mass and the other
displaced by −0.56 Å from the center of mass, respectively, which correspond
to the minima of the bare hydrogen bonding potential. The sums run over
all solvent molecules i and atoms a. In essence, the solvent polarization is
the difference between the solvent electrical potentials at points s and s′ and
drives the transfer of the proton, making it an ideal reaction coordinate.

In Fig. 4 we see that ∆E tracks the hops of the proton between the
reactant/covalent state (∆E ≈ 0.005 eC/Å) and the product/ionic state
(∆E ≈ 0.0225 eC/Å). The complex spends more time in the ionic config-
uration than in the covalent configuration since electrostatic interactions with
the polar solvent preferentially stabilize the ionic configuration of the com-
plex. In the absence of the polar solvent, the complex is primarily found in
the covalent configuration.

The free energy profiles corresponding to adiabatic evolution on the
ground, first and second excited state surfaces, are shown in Fig. 5. The free
energy in the ground state has a double-well structure and a single-well struc-
ture in the first excited state. The second excited state free energy has a
double-well structure with a relatively low barrier. Given the magnitude of
the energy gap between the first and second excited state surfaces, the sec-
ond excited state is not expected to participate strongly in the nonadiabatic
quantum-classical dynamics. It is evident from the ground state free energy
profile that the minimum of the ionic state is lower in free energy than that of
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Fig. 4. Time series of the solvent polarization (∆E) for a ground state adiabatic
trajectory.
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Fig. 5. Free energy (βW ) profiles along the ∆E reaction coordinate for the system
undergoing ground, first and second excited state adiabatic dynamics.

the covalent state as a result of the stabilizing effect of the polar solvent. The
barrier top of the ground state surface is located at ∆E‡ = 0.0141 eC/Å .

Since the temperature of the system is fairly high and the dynamics of
the solvent and complex atoms can be accurately captured using classical
mechanics, a high temperature/classical approximation (analogous to the one
which lead to Eq. (51)) is made to obtain a rate expression for this proton
transfer reaction that employs ∆E(R) as the reaction coordinate. Based on the
structure of the free energy profiles, we selected the A and B species variables
as N̂A = θ(∆E(R) − ∆E‡) and N̂B = θ(∆E‡ − ∆E(R)), respectively. The
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specific form of the diagonal part of the rate coefficient (which turns out to
be the major contribution) for this choice of species variables is

kd
AB(t) = − 1

neq
A

∑
α

∫
dRdP ∆Ė(R)Nαα

B (R,P, t)

×δ(∆E(R)−∆E‡)ραα
We

, (68)

where the equilibrium fraction of species A is

neq
A =

∫
d∆E′ θ(∆E(R)−∆E‡)e−βW (∆E′)Pu, (69)

and the time derivative of the solvent polarization can be rewritten as
∆Ė(R) = P

M · ∇R∆E(R). The canonical equilibrium distribution is given
by ραα

We
= Z−1

0 e−βHα
W , with Z0 =

∑
α

∫
dRdP e−βHα

W .

Equation (68) provides a well-defined formula involving initial sampling
from the barrier top ∆E = ∆E‡. In addition, quantum-classical time evolution
of Nαα

B (R,P, t) must be carried out to compute the reaction rate.

Results

In Fig. 6, we present results for the time-dependent rate coefficient which
were obtained from an average over 16000 trajectories. As expected from the
high temperature form of the rate coefficient, we see that it falls quickly from
its initial transition state theory value in a few tenths of a picosecond to a
plateau from which the rate constant can be extracted. The decrease in the
rate coefficient from its transition state theory value is due to recrossing by
the trajectory of the barrier top before the system reaches a stable state. The
value of kAB obtained from the plateau is kAB = 0.013 ps−1. This result
is 32% lower than the adiabatic result, indicating a significant nonadiabatic
quantum correction.

5 Concluding Remarks

The theory presented in this chapter shows how chemical reaction rates can be
computed from time correlation function expressions that retain the quantum
equilibrium structure of the system and employ a quantum-classical descrip-
tion of the dynamics of the species variables. Thus, the computational method
combines a surface-hopping dynamics based on the quantum-classical Liou-
ville equation, with initial sampling from a quantum equilibrium distribution.
As such, the method differs from conventional surface-hopping schemes for
reactive quantum-classical dynamics, both in the nature of the time evolu-
tion of operators and in the way the trajectories are sampled to compute the
reaction rate.
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Fig. 6. The rate coefficient, kAB(t), as a function of time. The dotted line indicates
the plateau value kAB .

The simulation results reported above utilized various approximate analyt-
ical expressions for the spectral density function that describes the quantum
equilibrium structure. In some circumstances, especially for low temperatures,
effects arising from the quantum equilibrium structure lead to important mod-
ifications of the reaction rate. To treat more general and complex molecular
systems one could resort to numerical schemes for computing the equilibrium
structure, similar to those based on the initial value representation [68, 71, 72]
and linearization techniques [50, 73, 74, 75].

Different formulas for the time-dependent rate coefficient can be derived
within this framework using other choices of the reaction coordinate and chem-
ical species variables. These should allow one to effectively capture quantum
effects in a variety of chemical rate processes occurring within a wide range
of temperatures and in complex condensed phase environments.
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