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Summary. In this chapter we review the key issues in the construction of a
mixed quantum–classical statistical mechanics. Two approaches are outlined: First,
the construction of a formally consistent quantum–classical scheme which entails
modified dynamical equations, and a modified equilibrium distribution that is the
stationary state of the quantum–classical dynamics. Second, an approach which
starts from the exact quantum correlation functions and introduces approximations
for both the dynamics and (possibly separately) the equilibrium distribution. The
first scheme is internally consistent, but inconsistencies arise in the properties of
the quantum–classical correlation functions including the fact that time translation
invariance and the Kubo identity are only valid to O(�). The second scheme does
not address the consistency issues explicitly, but has to provide suitable criteria
for approximations for both the dynamics and the equilibrium distribution. Two
approaches to the practical implementation of this second scheme are presented
(1) a mixed quantum–classical propagation, closely related to the first scheme and
(2) a linearized path integral approach.

1 Introduction

Consider quantum systems which can be partitioned into two subsystems, one
of which behaves almost classically while the other requires a full quantum
description. It is reasonable to assume that the overall quantum behavior of
the total system will be simplified due to the presence of this almost classical
component. This fact has motivated the development of mixed quantum–
classical methods, an idea which has attracted considerable interest for a
number of years. In spite of the simplicity of this idea, the formulation of a
mixed quantum–classical dynamics is not a simple problem, and many con-
ceptual difficulties arise making this a very active area of research.

A great deal of effort in this area has been devoted to the development of
approximate quantum–classical dynamical schemes while much less effort has
been invested in exploring statistical mechanical issues. In the physical sci-
ences one is interested in the calculation of time-dependent expectation values
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and (equilibrium) correlation functions. In order to compute these quantities
one needs not only mechanics but also statistical mechanics.

One can imagine investigating statistical mechanical issues from two per-
spectives (1) construct a fictitious world in which one formulates statistical
mechanics based on an underlying quantum–classical dynamics or (2) begin
with the full quantum statistical mechanical description of the real world
and make approximations to the quantum dynamics that lead to a represen-
tation in terms of trajectories. There are advantages and disadvantages to
both schemes. As we shall see it is difficult to construct a consistent mixed
quantum–classical formulation, however, if scheme (1) could be carried out
one would have a consistent statistical mechanical formulation in the fictitious
quantum–classical world. The essential issue then would be to determine the
extent to which this fictitious world is a faithful model of the corresponding
real one defined above. In scheme (2) the starting point is the correct sta-
tistical mechanical description of the quantum world but approximations are
used to reduce the dynamics to trajectories. These approximations introduce
inconsistencies in the formulation. In particular the full quantum equilibrium
distribution is not stationary under the approximate quantum evolution.

In this chapter we will address some of these issues and illustrate the
ideas by considering specific examples of methods which construct approxi-
mate trajectory descriptions of quantum evolution. In Sect. 2 we describe the
formulation of a statistical mechanics based on quantum–classical equations of
motion and point out some difficulties that arise in carrying out this program.
In Sect. 3 we consider formulations based on approximations to the dynam-
ics in the full quantum statistical mechanical expressions for time correlation
functions. The ideas are illustrated by considering two examples that approx-
imate the dynamics in terms of trajectories. Finally we conclude with some
observations and perspectives for future research.

2 Quantum–Classical Worlds

We begin by formulating the quantum laws underlying dynamics and statis-
tical mechanics. Let B̂ be an observable of the system, then the Heisenberg
equation describing its motion is

dB̂(t)
dt

=
i
�
[Ĥ, B̂(t)] . (1)

The Liouville–von Neuman equation of motion for the density matrix ρ̂ is
given instead by

∂ρ̂(t)
∂t

= − i
�
[Ĥ, ρ̂(t)] , (2)

and the equation for the average value of an observable can be written in either
of the following two equivalent forms obtained using cyclic permutation of the
trace:

B(t) = TrB̂ρ̂(t) = TrB̂(t)ρ̂(0) . (3)
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As described in the Sect. 1 we partition our system into two subsystems:
the first subsystem contains n degrees of freedom representing particles with
massm and coordinate operators q̂; the second subsystem comprisesN degrees
of freedom describing particles of mass M and coordinate operators Q̂. The
hamiltonian operator may be written as

Ĥ =
P̂ 2

2M
+
p̂2

2m
+ V̂ (q̂, Q̂) ≡ P̂ 2

2M
+ ĥ(Q̂) , (4)

where p̂ and P̂ are momentum operators, V̂ (q̂, Q̂) is the total potential energy,
and ĥ is the hamiltonian of the first subsystem in the field of the second
subsystem with fixed coordinates. We employ a condensed notation such that
q̂ = (q̂1, q̂2, . . . , q̂n) and Q̂ = (Q̂1, Q̂2, . . . , Q̂N ), with an analogous notation for
p̂ and P̂ .

