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The spin-boson model is solved within the framework of quantum-classical dynamics using our
recently-developed surface-hopping scheme. The quantum-classical equation of motion is expressed
in an adiabatic basis and its solution is constructed from an ensemble of trajectories which undergo
nonadiabatic transitions and evolve coherently on the adiabatic surfaces. Details of the algorithm for
the simulation of the dynamics are presented and the method of simple Monte Carlo sampling used
to evaluate the expectation values of observables is discussed. The simulation method is applied to
a spin-boson system with a harmonic bath composed of ten oscillators with an Ohmic spectral
density. For the spin-boson model the present implementation of quantum-classical dynamics is
exact and the results of our surface-hopping simulations are in accord with previous numerically
exact results for this model. ©2002 American Institute of Physics.@DOI: 10.1063/1.1433502#
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I. INTRODUCTION

Quantum-classical dynamics describes systems c
posed of a quantum subsystem coupled to a classical e
ronment and provides a means to study the dynamics
many-body systems that are not amenable to investiga
using full quantum dynamics.1,2 In the quantum-classical ap
proach we use, the isolated quantum subsystem and
obey quantum mechanics and classical mechanics, res
tively, but their coupled evolution is given by quantum
classical equations of motion where a simple Newtonian
scription of the environmental degrees of freedom no lon
exists.3–9 The solution of the evolution equation may be wr
ten in terms of an ensemble of surface-hopping trajectorie
place of the single Newtonian trajectory of a classi
system.9,10 Other exploratory work along similar lines on
number of simple models has also appeared in
literature.11,12 In this article we consider the application o
quantum-classical dynamics to the spin-boson model.

The spin-boson system, which consists of a two-le
system bilinearly coupled to a bath of harmonic oscillato
has been widely used as a simple model of an open quan
system in order to study the effects of an environment o
quantum subsystem.13–16 This model has provided a grea
deal of insight into how decoherence and dissipation occu
the quantum subsystem as a result of coupling to the
monic bath. It has also served as a testing ground for c
putational descriptions of many-body quantum dynamics
is in this connection that we explore the dynamics of t
system.
2340021-9606/2002/116(6)/2346/8/$19.00
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In an earlier paper9 we wrote the solution of the
quantum-classical evolution equation, expressed in an a
batic basis, as an integral equation. This integral equa
was solved by iteration to yield a series whose terms w
ordered by the number of nonadiabatic transitions. A hyb
Molecular Dynamics~MD!-Monte Carlo~MC! scheme was
constructed to solve the integral equation. In this sche
quantum transitions and the times at which they occur
sampled using Monte Carlo methods. The evolution betw
such quantum transition events is carried out using class
molecular dynamics, either on a single adiabatic surface
the evolution for that time segment involves a diagonal e
ment of the density matrix, or on the mean of two coheren
coupled adiabatic surfaces, if evolution involves an o
diagonal element of the density matrix. This surface-hopp
method is a formally exact solution of the quantum-classi
equations of motion and differs from other surface-hopp
methods that have been developed recently.17–19 Implemen-
tation of our formally exact surface-hopping scheme entai
finite-difference approximation to a momentum derivati
operator that is responsible for momentum changes in
bath induced by quantum transitions. A ‘‘momentum-jum
approximation may be made which reduces the action of
term to bath momentum translations. Thus far, this method
solution, in its exact and approximate momentum-jum
forms, has been applied to model systems where the ‘‘ba
consists of a single classical harmonic or anharmo
oscillator.10

The goals and main results of this study are as follow
6 © 2002 American Institute of Physics
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First we apply the hybrid MD-MC scheme to the spin-bos
system and demonstrate the utility of the method for
study of systems with many-body baths. Since the pres
quantum-classical and full quantum dynamics are equiva
for the spin-boson model, we may compare the results of
quantum-classical simulation method with known results
this system obtained using other quantum mechanical si
lation techniques. Second, our calculations on the spin-bo
model are used to demonstrate the feasibility of the hyb
MD-MC scheme and assess its convergence properties
nally, we investigate the validity of the momentum-jump a
proximation for nonadiabatic transitions and momentum
changes with the bath. We show that for the spin-bo
system this approximation is very accurate. We also sh
that the momentum-jump approximation can be generali
so that the exact operator responsible for nonadiabatic t
sitions can be written as a sum of momentum-jump ope
tors. Since this approximation considerably simplifies the
namics such tests are important for future applications.

