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The spin-boson model is solved within the framework of quantum-classical dynamics using our
recently-developed surface-hopping scheme. The quantum-classical equation of motion is expressed
in an adiabatic basis and its solution is constructed from an ensemble of trajectories which undergo
nonadiabatic transitions and evolve coherently on the adiabatic surfaces. Details of the algorithm for
the simulation of the dynamics are presented and the method of simple Monte Carlo sampling used
to evaluate the expectation values of observables is discussed. The simulation method is applied to
a spin-boson system with a harmonic bath composed of ten oscillators with an Ohmic spectral
density. For the spin-boson model the present implementation of quantum-classical dynamics is
exact and the results of our surface-hopping simulations are in accord with previous numerically
exact results for this model. @002 American Institute of Physic§DOI: 10.1063/1.1433502

I. INTRODUCTION In an earlier papérwe wrote the solution of the

guantum-classical evolution equation, expressed in an adia-

Quantum-classical dynamics describes systems com:-_.. . . . s .
. atic basis, as an integral equation. This integral equation

posed of a quantum subsystem coupled to a classical envi- . . . .
as solved by iteration to yield a series whose terms were

ronment and provides a means to study the qynam'cs.oordered by the number of nonadiabatic transitions. A hybrid
many-body systems that are not amenable to investigatio

using full quantum dynamics? In the quantum-classical ap- Molecular DynamicsMD)-Monte Carlo(MC) scheme was

proach we use, the isolated quantum subsystem and baﬁgnstructed to solve the integral equation. In this scheme,

obey quantum mechanics and classical mechanics, respe%gamum trgnsitions and the times at which they oceur are
tively, but their coupled evolution is given by quantum- sampled using Monte Carlo methods. The evolution between

classical equations of motion where a simple Newtonian deguch guantum transition events is carried out using classical

scription of the environmental degrees of freedom no longef0lecular dynamics, either on a single adiabatic surface, if
exists>° The solution of the evolution equation may be writ- the evolution for .that time segment involves a diagonal ele-
ten in terms of an ensemble of surface-hopping trajectories ifent of the density matrix, or on the mean of two coherently
place of the single Newtonian trajectory of a classicalcoupled adiabatic surfaces, if evolution involves an off-
systen?1° Other exploratory work along similar lines on a diagonal element of the density matrix. This surface-hopping
number of simple models has also appeared in thénethod is a formally exact solution of the quantum-classical
literature>*? In this article we consider the application of €quations of motion and differs from other surface-hopping
quantum-classical dynamics to the spin-boson model. methods that have been developed recéffy Implemen-
The spin-boson system, which consists of a two-leveltation of our formally exact surface-hopping scheme entails a
system bilinearly coupled to a bath of harmonic oscillators finite-difference approximation to a momentum derivative
has been widely used as a simple model of an open quantugperator that is responsible for momentum changes in the
system in order to study the effects of an environment on &ath induced by quantum transitions. A “momentum-jump”
quantum subsystefi=® This model has provided a great approximation may be made which reduces the action of this
deal of insight into how decoherence and dissipation occur iierm to bath momentum translations. Thus far, this method of
the quantum subsystem as a result of coupling to the hasolution, in its exact and approximate momentum-jump
monic bath. It has also served as a testing ground for conforms, has been applied to model systems where the “bath”
putational descriptions of many-body quantum dynamics. Iconsists of a single classical harmonic or anharmonic
is in this connection that we explore the dynamics of thisoscillator®
system. The goals and main results of this study are as follows:
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First we apply the hybrid MD-MC scheme to the spin-bosonclassical phase space coordinates of tMgparticle bath
system and demonstrate the utility of the method for thgR,P)=(R;,R,, ... ,Ry,P1,P5, ... ,Py), While a hat is
study of systems with many-body baths. Since the presenised to denote the fact that they are abstract operators in the
guantum-classical and full quantum dynamics are equivalerttilbert space of the quantum subsystem. More explicitly, the
for the spin-boson model, we may compare the results of ourdamiltonian is defined by