Let us now consider the partial Wigner transformation [1] of the density
matrix with respect to the subset of Q coordinates [2],

ρ̂W(R,P ) = (2π�)−N

∫
dZeiP ·Z/�〈R− Z

2
|ρ̂|R+

Z

2
〉 . (5)

In this representation the quantum Liouville equation is

∂ρ̂W(R,P, t)
∂t

= − i
�

(
(Ĥρ̂)W − (ρ̂Ĥ)W

)

= − i
�

(
ĤWe�Λ/2iρ̂W(t) − ρ̂W(t)e�Λ/2iĤW

)
, (6)

where the partially Wigner transformed hamiltonian is

ĤW(R,P ) =
P 2

2M
+
p̂2

2m
+ V̂W(q̂, R) , (7)

and Λ is the negative of the Poisson bracket operator, Λ =
←
∇P ·

→
∇R −

←
∇R ·

→
∇P , where the direction of an arrow indicates the direction in which the
operator acts. To obtain this equation we used the definition of the partial
Wigner transform of an observable

ÂW(R,P ) =
∫

dZe−iP ·Z/�〈R+
Z

2
|Â|R− Z

2
〉 , (8)

and the fact that the partial Wigner transform of a product of operators is [3]

(ÂB̂)W(R,P ) = ÂW(R,P )e�Λ/2iB̂W(R,P ) . (9)

Suppose now that the subsystem comprising the particles with masses
M is taken to represent an environment or bath and assume that M � m.
In this limit it can be shown that e�Λ/2i can be replaced by (1 + �Λ/2i)
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and the full von Neuman equation reduces to the quantum–classical Liouville
equation [2, 4–10]

∂ρ̂W(R,P, t)
∂t

= − i
�
[ĤW, ρ̂W(t)] +

1
2

({
ĤW, ρ̂W(t)

}
−
{
ρ̂W(t), ĤW

})

≡ −iL̂ρ̂W(t) ≡ −(ĤW, ρ̂W(t)) . (10)

Here [ , ] is a commutator, while { , } indicates a Poisson parenthesis
on the R and P variables. The second line of this equation defines the
quantum–classical Liouville operator L̂ and the quantum–classical bracket.
The quantum–classical equation of motion for a dynamical variable B̂W can
be written in a similar form as

dB̂W(t)
dt

= iL̂B̂W(t) ≡ (ĤW, B̂W(t)) . (11)

Equation (10) is the quantum–classical Liouville equation describing the
coupled evolution of our two subsystems. It can be shown that as a result of
the coupling a purely newtonian description of bath dynamics is no longer
possible [11]. However, it is possible to express the solution of this equation
in terms of an ensemble of surface hopping trajectories [2].

Even though this evolution is well defined, quantum–classical dynamics
does not possess a Lie algebraic structure like quantum or classical mechanics
since the Jacobi identity is violated by the quantum–classical bracket [12,13]

(ÂW, (B̂W, ĈW)) + (ĈW, (ÂW, B̂W)) + (B̂W, (ĈW, ÂW)) �= 0 . (12)

This leads to pathologies in the general formulation of quantum–classical
dynamics and statistical mechanics [12,13].

A fundamental ingredient of statistical mechanics is the equilibrium den-
sity which is the stationary solution of the Liouville equation. The well known
form of the quantum canonical equilibrium density is ρ̂e = Z−1

Q exp(−βĤ)
which, expressed in terms of the partial Wigner transform, can be written as

ρ̂We(R,P ) = (2π�)−N

∫
dZeiP ·Z/�〈R− Z

2
|ρ̂e|R+

Z

2
〉 . (13)

This quantity is not stationary under quantum–classical dynamics. So the
equilibrium density of the quantum–classical approach has to be determined
by solving the equation

iL̂ρ̂We = 0. (14)

An explicit solution for this equation has not been found although a recursive
one, obtained by developing the density matrix in a power series in � or the
mass ratio, µ = m/M , in the partial Wigner representation, can be written
down. While it is difficult to find the full solution to any order in �, it is not
difficult to find the solution analytically to O(�). To this order the result agrees
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with that of the partial Wigner transform of the exact canonical quantum
equilibrium density. This expression for the equilibrium density matrix to
O(�) can be useful for testing the validity of approximate calculations of time
correlation functions.

To complete the presentation of this approach we now define the quantum–
classical forms of equilibrium time correlation functions and their associated
transport coefficients. The issue we address is the construction of a nonequi-
librium statistical mechanics in a world obeying quantum–classical dynamics.
To carry out this program we begin by constructing a linear response theory
for quantum–classical dynamics [12]. The formalism parallels that for quan-
tum (or classical) systems. We suppose the quantum–classical system with
hamiltonian ĤW is subjected to a time dependent external force that couples
to the observable ÂW, so that the total hamiltonian is

ĤW(t) = ĤW − ÂWF (t) . (15)

The evolution equation for the density matrix takes the form

∂ρ̂W(t)
∂t

= −(iL̂ − iL̂AF (t))ρ̂W(t) , (16)

where iL̂A has a form analogous to iL̂ with ÂW replacing ĤW, iL̂A = (ÂW, ).
The formal solution of this equation is found by integrating from t0 to t,

ρ̂W(t) = e−iL̂(t−t0)ρ̂W(t0) +
∫ t

t0

dt′ e−iL̂(t−t′)iL̂Aρ̂W(t′)F (t′) . (17)

We now choose, as usual, ρ̂W(t0) to be the equilibrium density matrix,
ρ̂We. As discussed above ρ̂We is the invariant solution of the quantum–classical
dynamics, iL̂ρ̂We = 0. In this case the first term on the right-hand side of (17)
reduces to ρ̂We and is independent of t0. We may assume that the system
with hamiltonian ĤW is in thermal equilibrium at t0 = −∞, and with this
boundary condition, to first order in the external force, (17) is