The outline of the paper is as follows: In Sec. II w
present the quantum-classical evolution equations and
algorithm for their solution. In particular, we describe ho
the operator that is responsible for nonadiabatic transiti
can be implemented and how simple Monte Carlo samp
can be carried out to evaluate the time and phase space
grals that enter the solution. Section III defines the sp
boson model and gives the simulation details needed fo
solution by the surface-hopping algorithm. In this section
also show that the present quantum-classical equation
motion are exact for the spin-boson model. The numer
results of the study are presented in Sec. IV. We solve
quantum-classical evolution equation for the spin-bos
model with an Ohmic spectral density using a surfa
hopping scheme and compare our results with existing
merically exact solutions of this model.20,21 The conclusions
are given in Sec. V.

II. QUANTUM-CLASSICAL DYNAMICS

The starting point for the calculations presented in t
paper is the quantum-classical Liouville equation,3–9

]rW~R,P,t !

]t
52

i

\
@ĤW ,r̂W~ t !#

1
1

2
~$ĤW ,r̂W~ t !%2$r̂W~ t !,ĤW%!

52 i L̂r̂W~R,P,t !, ~1!

which describes the evolution of the density mat
r̂W(R,P,t) for a quantum subsystem composed of partic
with massm coupled to a classical bath of particles wi
massM. The subscriptW derives from the fact that this equa
tion was obtained by taking the partial Wigner transform22

over the bath degrees of freedom and expanding the ev
tion operator in powers of (m/M )1/2. Reference 9 should b
consulted for a derivation of Eq.~1! and a discussion of its
solution by surface-hopping methods. Quantities such as
density matrix or HamiltonianĤW5ĤW(R,P) depend on the
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classical phase space coordinates of theN-particle bath
(R,P)5(R1 ,R2 , . . . ,RN ,P1 ,P2 , . . . ,PN), while a hat is
used to denote the fact that they are abstract operators in
Hilbert space of the quantum subsystem. More explicitly,
Hamiltonian is defined by

ĤW5
P2

2M
1

p̂2

2m
1V̂W~ r̂ ,R!, ~2!

with p̂ and r̂ the momentum and position operators for t
quantum subsystem, while the potential energy opera
V̂W( r̂ ,R) may be decomposed into quantum subsystem, c
sical bath and coupling contributions,

V̂W~ r̂ ,R!5V̂s~ r̂ !1Vb~R!1V̂c~ r̂ ,R!. ~3!

The last line of Eq.~1! defines the quantum-classical Liou
ville operator.

While Eq. ~1! may be studied in any basis, it is esp
cially convenient to represent this equation in an adiab
basis if its solution is constructed by a surface-hopping al
rithm. The adiabatic eigenstatesua;R& are parametrized by
the classical coordinates and are the solutions of the eig
value problem, ĥWua;R&5Ea(R)ua;R&, where ĥW(R)
5( p̂2/2m)1V̂W( r̂ ,R). In this basis any operatorÔW has ma-

trix elementsOW
aa85^a;RuÔWua8;R&. The OW matrix may

be written as a vector with componentsOW
s by associating an

index s5aN1a8 with the pair ~aa8!, where 0<a,a8,N
for an N-state quantum subsystem.

Using this notation and introducing a subscript to lab
different values ofs, e.g., sk5akN1ak8 , the quantum-
classical Liouville equation has the form9,10

]rW
sj ~R,P,t !

]t
5(

sk

2 iLsjsk
rW

sk~R,P,t !. ~4!

The matrix elements of the quantum-classical Liouville o
erator can be found in Refs. 9 and 10 and are given by

2 iLsjsk
52~ ivsj

1 iL sj
!dsjsk

1Jsjsk
. ~5!