guantum-classical simulation method with known results for pz 2

this system obtained using other quantum mechanical simu- f, =_—+ p_+vw(f,R), 2
lation techniques. Second, our calculations on the spin-boson 2M  2m

model are used to demonstra-te the feaSIblllty of the hyb”qN'th f) andf the momentum and position Operators for the
MD-MC scheme and assess its convergence properties. Riyantum subsystem, while the potential energy operator

nally, we investigate the validity of the momentum-jump ap-\A/W(?,R) may be decomposed into quantum subsystem, clas-
proximation for nonadiabatic transitions and momentum €X5ical bath and coupling contributions,
changes with the bath. We show that for the spin-boson

system this approximation is very accurate. We also show  V,(f,R)=V(f)+V,(R)+V.(7,R). ()
that the momentum-jump approximation can be generalizeq_

so that the exact operator responsible for nonadiabatic trar\ll-ing f;etrgr:gr of Eq{1) defines the quantum-classical Liou-
sitions can be written as a sum of momentum-jump opera- ) ’ L. L
Lump op While Eqg. (1) may be studied in any basis, it is espe-

tors. Since this approximation considerably simplifies the dy- . I ont t ¢ thi fion i diabati
namics such tests are important for future applications. cially convenient o represent this equation in an adiabatic

The outline of the paper is as follows: In Sec. Il we t??hss 'fl_'rt]s SO(;L.J“S nt_ls c.onstrLth:ed.gy asurface—hotp.pmé; Slgo-
present the quantum-classical evolution equations and th{ mi € a} 1a adlp e;gensgé@, ti] are lp:;\_rame ;'i; Y
algorithm for their solution. In particular, we describe how € classical coordinates and are the solutions of the eigen-

the operator that is responsible for nonadiabatic transition¥alue ~problem, hy|a;R)=E,(R)|a;R), where hy(R)
can be implemented and how simple Monte Carlo sampling= (p?/2m) + Vy(7,R). In this basis any operat@,, has ma-
can be carried out to evaluate the time and phase space inteix elementso\j‘v“'z(a;R|©W|a’;R>. The Oy, matrix may
grals that enter the solution. Section Ill defines the spinbe written as a vector with compone@s, by associating an
boson model and gives the simulation details needed for ithhdex s= aN+ o’ with the pair (aa’), where Ga,a’ <N
solution by the surface-hopping algorithm. In this section wefor an A-state quantum subsystem.

also show that the present quantum-classical equations of Using this notation and introducing a subscript to label
motion are exact for the spin-boson model. The numericadiifferent values ofs, e.g., s;=a N+ ay, the quantum-
results of the study are presented in Sec. IV. We solve thelassical Liouville equation has the fotr?
guantum-classical evolution equation for the spin-boson N

model with an Ohmic spectral density using a surface- 5P\X/(R’Pvt)_2 . Sk

hopping scheme and compare our results with existing nu- ot £ ~iLsspw(RP.D.
merically exact solutions of this mod&?! The conclusions
are given in Sec. V.

4

The matrix elements of the quantum-classical Liouville op-
erator can be found in Refs. 9 and 10 and are given by

Il. QUANTUM-CLASSICAL DYNAMICS "L = (Tog Fikg ) 8ge g ®
SThe diagonal term—(iwsj+iLSj)5Sjsk contains the fre-
quency wsj(R)=(Eaj(R)—Eaj/(R))/h and the classical
Liouville operatorsz,

The starting point for the calculations presented in thi
paper is the quantum-classical Liouville equation,

&pW(R,P,t) i~ N
o~ 7 [Hw.ew(V)] P g 1 ,
iL.=— —+ —(FY44+F%). —
) ILSj M 5R+2(FW+FW) 7P’ (6)
+E({HW’pW(t)}_{pW(t)’HW}) where the Hellmann—Feynman force FyJ

=—(a;;R| 3V(,R)/dR|a;;R). The termJg s, is respon-
sible for nonadiabatic transitions and has the form