ρ̂W(t) = ρ̂We +
∫ t

−∞
dt′ e−iL̂(t−t′)iL̂Aρ̂WeF (t′) . (18)

Then, computing BW(t) = Tr′
∫

dR dP B̂Wρ̂W(t), where Tr′ is the partial
trace over the quantum degrees of freedom, to obtain the response function,
we find

BW(t) =
∫ t

−∞
dt′ Tr′

∫
dR dP B̂We−iL̂(t−t′)iL̂Aρ̂WeF (t′)

=
∫ t

−∞
dt′ 〈(B̂W(t− t′), ÂW)〉F (t′) ≡

∫ t

−∞
dt′ φQC

BA(t− t′)F (t′) .

(19)
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Thus, the quantum–classical form of the response function is

φQC
BA(t) = 〈(B̂W(t), ÂW)〉QC = Tr′

∫
dR dP B̂W(t)(ÂW, ρ̂We) , (20)

where in writing the second equality in (20), we have used cyclic permutations
under the trace and integrations by parts. The derivation of linear response
theory in the quantum–classical world is completely analogous to that in quan-
tum mechanics up to (20). However, the simplifications that are easily derived
in the full quantum, or classical worlds are not available at the moment for
the quantum–classical world. In particular, the calculation of the response
function in the quantum–classical approach should be performed using (20)
and cannot be started using well-known standard time correlation function
expressions (notice that the Kubo transformed form can be shown to differ
from the expression given in (20) by terms of O(�2) [12]).

At this point we have all the ingredients for the computation of trans-
port properties and expectation values of dynamical variables in a quantum–
classical world. The equilibrium time correlation function in (20) entails
evolution of B̂W(t) under quantum–classical dynamics, evaluation of the
quantum–classical bracket of ÂW and ρ̂We, and an integration over the clas-
sical phase space coordinates and trace over the quantum states.

While this statistical mechanical formulation is complete, it is worth
remarking that some aspects of the quantum mechanical calculation do not
carry over to the quantum–classical world. These concern time translation in-
variance and alternate forms for the time correlation function expressions for
transport coefficients. The first issue we examine is time translation invari-
ance of the equilibrium time correlation functions [11]. A quantum mechanical
response function can be written in the two equivalent forms

φBA(t) = 〈 i
�
[B̂(t), Â]〉 = 〈 i

�
[B̂(t+ τ), Â(τ)]〉 , (21)

as is easily seen using stationarity of the canonical equilibrium density matrix
and cyclic permutations under the trace. This property is not exactly satisfied
by the correlation function in quantum–classical response function (20). To
see this we may write (20) more explicitly as

φQC
BA(t) = 〈(B̂W(t), ÂW)〉QC (22)

=
i
�

(
〈B̂W(t) (1 + �Λ/2i) ÂW〉QC − 〈ÂW (1 + �Λ/2i) B̂W(t)〉QC

)
,

Using cyclic permutations under the trace, integration by parts and the fact
that ρ̂We is invariant under quantum–classical dynamics, one may show that

〈B̂W(t) (1 + �Λ/2i) ÂW〉QC = 〈eiLτ (B̂W(t) (1 + �Λ/2i) ÂW)〉QC . (23)
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However, the evolution of a composite operator in quantum–classical dynamics
cannot be written exactly in terms of the quantum–classical evolution of its
constituent operators, but only to terms O(�). To see this, consider the action
of the quantum–classical Liouville operator on the composite operator ĈW =
B̂W(1 + �Λ/2i)ÂW. A straightforward calculation shows that

iL̂ĈW = (iL̂B̂W)
(

1 +
�Λ

2i

)
ÂW + B̂W

(
1 +

�Λ

2i

)
(iL̂ÂW) + O(�) . (24)

It follows that

ĈW(τ) = eiL̂τ ĈW =
(
eiL̂τ B̂W

)(
1 +

�Λ

2i

)(
eiL̂τ ÂW

)
+ O(�)

= B̂W(τ)
(

1 +
�Λ

2i

)
Â†

W(τ) + O(�) . (25)

Therefore, the quantum–classical correlation function satisfies standard time
translation invariance only to O(�),

φQC
BA(t) = 〈(B̂W(t), ÂW)〉QC = 〈(B̂W(t+ τ), ÂW(τ))〉QC + O(�) , (26)

although its most strict form, (23), is surely satisfied.
Next, we consider alternate forms for correlations that are commonly used

in computations. The quantum mechanical response functions can be written
in an equivalent form using the Kubo identity. The quantum–classical version
of the Kubo identity holds only to O(�) [12],

(ÂW, ρ̂We) =
∫ β

0

dλ ρ̂We(1 +
�Λ

2i
) ˙̂
AW(−i�λ) + O(�) . (27)

Since the quantum–classical form of the Kubo identity is valid only to O(�),
the various autocorrelation function expressions for transport coefficients, to
which we are accustomed, are equivalent only to O(�). The results of compar-
isons of computations of both forms of the correlation functions can provide
information about the reduction to the quantum–classical limit.