The diagonal term2( ivsj
1 iL sj

)dsjsk
contains the fre-

quency vsj
(R)5(Ea j

(R)2Ea
j8
(R))/\ and the classica

Liouville operatorLsj
,

iL sj
5

P

M
•

]

]R
1

1

2
~FW

a j1F
W

a j8!•
]

]P
, ~6!

where the Hellmann–Feynman force FW
a j

52^a j ;Ru ]V̂W( r̂ ,R)/]R ua j ;R&. The termJsjsk
is respon-

sible for nonadiabatic transitions and has the form

Jsjsk
52

P

M
•da jakS 11

1

2
Sa jak

•

]

]PD da
j8a

k8

2
P

M
•da

j8a
k8

* S 11
1

2
Sa

j8a
k8

*
•

]

]PD da jak
, ~7!

where Sa jak
5(Ea j

2Eak
)da jak

9 (P/M )•da jak
)21 and da jak

5^a j ;Ru]/]R uak ;R& is the nonadiabatic coupling matri
element which determines the nonadiabaticity of the sys
and can be considered to be a small expansion param
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Henceforth, we choose a real adiabatic basis so thatdaa

50 andJsjsk
is off-diagonal. Moreover, when the first term

on the right hand side of Eq.~7! is nonzero, the second term
is zero, and vice versa. Specifically, the first term is nonz
for values ofsj and sk such thatsj2sk56 lN, while the
second term is nonzero only ifsj2sk56 l , where 1< l
,N. These two conditions restrict the sequences of tra
tions that can occur and so determine the structure of
nonadiabatic transition matrixJ, which we may now write as

Jsjsk
5J sjsk

0 dsj ,sk6 lN1J sjsk

1 dsj ,sk6 l , ~8!

where J sjsk

k ~k50,1!, correspond, respectively, to the fir

and second terms in Eq.~7! multiplying the delta functions.
For instance, for a two-state quantum subsystem,J takes the
form

J5S 0 J 01
1 J 02

0 0

J 10
1 0 0 J 13

0

J 20
0 0 0 J 23

1

0 J 31
0 J 32

1 0

D . ~9!

To compute the action of the elements ofJ, we must
consider how to evaluate the effect of differential operat
like (11 1

2Sa jak
•(]/]P)) on functions of the classical phas

space coordinates. The most straightforward way to comp
the momentum derivative is by finite differences but th
may be subject to numerical instabilities. Alternatively, o
may make the momentum-jump approximation9 and write
this operator as

11
1

2
Sa jak

•

]

]P
'e~1/2!Sa jak

•~]/]P!, ~10!

which simply induces a shift in the bath momentum. Both
these schemes were used in our earlier studies of a two-
system coupled to a single classical oscillator.10

It is possible to generalize the momentum-jump appro
mation to the operatorJ. In particular, 11z may be written
as

11z5ez1O~z2! ~11!

511 1
2~ez2e2z!1O~z3!. ~12!

These formulas can be extended to higher order at the p
of introducing complex arguments. The general formula

11z5ez2 (
k52

`

xk~z!, ~13!

where

xk~z!5
1

k (
l 51

k

er ( l ,k)z21, ~14!

andr ( l ,k)5e2p i l /k are thekth roots of unity. This result can
be established by Taylor expanding the right-hand side of
~13!, identifying the coefficients of powers ofz and using
known algebraic properties of the roots of unity. Althou
difficult to apply beyond second order, this formula provid
Downloaded 20 Mar 2002 to 142.150.225.29. Redistribution subject to A
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a systematic way to apply the momentum jump approxim
tion to any order and determine the accuracy of low-or
approximations.

We may now construct a sequence of approximations
(11 1

2Sa jak
•(]/]P)). The action of this operator on an

phase space functionf (R,P) using the first approximation in
Eq. ~11! is given by

S 11
1

2
Sa jak

•

]

]PD f ~R,P!

5e~1/2!Sa jak
•~]/]P! f ~R,P!1O~Sa jak

2 !

5 f ~R,P1 1
2Sa jak

!1O~Sa jak

2 !. ~15!