1
2

=—iLpw(R,P,t), 1)

which describes the evolution of the density matrix

pw(R,P,t) for a quantum subsystem composed of particles Jog=——-d,,
with massm coupled to a classical bath of particles with e MR
massM. The subscrip¥ derives from the fact that this equa- p 1 J

tion was obtained by taking the partial Wigner transférm - M'dz.’a'( 1+ §SZfa" a_P) O an )
over the bath degrees of freedom and expanding the evolu- K K

tion operator in powers ofni/M)*2. Reference 9 should be where Sja= (Eo,— Eak)d’;jak(P/M) : daiak)*l and d, o,
consulted for a derivation of Eq1) and a discussion of its =(a;;R|dldR|ay;R) is the nonadiabatic coupling matrix
solution by surface-hopping methods. Quantities such as th&lement which determines the nonadiabaticity of the system

density matrix or Hamiltoniaf,= H,y(R,P) depend onthe and can be considered to be a small expansion parameter.

1+

Saj o ﬁ) 5&]./ a((
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Henceforth, we choose a real adiabatic basis so dhgt a systematic way to apply the momentum jump approxima-
=0 andJsjsk is off-diagonal. Moreover, when the first term tion to any order and determine the accuracy of low-order

on the right hand side of Eq7) is nonzero, the second term approximations.

is zero, and vice versa. Specifically, the first term is nonzero e may now construct a sequence of approximations to
for values ofs; ands, such thats; —s,= =1\, while the (1+%5ajak'(ﬁ/<9p))- The action of this operator on any
second term is nonzero only &—s==*I, where I<I phase space functidi{R,P) using the first approximation in
<N. These two conditions restrict the sequences of transiEq. (11) is given by

tions that can occur and so determine the structure of th

nonadiabatic transition matrix which we may now write as (

+ — C—
142 Sej &P)

= eM2Saja, IPIf(R P+ O(SE

f(R,P)

Jsjsk=JSiSk55j seIvt Jijskﬁsj Sl €S) )
where jgjsk (k=0,1), correspond, respectively, to the first " 15
and second terms in E¢7) multiplying the delta functions.

For instance, for a two-state quantum subsystéfakes the  Tpjs is just the momentum jump approximation introduced

form earlier® The second approximation obtained using @4) is

=f(RP+3540) T O(S5 4,)-

0 Jun Joz O 1 d ) .
- \7%0 0 0 j(l)g © 1+ ZS“J“k' oP (R,P)
jgo 0 0 j%a ) =(1+ %(e(llz)sajak-(a/ap)_e—(1/2>sajak-(a/ap)))
0 J% J3 O <f(RP)+O(S] )

To compute the action of the elements bfwe must 1 1
consider how to evaluate the effect of differential operators =T(R.P)+3(f(RP+ ES“j“k)
like (1+ %Sajak- (9/9P)) on functions of the classical phase —f(R,P—1S
space coordinates. The most straightforward way to compute ' #ei
the momentum derivative is by finite differences but thisand will be termed the second order jump approximation. In
may be subject to numerical instabilities. Alternatively, onerealizations of quantum-classical dynamics involvimg
may make the momentum-jump approximafiand write  nonadiabatic transitions, the first order jump approximation

NFOS, 4, (16

Ak

this operator as yields a single trajectory with momentum jumps. In second
(and higher order a branching tree of trajectories is
1+ ES . i%eu/z)sajak-(a/am, (10) spawned. For instance, using the second order approximation
2 %% 9P 3" trajectories will be produced in each realization of the
evolution.

which simply induces a shift in the bath momentum. Both of
these schemes were used in our earlier studies of a tvvo-lev?I . ) o -
system coupled to a single classical oscillafor. irst term in the quantum-classwal quuvnle_z o!oerator is diag-

It is possible to generalize the momentum-jump approxi-ogﬁlé the evolution Ec(4) may be written in integral form
mation to the operatal. In particular, 1+z may be written a