A discussion of the scheme used to simulate quantum–classical dynamics is
postponed to next section and we simply remark here that statistical mechan-
ical quantities may be computed within the quantum–classical framework.
A limitation is a lack of knowledge of the exact form of the equilibrium den-
sity matrix, so we cannot compute exact quantum-classical time correlation
functions. Note however that relaxation from given initial density matrices can
be computed without any approximation other than that on the dynamics.
So, for example, since quantum–classical dynamics is exact for the spin-boson
model, it is possible to compute the exact relaxation, given an initial nonequi-
librium distribution. Simulations of this model have confirmed the utility of
surface-hopping algorithms for its study.
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3 Approximations to the Real World

A very different route is to begin with any rigorous expression for the quantum
mechanical response, e.g., in terms of quantum time correlation functions –
since we know that they are all fundamentally equivalent – and make approxi-
mations to either or both the dynamics and equilibrium density. This approach
implicitly avoids questions of consistency but they exist. These inconsisten-
cies make these treatments invalid. However, if by a stroke of luck or design
the inconsistencies are numerically small, these methods can often be very
useful. With these approaches we can in principle independently approximate
the equilibrium structure or the propagator so that we have more freedom
than with the mixed quantum–classical statistical mechanical approach of the
previous section.

The quantum time correlation function of two operators of the system is
defined as

CAB(t;β) ≡ 〈ÂB̂(t)〉 = Tr ÂB̂(t)ρ̂e

=
1
ZQ

Tr Âe
i
�

tĤB̂e−
i
�

tĤe−βĤ . (28)

There are many different ways described in the literature to construct
approximations to this correlation function [14–19]. Here we will illustrate how
such approximations are implemented using two example approaches that we
have explored:

(1) Mixed Wigner representation approach

The first approach [20,21] we consider uses the ingredients of the quantum–
classical Liouville dynamics discussed in Sect. 2. We begin by introducing the
coordinate representation of the operators so that the correlation function
becomes

CAB(t;β) = Tr′
∫

dQ1 dQ2 〈Q1|B̂(t)|Q2〉〈Q2|ρ̂eÂ|Q1〉 . (29)

Making use of the change of variables, Q1 = R−Z/2 and Q2 = R+Z/2, this
equation may be written in the equivalent form

CAB(t;β) = Tr′
∫

dR dZ 〈R− Z

2
|B̂(t)|R+

Z

2
〉

×〈R+
Z

2
|ρ̂eÂ|R− Z

2
〉 . (30)

The next step in the calculation is to replace the coordinate space matrix
elements of the operators with their representation in terms of Wigner trans-
formed quantities. The partial Wigner transform of an operator, Ô, is defined
in (8) while the inverse transform is

〈R+
Z

2
|Ô|R− Z

2
〉 =

1
(2π�)N

∫
dP e

i
�

P ·ZÔW(R,P ) . (31)
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For simplicity we write X ≡ (R,P ). It is convenient to consider a represen-
tation of such operators in basis of eigenfunctions, here we consider an adi-
abatic basis to make connection with surface-hopping dynamics. The partial
Wigner transformed hamiltonian can be written as ĤW = P 2/2M + ĥW(R).
The last equality defines the hamiltonian ĥW(R) for the light mass subsys-
tem in the presence of fixed particles of the heavy mass subsystem. The
adiabatic basis is determined from the solutions of the eigenvalue problem,
ĥW(R)|α;R〉 = Eα(R)|α;R〉. The adiabatic representation of ÔW(X) is

ÔW(X) =
∑

αα′

|α;R〉Oαα′

W (X)〈α′;R| , (32)

where Oαα′

W (X) = 〈α;R|ÔW(X)|α′;R〉.
By inserting (32) into (31) we can express the coordinate representation

of the operator Ô as

〈R− Z

2
|Ô|R+

Z

2
〉 =

1
(2π�)N

∑

αα′

∫
dP e

i
�

P ·Z |α;R〉(O)αα′

W (X)〈α′;R| . (33)

Using this result in (30), we obtain

CAB(t;β) =
∑

α,α′

∫
dX (B̂(t))αα′

W (X)(ρ̂eÂ)α′α
W (X) . (34)

This equation is still formaly exact but now we approximate the dynamics
using the quantum–classical evolution given in (11).

In the adiabatic basis the quantum–classical Liouville operator defined in
(10) takes the form

iLα′α,β′β(X) =
(
iωα′α(R) + iLα′α(X)

)
δα′β′δαβ − Jα′α,β′β(X) , (35)

where ωαα′(R) = (Eα(R) − Eα′(R))/� and

iLα′α(X) =
P

M
· ∂
∂R

+
1
2

(
Fα′

W (R) + Fα
W(R)

)
· ∂
∂P

, (36)

is the classical Liouville operator involving the mean of the Hellmann–
Feynman forces where Fα

W = −〈α;R|∂V̂W(q̂,R)
∂R |α;R〉 = −〈α;R|∂ĤW(R)

∂R |α;R〉.
Quantum transitions and bath momentum changes are described by

Jα′α,β′β(X) = − P
M

· dα′β′

(
1 +

1
2
Sα′β′(R) · ∂

∂P

)
δαβ

− P
M

· dαβ

(
1 +

1
2
Sαβ(R) · ∂

∂P

)
δα′β′ , (37)

where Sαβ = (Eα − Eβ)dαβ( P
M · dαβ)−1 and dαβ = 〈α;R|∇R|β;R〉 is the

nonadiabatic coupling matrix element.