This is just the momentum jump approximation introduc
earlier.9 The second approximation obtained using Eq.~12! is

S 11
1

2
Sa jak

•

]

]PD f ~R,P!

5~11 1
2~e~1/2!Sa jak

•~]/]P!2e2~1/2!Sa jak
•~]/]P!!!

3 f ~R,P!1O~Sa jak

3 !

5 f ~R,P!1 1
2~ f ~R,P1 1

2Sa jak
!

2 f ~R,P2 1
2Sa jak

!!1O~Sa jak

3 !, ~16!

and will be termed the second order jump approximation
realizations of quantum-classical dynamics involvingn
nonadiabatic transitions, the first order jump approximat
yields a single trajectory with momentum jumps. In seco
~and higher! order a branching tree of trajectories
spawned. For instance, using the second order approxima
3n trajectories will be produced in each realization of t
evolution.

Making use of the Dyson equation and the fact that
first term in the quantum-classical Liouville operator is dia
onal, the evolution Eq.~4! may be written in integral form
as9,10

rW
s0~R,P,t !5e2( ivs0

1 iL s0
)trs0~R,P,0!

1(
s1

E
0

t

dt8e2( ivs0
1 iL s0

)(t2t8)

3Js0s1
rW

s1~R,P,t8!. ~17!

We may simplify this equation by defining

Usk

† ~ tk2tk11!5e2( ivsk
1 iL sk

)(tk2tk11)

5e2 i *
tk

tk11dt vsk
(R

sk ,t

tk )e2 iL sk
(tk2tk11)

[Wsk
~ tk ,tk11!e2 iL sk

(tk2tk11), ~18!

where the time-reversed phase point under the classical
lution operatorLsk

is denoted by

~Rsk ,tk11

tk ,Psk ,tk11

tk !5e2 iL sk
(tk2tk11)~R,P! . ~19!

Using this notation and iterating the integral equation to o
tain its solution we find
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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rW
s0~R,P,t !5Us0

† ~ t !rs0~R,P,0!1 (
n51

`

(
s1•••sn

E
0

t0
dt1E

0

t1
dt2

•••E
0

tn21
dtn )

k51

n

@Usk21

† ~ tk212tk!Jsk21sk
#

3Usn

† ~ tn!rsn~R,P,0!, ~20!

where t05t. This recursive formula allows one to compu
the terms in the integral equation solution in a system
fashion.

In order to complete the calculation of thenth order term
in Eq. ~20! we must decide how to carry out the sums ov
the discretesk indices and how to perform the multiple tim
integrals. For the first problem, not all the sequen
$s0 , . . . ,sn% contribute since only a subsetS of the se-
quences is physically permissible. From the discussion oJ
above the allowed sequences havesk2sk1156 lN or sk

2sk1156 l for 1< l ,N. One can either count all the ele
ments ofS contributing to Eq.~20!, or if there are too many
elements, one may approximate the sum through a Mo
Carlo sampling of the summand overS.

For the second problem, Monte Carlo techniques m
be used, the simplest involving uniform sampling to evalu
the time integrals. The time integrals that must be compu
are of the type,

I5E
0

t0
dt1E

0

t1
dt2•••E

0

tn21
dtnf ~ t1 ,t2 , . . . ,tn!. ~21!

When the integrand is invariant under permutations of
arguments, it is a simple matter to reduce such an integra
an integral over a hypercube; however, the reduction is m
generally valid since the change of variablesul

5(t l /t l 21)n2 l 11, where ulP@0,1# for 1< l<n, with the
jacobianJ(u1 , . . . ,un ;t0)5t0

n/n!, independent of the inte
gration variables, reduces this integral to

I5
t0
n

n! E0

1

du1E
0

1

du2 •••E
0

1

dunf ~ t1~u!,t2~u!, . . . ,tn~u!!.

~22!

The integral ~22! can be estimated by a simple unifor
Monte Carlo sampling. One way to generate uniformly d
tributed random numbers is through a standard pseudo
dom number generator. However, for finite sequences, c
tering of numbers is known to occur. Another way to produ
the desired time sequences is through quasirandom num
also called least discrepancy sequences.23 Such sequences d
not exhibit the clustering of random numbers and when u
to evaluate multi-dimensional integrals typically conver
far more quickly. We have used this method to obtain
results in this paper.