Making use of the Dyson equation and the fact that the

as PO(R,P,t) =€ 95,7 bs)tp%o(R, P,0)
1+z=€*+0O(2%) 11 t
+3 [(dre s ity)e-0)
=1+3e*—e H+0(2%. (12 s1 Jo
These formulas can be extended to higher order at the price XJSOSlp\SAl/(R,P,t’). 17

of introducing complex arguments. The general formula is o . ) .
We may simplify this equation by defining

[

1+z=e’~ kgz xx(2), (13 U;rk(tk—tku)=ef(i“’sk+iL5k)(tk7tk+1)
where :e*if::”d"wsk(RtstYT)e*iLSk(tkftHl)
18 =W (it e el ), (18)
= E'Zl o1, (%9 where the time-reversed phase point under the classical evo-

oarilik , ) lution operatorL ¢ is denoted by
andr (I,k)=e“™¥ are thekth roots of unity. This result can K

be established by Taylor expanding the right-hand side of Eq. (Rtsk t ,ptsk : y=e stk )(R P) (19)
(13), identifying the coefficients of powers af and using Kokl Ptk

known algebraic properties of the roots of unity. Although Using this notation and iterating the integral equation to ob-
difficult to apply beyond second order, this formula providestain its solution we find
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“ t t — N .
PRRPO=ULMp™RPO+S 3 | dy foldtz om=Tr f dRAPOY(R,P)pw(R.P,)

th-1 n :Tr’J'deP(eizté (R,P))pw(R,P,0)
..fo dty [T TUD (b 11035, 5] y .

xU{ (tp)p*(R,P.0), (20) =Tr’j dRAPGy(R,P,)pw(R,P,0), (23)

_ _ where Tf denotes a trace over the quantum subsystem. In
whereto=t. This recursive formula allows one to compute the second line of Eq(23) we moved the time evolution
the terms in the integral equation solution in a systematigperator from the density matrix to the observable. Given

fashion. _ that the formal solution for the time evolution of an observ-
In order to complete the calculation of théh order term  gpje is

in Eq. (20) we must decide how to carry out the sums over

the discretes, indices and how to perform the multiple time Ow(R,P,t)=€“0O(R,P), (24
integrals. For thg first .problem, not all the sequencess solution as series may be found by carrying out an analy-
{So, - - - Sn} contribute since only a subs&® of the se- g Jike that leading to E¢(20). The result is

guences is physically permissible. From the discussiod of

above the allowed sequences haye-s,.;=+*IN or s,  Oy(R,P,H)=Ug () O%(R,P,0)

—siy1= =1 for 1<I<N. One can either count all the ele- .

ments ofS contributing to Eq(20), or if there are too many N E (—1)" z ftodt ftldt
elements, one may approximate the sum through a Monte = s s, Jo o 72
Carlo sampling of the summand ovér

For the second problem, Monte Carlo techniques must -1 .
be used, the simplest involving uniform sampling to evaluate "'fo dtnkﬂl (Vs (-1t Is 4]
the time integrals. The time integrals that must be computed
are of the type, XUs (t))O*(R,P,0), (25)

with to=t and where
to ty th—1 ) )
I:f dtlJ' dtz"'J' dtnf(tl,tz, B ,tn). (21) Usk(tk—tk+1):e('wsk+|Lsk)(tk7tk+1)
0 0 0

— el 0g R )lls (b tirn)
When the integrand is invariant under permutations of its K
arguments, it is a simple matter to reduce such an integral to =W, (t—tys )€tk o), (26)
an integral over a hypercube; however, the reduction is more K

generally valid since the change of variables; and the classical evolution operator ekp(t—ty.1)) now
=(t,/t,_)"'*, whereu,e[0,1] for 1<I<n, with the evolves phase points forward in time,

jacobianJ(uy, ... ,u,;tg)=tp/n!, independent of the inte- :

Jgration va(rialbles, rer:jug)es this integr:fl to (_tst,tk+l’5tskk,tk+l):elLSk(tkitk*‘l)(R’P) : (27)

. The phase space integrals in Eg3) were computed using
to (1 1 1 importance sampling based ¢y (R,P,0). We have made
1= HJO duljo du2'“J0 dunf(ta (), (W), - . - tn(W)). use of this formulation to obtain the results given below.
(22)
Ill. SPIN-BOSON MODEL AND SIMULATION DETAILS