270 G. Ciccotti et al.

In this approximation the correlation function is then given by

CAB(t;β) =
∑

α,α′

∫
dX Bαα′

W (X, t)(ρ̂eÂ)α′α
W (X), (38)

where
Bαα′

W (X, t) = (eiLtB̂W(X))αα′
. (39)

Various ways of simulating nonadiabatic transitions in quantum–classical
dynamics have been devised, as well as schemes for computing the evolu-
tion operator [2, 9, 20–26]. These schemes typically employ an ensemble of
surface hopping trajectories with classical trajectory segments [21, 25, 26].
Approximations must also be introduced to evaluate the equilibrium density
matrix. In making these approximations the consistency problem is not neces-
sarily the most serious. In the desire to achieve consistency one could use the
quantum–classical equilibrium density matrix, however, there would remain
two problems. (1) This quantity is not known in closed form therefore expres-
sions based on approximations for it would leave the consistency unattained.
(2) As mentioned, (38) is not an admissible form for the quantum–classical
response as given in (20) (although it can be related to O(�)) and there-
fore would not result in a consistent, interesting, quantum–classical object.
Chemical rate coefficients written in terms of Kubo transformed correlation
functions have been computed using this strategy [21,27]. In the case of spin
boson type models for reaction rates the fact that one knows the exact Wigner
transformed equilibrium bath density can be exploited along with a quadratic
approximation near the barrier top to obtain an estimate of the reaction rate
that includes quantum equilibrium effects [21]. In more complex systems, like
models for proton transfer in the condensed phase, one can exploit the high
temperature limit to obtain suitable approximation to the equilibrium den-
sity [28]. See Chapter XX in this volume for a discussion of this approachAQ: Please provide

appropriate chapter
title in place of xx.

applied to reaction rate problems.
Although algorithms have been developed that have allowed one to sim-

ulate chemical reaction rates and short time relaxation processes, further
algorithmic development is needed to simulate quantum–classical dynamics
for long times.

(2) Linearized path integral approach

An alternative to the calculation of quantum time correlation functions
is offered by the so-called linearized path integral approach [17,18,29–33]. In
developing this approach it is simplest to work with a basis defined as the ten-
sor product, |Qα〉, of bath position states |Q〉 and a quantum subsystem basis
|α〉 which, for convenience, we choose to be independent of bath configuration
(see Chap. XX in this volume for a discussion of how this formalism changesAQ: Please provide

appropriate chapter
title in place of XX.

when the adiabatic basis is used). The quantum time correlation function in
this representation becomes
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〈ÂB̂(t)〉 =
∑

αβ,α′β′

∫
dQ0 dQN dQ′

0 dQ′
N 〈Q0α|ρ̂eÂ|Q′

0α
′〉 (40)

×〈Q′
0α

′|e i
�

Ĥt|Q′
Nβ

′〉〈Q′
Nβ

′|B̂|QNβ〉〈QNβ|e−
i
�

Ĥt|Q0α〉.

Here the hamiltonian is the usual one defined in (4), while the quantum sub-
system hamiltonian has matrix elements hαβ(Q̂) = 〈α|ĥ(Q̂)|β〉.

A convenient representation to account for the effects of the quantum
subsystem transitions on the bath degrees of freedom is offered by the mapping
hamiltonian formalism [34, 35, 37–39]. The core of this idea is to replace the
quantum subsystem with a system of fictitious harmonic oscillators which can
take only a restricted set of excitations representing the states of the basis.
Therefore the states of the real system are mapped onto states of the fictitious
harmonic oscillator system according to

|α〉 → |mα〉 = |01, . . . , 1α, ..0n〉. (41)

This prescription maps the Hilbert space spanned by the original n quantum
subsystem states into one coinciding with a subspace of n-oscillators of unit
mass with at most one quantum of excitation in a single specific oscillator.
Under these conditions the hamiltonian of the fictitious system is obtained
by requiring that its matrix elements are equal to those of the corresponding
physical states 〈mα|ĥm(Q̂)|mβ〉 = 〈α|ĥ(Q̂)|β〉. So that

ĥm(Q̂) =
1
2

∑

λ

hλ,λ(Q̂)(q̂2λ + p̂2λ − �) +
1
2

∑

λ,λ′

hλ,λ′(Q̂)(q̂λ′ q̂λ + p̂λ′ p̂λ) (42)

where q̂λ and p̂λ are the λth mapping oscillator’s position and momentum
operators reconstructed from the creation and annhilation operators of the
occupation number representation. Then the total hamiltonian of the system
becomes Ĥm = P̂ 2/2M + ĥm(Q̂) and the propagator matrix elements of the
real system are given by the mapping propagator matrix elements

〈QNβ|e−
i
�

Ĥt|Q0α〉 = 〈QNmβ |e−
i
�

Ĥmt|Q0mα〉. (43)

To proceed, we now apply standard discrete path integral techniques to
express the right-hand side of (43) as a functional integral over bath subsystem
paths of an integrand containing the quantum subsystem transition amplitude
evaluated along each path. This result parallels that of Pechukas [40] thus