There is one final issue to consider. Most often one is
interested in the computation of the density matrix itself b
in expectation values of observables. In this case we m
compute
Downloaded 20 Mar 2002 to 142.150.225.29. Redistribution subject to A
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Ō~ t !5Tr8E dRdPÔW~R,P!r̂W~R,P,t !

5Tr8E dRdP~ei L̂tÔW~R,P!!r̂W~R,P,0!

5Tr8E dRdPÔW~R,P,t !r̂W~R,P,0!, ~23!

where Tr8 denotes a trace over the quantum subsystem
the second line of Eq.~23! we moved the time evolution
operator from the density matrix to the observable. Giv
that the formal solution for the time evolution of an obser
able is

ÔW~R,P,t !5ei L̂tÔW~R,P!, ~24!

its solution as series may be found by carrying out an an
sis like that leading to Eq.~20!. The result is

OW
s0~R,P,t !5Us0

~ t !Os0~R,P,0!

1 (
n51

`

~21!n (
s1 •••sn

E
0

t0
dt1E

0

t1
dt2

•••E
0

tn21
dtn)

k51

n

@Usk21
~ tk212tk!Jsk21sk

#

3Usn
~ tn!Osn~R,P,0!, ~25!

with t05t and where

Usk
~ tk2tk11!5e( ivsk

1 iL sk
)(tk2tk11)

5ei *
tk

tk11dt8 vsk
(R̄

sk ,t8

tk )eiL sk
(tk2tk11)

[W̄sk
~ tk2tk11!eiL sk

(tk2tk11), ~26!

and the classical evolution operator exp(iLsk
(tk2tk11)) now

evolves phase points forward in time,

~R̄sk ,tk11

tk ,P̄sk ,tk11

tk !5eiL sk
(tk2tk11)~R,P! . ~27!

The phase space integrals in Eq.~23! were computed using
importance sampling based onr̂W(R,P,0). We have made
use of this formulation to obtain the results given below.

III. SPIN-BOSON MODEL AND SIMULATION DETAILS

The spin-boson Hamiltonian, which describes a tw
level system, with states$u↑.,u↓.%, bilinearly coupled to a
harmonic bath ofN oscillators with massesM j and frequen-
ciesv j , may be written as

Ĥ52\Vŝx1(
j 51

N S P̂j
2

2M j
1

1

2
M jv j

2R̂j
22cjR̂j ŝzD . ~28!

Here 2\V is the energy gap of the isolated two-state syst
and

ŝx5S 0 1

1 0D , ŝz5S 1 0

0 21D , ~29!

are the Pauli spin matrices. To fix the values of the para
eters in thisN-oscillator spin-boson model, we have chos
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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to employ the forms of the coupling constantscj and fre-
quenciesv j introduced by Makri and Thompson,21

cj5Aj\v0M jv j , v j52vc lnS 12 j
v0

vc
D , ~30!

where

v05
vc

N
~12e2vmax/vc!. ~31!

This choice corresponds to the most efficient way to rep
sent an infinite bath with Ohmic spectral density by a fin
number of oscillators. The spectral density is characteri
by the Kondo parameterj and frequencyvc . The parameter
vmax is a cutoff frequency.

Although we are not specifically concerned here with
physics of the dynamics of a quantum subsystem couple
a thermal bath, we use this set of parameters since it prov
us with a convenient means to compare our surface-hop
results with the exact numerical results of Makri and Thom
son on theN-oscillator spin-boson model.

Taking the partial Wigner transform22 over the bath de-
grees of freedom, the Hamiltonian becomes

ĤW52\Vŝx1(
j 51

N S Pj
2

2M j
1

1

2
M jv j

2Rj
22cjRj ŝzD

5ĥs1Hb1V̂c~R!, ~32!

which depends on the classical phase space coordin
(R,P) and the spin degrees of freedom. The second line
Eq. ~32! defines the subsystem Hamiltonianĥs52\Vŝx ,
the bath HamiltonianHb(R,P)5( j 51

N (Pj
2/2M j1

1
2M jv j

2Rj
2)

5( j 51
N (Pj

2/2M j )1Vb(R) and the coupling potential energ
V̂c(R)52( j 51

N cjRj ŝz[g(R)ŝz .
We now establish that the approximate quantu

classical evolution is exact for this Hamiltonian, i.e., it
identical with the full quantum evolution. The quantum m
chanical density matrix satisfies the von Neumann equat

]r̂~ t !

]t
52

i

\
@Ĥ,r̂~ t !#, ~33!

and its partial Wigner transform is25

]r̂W~R,P,t !

]t
52

i

\
~ĤWe\L/2i r̂W~ t !2 r̂W~ t !e\L/2i ĤW!, ~34!

whereL5¹QP•¹WR2¹QR•¹WP . One may easily verify that only
the first order terms in the expansion of the exponential
erator,e\L/2i511\L/2i , contribute to the right-hand side o
Eq. ~34! in view of the fact thatHb(R,P) is a simple phase
space function of its arguments depending quadratically oR
andP and the coupling term is linear inR. In this case Eq.
~34! reduces to the quantum-classical Liouville equation a
thus, as stated, for the spin-boson model the evolution
given exactly by Eq.~1!.

In the calculations presented below we shall use dim
sionless variables defined by

Rj85S M jvc

\ D 1/2

Rj , Pj85~\M jvc!
21/2Pj . ~35!
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The Hamiltonian then takes the form,

ĤW8 5
ĤW

\vc
52V8ŝx1(

j
S Pj8

2

2
1

1

2
v j8

2Rj8
22cj8ŝzRj8D ,

~36!

where

V85
V

vc
, v j85

v j

vc
, cj85Aj

v0

vc
v j8 . ~37!

Below we shall also require the dimensionless tempera
parameterb85\vcb5\vc /(kBT) and the dimensionles
time t85tvc . Henceforth, when there is no ambiguity, w
shall drop the primes but dimensionless variables are to
understood.

The solution of the integral equation for the density m
trix elements in the adiabatic basis in Eq.~20! involves the
adiabatic energiesEa(R), ~a50,1!, which are the eigenval-
ues ofĥW(R)5ĥs1Vb(R)1V̂c(R) and are given by

E0,1~R!5Vb~R!7AV21g~R!2. ~38!

The corresponding eigenvectors are

1

A2~11G2!
S 11G

12GD ,
1

A2~11G2!
S G21

11GD , ~39!

where

G~R!5
1

g~R!
@2V1AV21g~R!2#. ~40!

The classical Liouville operatoriL sk
and Jsjsk

involve the
diagonal and off-diagonal Hellmann–Feynman forces whi
for the spin-boson model, can be computed easily from
quantities given above.

In the calculations presented below we have assume
initially uncorrelated density matrix where the subsystem
in state u↑& and bath is in thermal equilibrium, so that th
initial density matrix has the form,

r̂~0!5 r̂s~0!Zb
21e2bHb

ˆ
, r̂s~0!5S 1 0

0 0D , ~41!

whereZb is the bath partition function. The partial Wigne
transform of this initial density operator is22

r̂W~R,P,0!5 r̂s~0!rbW~R,P!, ~42!

where, in dimensionless variables,

rbW~R,P!5)
i 51

N
tanh~bv i /2!

p

3expF2
2 tanh~bv i /2!

v i
S Pi

2

2
1

v i
2Ri

2

2 D G . ~43!

In order to compare our results with those in the lite
ture we focus our attention on the computation of the exp
tation value of the observable

Ô5ŝz5S 1 0

0 21D , ~44!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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whose average is the population difference in the quan
subsystem.

IV. RESULTS

For the spin-boson model the Feynman–Vernon in
ence functional technique24 provides an elegant starting poin
for investigations of the dynamics. Various treatments ba
on this approach have appeared in the literature.13–16 In this
study we used the exact numerical results on a spin-bo
system with a finite number of oscillators21 obtained by em-
ploying an iterative path integral methodology developed
Makri and co-workers20 as a basis for comparison with th
results of our surface-hopping scheme.