〈QNmβ |e−
i
�

Ĥmt|Q0mα〉 =
∫ N−1∏

k=1

dQk
dPk

2π�

dPN

2π�
e

i
�

S (44)

×〈mβ |e−
i
�

εĥm(QN ) · · · e− i
�

εĥm(Q1)|mα〉,
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where

S = ε

N∑

k=1

[
Pk

(Qk −Qk−1)
ε

− P 2
k

2M

]
(45)

and ε = t/N is the time slice.
The transition amplitude 〈mβ |e−

i
�

εĥm(QN ) · · · e− i
�

εĥm(Q1)|mα〉 contains a
discrete time ordered propagator that evolves the initial mapping subsystem
state according to the time dependent mapping hamiltonian where the time-
dependence arises because of the changing configuration of the bath along the
path (Q1, . . . , QN ). For any given specification of the bath subsystem path,
the quadratic nature of the mapping hamiltonian in the mapping subsystem
variables in (42) allows us to obtain an exact expression for the mapping
transition amplitude. A particularly convenient expression for the transition
amplitude can be obtained using semiclassical methods which are exact for
quadratic hamiltonians with time-dependent coefficients (see [41] for details
of the manipulations). The result is

〈mβ |e−
i
�

εĥm(QN ) · · · e− i
�

εĥm(Q1)|mα〉

∼
∫

dq0 dp0 (qβt + ipβt)(qα0 − ipα0) × exp
{
−1

2

∑
λ
(q2λ0 + p2λ0)

}
(46)

Here (qt, pt) = (q1t, . . . , qnt, p1t, . . . , pnt) is the mapping phase space point
that evolves classically from the initial sampled point (q0, p0) to time t ac-
cording to the given realization of the discrete time-dependent hamiltonian
(ĥm(QN ), . . . , ĥm(Q1)).

This expression for the transition amplitude can now be conveniently re-
written by introducing a polar representation of the complex polynomials
appearing in the above result, thus

〈mβ |e−
i
�

εĥm(QN ) · · · e− i
�

εĥm(Q1)|mα〉 =
∫

dq0 dp0 rt,β({Qk})e−iΘtβ({Qk})

×r0αeiΘ0,αG0. (47)

Here G0 =exp
{
−1

2

∑
λ(q20,λ+p20,λ)

}
, rt,β({Qk})=

√
q2t,β({Qk})+p2t,β({Qk}),

and

Θt,β({Qk}) = tan−1

(
p0,β

q0,β

)
+
∫ t

0

dτ hβ,β(Qτ )

+
∫ t

0

dτ
∑

λ�=β

[
hβ,λ(Qτ )

(pτβpτλ + qτβqτλ)
(p2τβ + q2τβ)

]

= tan−1

(
p0,β

q0,β

)
+
∫ t

0

θβ(Qτ )dτ. (48)
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Equation (48) defines the function θβ(Q).
Substituting (47) and its analogue for the backward propagator (primed

quantities) into the expression for the correlation function we finally obtain

〈ÂB̂(t)〉 =
∑

αβ,α′β′

∫
dQ0 dQ′

0

∫ N∏

k=1

dQk
dPk

2π�

∫ N∏

k=1

dQ′
k
dP ′

k

2π�

∫
dq0 dp0 dq′0 dp′

0

×e
i
�

(S−S′)r′0α′e
−iΘ′

0,α′ G′
0r0αeiΘ0,αG0〈Q0α|ρ̂eÂ|Q′

0α
′〉

×〈Q′
Nβ′|B|QNβ〉rt,β({Qk})e−iΘtβ({Qk})r′t,β′({Q′

k})e
iΘ′

tβ′ ({Q′
k
})

.

(49)

Here we employ a shorthand notation labeling the mapping oscillator states
with their state index, e.g., mα ≡ α.

All manipulations performed so far are exact, and the nuclear evolu-
tion is still described at the full quantum level. To proceed to a com-
putable expression [17,41], we now change bath subsystem variables to mean,
R̄k = (Qk +Q′

k)/2, and difference, Zk = Qk −Q′
k, coordinates (with similar

transformation for the bath momenta, P̄k = (Pk + P ′
k)/2 and Yk = Pk − P ′

k

say) and Taylor series expand the phase in (49). Truncating this expansion to
linear order we obtain the following approximate expression for the correlation
function

〈ÂB̂(t)〉 =
∑

αβ,α′β′

∫
dq0 dp0 dq′0 dp′0 r

′
0α′e−iΘ′

0,α′G′
0r0αeiΘ0,αG0

×
∫

dR̄0 dZ0

∫ N∏

k=1

dR̄k
dP̄k

2π�

∫ N∏

k=1

dZk
dYk

2π�

×〈R̄0 +
Z0

2
α|ρ̂eÂ|R̄0 −

Z0

2
α′〉e−iP̄1Z0

×〈R̄N − ZN

2
β′|B|R̄N +

ZN

2
β〉eiP̄N ZN

×e−iε[∇θβ(R̄N )+∇θ′
β′ (R̄N )]/2}ZN

×rt,β({R̄k})r′t,β′({R̄k})e−iε
∑N

k=1
[θβ(R̄k)−θ′

β′ (R̄k)]

×e−iε
∑N−1

k=1
{(P̄k+1−P̄k)/ε+[∇θβ(R̄k)+∇θ′

β′ (R̄k)]/2}Zk

×e−iε
∑N

k=1
{P̄k/M−(R̄k−R̄k−1)/ε}Yk (50)

AQ: Please insert
opening {

The integrals over the end-point difference coordinates Z0 and ZN in this
linearized approximate form can be performed defining the Wigner trans-
formed operators

(ρ̂eÂ)α,α′

W (R̄0, P̄1) =
∫

dZ0〈R̄0 +
Z0

2
α|ρ̂eÂ|R̄0 −

Z0

2
α′〉e−iP̄1Z0 (51)
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and in the limit of ε→ 0

(B̂)β′,β
W (R̄N , P̄N ) =

∫
dZN 〈R̄N +

ZN

2
β′|B̂|R̄N − ZN

2
β〉e−iP̄N ZN . (52)

All integrals over the difference coordinates, Zk, and difference momenta, Yk

for 0 < k < N can also be performed as they are integral representations
of delta functions, so the linearized approximation for the time correlation
function can finally be expressed as

〈ÂB̂(t)〉 =
∑

αβ,α′β′

∫
dR̄0 dq0 dp0 dq′0 dp′0 r

′
0α′e−iΘ′

0,α′G′
0r0αeiΘ0,αG0

×
∫ N∏

k=1

dR̄k
dP̄k

2π�
(ρ̂eÂ)α,α′

W (R̄0, P̄1)(B̂)β′,β
W (R̄N , P̄N )

× rt,β({R̄k})r′t,β′({R̄k})e−iε
∑N

k=1
(θβ(R̄k)−θ′

β′ (R̄k))

×
N−1∏

k=1

δ

(
P̄k+1 − P̄k

ε
− F β,β′

k

) N∏

k=1

δ

(
P̄k

M
− R̄k − R̄k−1

ε

)
, (53)

where

F β,β′

k = −1
2
{
∇R̄k

hβ,β(R̄k) + ∇R̄k
hβ′,β′(R̄k)

}

−1
2

∑

λ�=β

∇R̄k
hβ,λ(R̄k)

{
(pβkpλk + qβkqλk)

(p2βk + q2βk)

}

−1
2

∑

λ�=β′

∇R̄k
hβ′,λ(R̄k)

{
(p′β′kp

′
λk + q′β′kq

′
λk)

p′2β′k + q′2β′k)

}
. (54)

The product of δ-functions in (53) amounts to a time-stepping prescription
in which the mean path evolves classically. As the motion of the mapping vari-
ables is already classical, the calculation of the time correlation function has
been reduced to a two step procedure (1) sampling a set of initial conditions
for the bath variables from a probability distribution related to the partial
Wigner transform of the thermal density times the operator Â, i.e., the factor
(ρ̂eÂ)α,α′

W (R̄0, P̄1) in (53), and a Gaussian distribution, G′
0G0 as defined under

(47), for the mapping subsystem variables; (2) integration of a set of coupled
classical equations of motion for the mapping and bath variables. The first
of these tasks can be accomplished only approximately using recently devel-
oped local harmonic approximate methods for sampling the Wigner density
for complex systems [17,18]. The second task of evolving the classical dynam-
ics is straightforward. However, we note that depending on the specific term
of the correlation function which is being evaluated, the forces in (54) are
determined by different time-dependent linear combinations of pairs of diag-
onal, and off-diagonal elements of the quantum subsystem hamiltonian. The
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diagonal terms are identified by the final states in the propagators appearing
in the original expression for the correlation function, while the off-diagonal
terms are responsible for the feedback between bath motion and changes in
the quantum subsystem state occupations. The latter are affected by the bath
propagation through the parametric dependence of the classical counterpart
of (42), but the coupling mechanism is not deducible from a single hamil-
tonian. In spite of this unusual characteristic, all propagations required in
this approximate evaluation of the correlation function are classical and local
in time and maintain the usual properties of classical, or quantum, mechanics
e.g., time reversibility).

To highlight the basic similarities between the two approximate approaches
we have outlined here for computing time correlation functions in mixed
quantum–classical systems, (53) can be put into the form of (38) by mak-
ing the following identification

Bαα′

W (X, t) =
∑

ββ′

∫
dq0 dp0 dq′0 dp′0 r

′
0α′e−iΘ′

0,α′G′
0r0αeiΘ0,αG0

×
∫

dR̄1

N∏

k=2

dR̄k
dP̄k

2π�
(B̂)β′,β

W (Xt(X))

× rt,β({R̄k})r′t,β′({R̄k})e−iε
∑N

k=1
(θβ(R̄k)−θ′

β′ (R̄k))

×
N−1∏

k=1

δ

(
P̄k+1 − P̄k

ε
− F β,β′

k

) N∏

k=1

δ

(
P̄k

M
− R̄k − R̄k−1

ε

)
, (55)

where now the initial phase space point is X = (R̄0, P̄1), and the terminal
point, Xt = (R̄N , P̄N ), is an implicit function of X determined by sequentially
evaluating the δ-function integrals and classically time stepping the propaga-
tion of the bath. Comparing this result with the expressions at the end of the
previous section it is clear that the basic features of these two approaches are
similar but that the underlying dynamics is very different. These differences
stem in part from the different representations employed but also result from
different approximations made in the derivations. It is beyond the scope of
this chapter to present a detailed comparison of these two approaches. As
mentioned earlier and outlined below, they both yield good results for model
condensed phase systems so exploring the connections between these differ-
ent ideas may prove fruitful in developing algorithms for implementing mixed
quantum–classical methods for computing time correlation functions.