The dynamics of the spin-boson model with Ohm
spectral density is characterized by the dimensionless pa
etersV, vmax and j. The statistical behavior of this mode
stems from the form chosen for the initial-time dens
matrix in Eq. ~42! which depends on the additional param
eter b. The system parameters used in this study w
V51/3 and vmax53, while the Kondo parameter and re
duced temperature took the two sets of values~j50.007,
b50.3! and~j50.1,b53.0!. The harmonic bath consisted o
ten oscillators. While Makri and Thompson21 have shown
that ten harmonic oscillators can mimic an infinite dime
sional bath and used this discrete model to study the dyn
ics of the thermalization of the two-level quantum su
system, we employed this number of oscillators and th
parameterization in our calculations simply to compare w
their exact results. Consequently, we have explored a ra
of coupling strengths for which a significant degree of no
diabaticity is present, without studying the full range
physically relevant values of the friction.

Before presenting the comparison of the influen
functional and surface-hopping results, we examine vari
possible choices for the numerical implementation of
nonadiabatic transition operatorJsjsk

. As discussed in
Sec. II, the action ofJsjsk

may be computed using either
finite-difference scheme or various orders of the jum
approximation. For this purpose we have check
the precision with which we can perform the dynamical ev
lution by examining the phase space observableŌ(t)
[Tr8*dRdPÔW(R,P,t) r̂s(0)rbW(R,P). In Fig. 1 we plot
Ō(t) versus time and show that the finite difference a
first and second order jump approximations are in accord
the entire simulation time. This agreement is mod
dependent and for other models larger differences have b
observed.10

We have also examined how well the computed evo
tion satisfies the conservation laws of the model. In parti
lar, we have verified that the norm of the initial dens
operator and the expectation value of the Hamilton
ĤW are well conserved. As examples, in Fig. 2 we sh
HW(R,P,t)5Tr8 ĤW(R,P,t) r̂s(0) versus time for a given
phase space point (R,P) as well as its phase space avera
H̄(t). One can see that both quantities are conserved
high degree of accuracy.

We now compare our surface-hopping results with
known numerically exact results for this model. Since t
Downloaded 20 Mar 2002 to 142.150.225.29. Redistribution subject to A
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first order jump approximation was shown to be accurate
have used this expression to evaluateJsjsk

. Figure 3 is a plot

of Ō(t) versus time computed using the surface-hopping
gorithm including up to four (n54) nonadiabatic transitions
along with the influence functional results for a Kondo p
rameter ofj50.007. One can see that for the time interv
shown our results forn54 are in complete accord with thos
of Makri and Thompson.21 It is instructive to examine the
individual adiabatic and nonadiabatic contributions to t
surface-hopping solution as a function of time. These res
are shown in Fig. 4. While the coupling to the bath is qu
weak and adiabatic dynamics dominates the structure for
value of the Kondo parameter, the dynamics has nonne
gible nonadiabatic components. The convergence of
surface-hopping results may also be gauged from an exa
nation of this figure: the third and fourth order contributio
are small over the entire time interval studied.

FIG. 1. Time dependence ofŌ(t) using finite-difference~1!, first order
jump ~h!, and second order jump~s! approximations toJsjsk

for j50.007,
including up to two nonadiabatic transitions. The solid lines in this and
following figures are polynomial fits to the data points as guides the ey

FIG. 2. Plots ofHW(R,P,t) for a given phase space point (R,P) and

its phase space averageH̄(t) vs time. ~h!, (HW(R,P,t)2HW(R,P,0))

3105/HW(R,P,0); ~L!, (H̄(t)2H̄(0))3107/H̄(0), where HW(R,P,0)

530.278 072 andH̄(0)533.654 133.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Figures 5 and 6 present the results for a stron
subsystem–bath coupling strength,j50.1, where the nona
diabatic contributions are even more significant. The surfa
hopping results compare favorably with the influence fu
tional results. They are almost indistinguishable from
exact Feynman–Vernon influence functional results of Ma
and Thompson~Fig. 5!. The decomposition into adiabati
and nonadiabatic contributions is presented in Fig. 6
shows that substantial nonadiabatic effects exist and a
batic dynamics is poor approximation to the true dynam
In the figure we can also see that then55 andn56 nona-
diabatic contributions are small up to approximatelyt55
and are significant for times greater thant57, indicating that
for longer times nonadiabatic contributions withn.6 must
be included to achieve convergence.