The central approximation of the linearized path integral approach to
nonadiabatic dynamics outlined here is that the Taylor expansion of the phase
of the integrand in the path integral expression for the correlation function
can be truncated at low order. One could imagine computing higher order
corrections with significant additional computational effort beyond the lin-
earized approach. This lowest order approximation, however, has proved par-
ticularly reliable in various model test calculations [41]. With the spin-boson
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model, for example, calculations of the time dependent expectation value of
the spin population difference, starting from a nonequilibrium initial condition
in which the coupling between an excited spin and an independent, thermal
equilibrium harmonic oscillator bath is turned on at t = 0, gave results that
were in excellent agreement with exact calculations [42] over a wide range of
friction and temperature. Small deviations between exact results and those
of the linearized approximate approach are observed at low temperature and
high friction. Under these conditions the assumption that the only impor-
tant contributions to the correlation function (or time-dependent expectation
value) come from pairs of forward and backward paths that remain “close” to
one another (keeping only terms to linear order in the path difference) is vio-
lated since at low temperatures the initial bath density has larger off-diagonal
elements so forward and backward bath paths which differ significantly can
begin to make contributions and these are ignored in the linearized scheme.
The linearized path integral approach, however, is found to converge very
quickly with trajectory ensemble size for these nonadiabatic problems, requir-
ing fewer than 1,000 trajectories to converge these spin-boson calculations.
This feature makes these methods promising for realistic model condensed
applications in future studies.

In general the appeal of these methods is that they require Monte Carlo
sampling and trajectories, features that scale favorably with the dimensions of
the system, especially when compared with basis set methods. Unfortunately
a quantitative assessment of this favorable conjecture is far from evident.

4 Conclusion

We have seen that it is possible to develop a consistent approach to equilib-
rium and nonequilibrium quantum–classical statistical mechanics. However,
due to the different algebraic structures of the exact quantum bracket in the
Wigner representation and its quantum–classical counterpart described here,
the formulation contains one unpleasant feature: the nonassociative property
of the product. This feature leads to a violation of the Jacobi identity so that
in contrast to both quantum and classical mechanics, the quantum–classical
approach does not have a Lie algebraic structure. This in turn leads to the
fact that the Onsager reciprocal relation and the Kubo identity are valid only
to order O(�). It is conceivable that this approach can be improved by devel-
oping a quantum–classical bracket that satisfies the Lie algebraic structure.
This is a challenge worthy of future research. Even if such a program could
be carried out one would be left with the task of testing the fidelity of this
quantum–classical world as a model of the real quantum world in the limit
discussed in this chapter.

In the other approach considered here we saw that one could start with
the full quantum statistical mechanical structure of the time correlation func-
tion and develop approximations to both the quantum evolution and equi-
librium density. This type of approach readily leads to promising results as
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demonstrated in applications to models. The major drawback of such an
approach is that the consistency between the quantum equilibrium structure
and the approximate dynamics is lost, although one has gained the possibility
to consider independently approximations to the evolution and the equilib-
rium structure. Examples of the utility of being able to make independent
approximations to the evolution and equilibrium structure in which the con-
sistency problem does not seem to matter much include applications reported
in various references [21, 27, 28, 33, 41]. These local successes, however, not at
all justify a general statement and we do not yet know the physical conditions
that need to be satisfied to guarantee that the inconsistency problem will not
be crucial. In the context of the approaches described in Sect. 3 one can also
attempt to consistently approximate the equilibrium structure and dynam-
ics although it is unclear at the present time how such consistency could be
achieved.

In contrasting the two approaches we should not lose sight of the fact
that the ultimate aim is to compare theoretical predictions with rigorous
results for the real problem. We have seen that approximations enter both
schemes in various ways. As we noted earlier we must ascertain the valid-
ity of quantum–classical worlds as models of the real world. In fact, since
a consistent quantum–classical world has not yet been constructed we have
the residual task of testing the validity of predictions of this model. This
would be instrumental not only in realizing its limitations and give ways to
improve the approach but also in establishing a preliminary test of the corre-
spondence between the quantum–classical and the real worlds. Simulations on
model systems indicate that violations of the Lie algebraic structure and its
consequences may be minor for many applications [27], and thus scheme (1)
may have practical utility. In the approach that begins with exact quantum
equilibrium time correlation function, the freedom to approximate both the
equilibrium density and the dynamics, separately or together, provides one
with additional possibilities. Some of these approximations could indeed
be unfaithful to the real world and highly inconsistent, while others may pro-
vide results much closer to the real quantum world. Of course there is nothing
unique about the approaches we have discussed here, and other fresh ideas
can come from many alternative formulations of quantum mechanics and/or
ways to go to the semiclassical limit of quantum mechanics and, moreover,
there is no indication that these alternative approaches will be less success-
ful [43, 44]. So the way ahead is open and, at this point, it is unclear which
alternative will prevail. Thus, it is worth pursuing these programs of research
in all directions.
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