The time scale for the decay of the observableŌ(t)
depends on the magnitude of the Kondo parameter. Our
culations explored weak to moderate values of this coup
parameter and intermediate times. For fairly weak coupl
~j50.007! decay occurs over several oscillation period
while for moderate coupling strengths~j50.1! the decay is
much faster. Our results are restricted to roughly one per
for the period of the oscillation considered in the simulatio

FIG. 3. Ō(t) vs time for j50.007. Influence functional results~d! ~see
text!, surface-hopping results forn up to 4 ~,!.

FIG. 4. Contributions toŌ(t) vs time forj50.007. Individual contributions
are: adiabatic dynamics,n50, ~h!; nonadiabatic contributions,n51, ~L!;
n52, ~n!; n53, ~v!; n54, ~x!.
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V. CONCLUSION

The results presented in this paper demonstrated
quantum-classical equations of motion can be solved ac
rately using a surface-hopping algorithm for a quantum s
system interacting with a many-body bath. In addition
confirming the ability of the method to correctly describe t
dynamics of the spin-boson model by comparison with n
merically accurate results for this system, a number of ad
tional features have been incorporated into the surfa
hopping algorithm. The operatorJ plays an important role in
quantum-classical dynamics since it accounts for nona
batic transitions and momentum transfer to and from
bath. We have presented a systematic way to evaluate
operator in a numerically stable fashion by a hierarchy
momentum-jump approximations involving only momentu
translation operators, instead of a less stable finite differe
approximation to the momentum derivatives appearing
this operator.

One of the principal motivations for developin
a quantum-classical description is to be able to tr
the dynamics of a many-body environment interacting w
a quantum subsystem in a detailed fashion. Even for
extensively-studied spin-boson model, interesting inform

FIG. 5. Ō(t) vs time forj50.1. Comparison of surface-hopping (n up to 6!
~,! and exact influence functional~d! ~see text! results.

FIG. 6. Decomposition ofŌ(t) for j50.1 into adiabatic and individua
nonadiabatic contributions:n50, ~h!; nonadiabatic contributions,n51,
~L!; n52, ~n!; n53, ~v!; n54, ~x!; n55, ~,!; n56, ~1!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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tion on the dynamics of the bath and its equilibrium tim
correlation functions remains to be extracted. Since our
lution method provides a dynamical description of the b
in terms of an ensemble of coherently evolving surfa
hopping trajectories, both quantum subsystem and bath
namical correlation functions can be computed directly us
this ensemble. The transport properties of the system
pressed in terms of equilibrium time correlation functio
allow one to explore the validity of quantum-classical d
namics as well as the utility of the simulation algorithm f
the dynamics.25

The present results provide the background for appl
tions of quantum-classical methods to the calculation of
tistical mechanical averages and dynamical properties o
alistic systems of chemical and physical interest. Since
surface-hopping scheme uses classical bath trajectorie
principle, the extension to complex molecular conden
phase baths does not introduce difficulties. The comp
tional penalty simply stems from the heavier CPU lo
needed to integrate the classical trajectory segments.
current formulation of the method is restricted to syste
where relatively few nonadiabatic transitions are necess
to describe the phenomena. This limitation arises from
fact that the number of points needed to evaluate the t
integrals by Monte Carlo sampling is large and the in
grands tend to oscillate. This difficulty can be overcome p
tially by using more sophisticated Monte Carlo sampling t
goes beyond the simple sampling scheme used here. Ano
way to extend the calculations to higher orders is to imp
ment some form of decoherence into the scheme so that
tidimensional time integrals of high order do not contribu
Both of these methods are under investigation. In its curr
form, our simulation method should be directly applicable
the study of rapidly decaying correlation functions in re
many-body systems.
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