The integral (22) can be estimated by a simple uniform  The spin-boson Hamiltonian, which describes a two-
Monte Carlo sampling. One way to generate uniformly dis-jgyg| system, with state§]>,||>}, bilinearly coupled to a

tributed random numbers is through a standard pseudoralzrmonic bath ofN oscillators with masse; and frequen-
dom number generator. However, for finite sequences, Clugsieg |, may be written as

tering of numbers is known to occur. Another way to produce
the desired time sequences is through quasirandom numbers,
also called least discrepancy sequerfé&uch sequences do
not exhibit the clustering of random numbers and when used . )
to evaluate multi-dimensional integrals typically convergeHere i is the energy gap of the isolated two-state system
far more quickly. We have used this method to obtain the2nd
results in this paper. 0 1 1 0
There is one final issue to consider. Most often one is not a'x=< ) , 6’2=( ) ,
interested in the computation of the density matrix itself but 10 0 -1
in expectation values of observables. In this case we musire the Pauli spin matrices. To fix the values of the param-
compute eters in thisN-oscillator spin-boson model, we have chosen

N

A=—7%Q6+ >
j=1

P +1|v| 2R? ﬁeA) (28)
= Tt sMjoiR —ciRo,].
2m; 2 T T

(29
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to employ the forms of the coupling constamiﬁand fre-  The Hamiltonian then takes the form,
quenciesw; introduced by Makri and Thompsah,

. Hy P2
w Al=r—=—Q'6,+ 2> | =+ -w/?2R'2—c!/5,R! |,
ci=VEhwoM 0, w=—ocn1-j—]|, (30) W hog T | T TR T TR O
i @ j o a6
where where
:& 1— — 0max/ ¢ 31 QO W @0
o Te . S O'=—, =", c=\t—0. (37)
(,()C' J wc’ J g ]

This chch gorresponds to thg most efficient way 10 repreg ooy we shall also require the dimensionless temperature
sent an infinite bath with Ohmic spectral density by a finite arameterg’ =hw 8= w./(ksT) and the dimensionless
number of oscillators. The spectral density is characterize met =tw Hencceforthcwhgn there is no ambiguity, we
- [ l ]

by ‘h?‘ Kondo parametefand frequencys;. The parameter shall drop the primes but dimensionless variables are to be
wmax 1S @ cutoff frequency. understood

Although we are npt specifically concerned here with the The solution of the integral equation for the density ma-
physics of the dynamics 9f a quantum subsyst_em C_OUPqu Bix elements in the adiabatic basis in EQOD) involves the
a thermal bath, we use this set of parameters since it prowdea§jiabatic energiek,(R), («=0,1), which are the eigenval-

us with a convenient means to compare our surface-hoppin ~ s ~ .
results with the exact numerical results of Makri and Thomp-ges offiw(R) =hstVu(R) +V(R) and are given by

son on theN-oscillator spin-boson model. Eo.( R)=V,(R) ¥ VQZ+ y(R)% (38)
Taking the partial Wigner transfofhover the bath de- . )

grees of freedom, the Hamiltonian becomes The corresponding eigenvectors are
i N sz . 1 1+ G 1 G-1 39
HW:_ﬁQUX+j21 _2MJ+§MJwJR]_CJRJO-Z ’—2(1+GZ) 1-G/’ /—2(1+G2) 1+4G/’

—hs+Hp+Vo(R), (32  Where
which depends on the classical phase space coordinates G(R)= 1 [— Q0+ 0%+ y(R)] (40)
(R,P) and the spin degrees of freedom. The second line of v(R) '

Eq. (32) defines the subsystem Hamiltonifig= —%Q&,,

o N > 1 . The classical Liouville operatoilL; and Jg s involve the
the bath HamiltoniaHp(R,P) =2, (P{/2M;+ 3M;w{R}) K Ik

. : diagonal and off-diagonal Hellmann—Feynman forces which,
_<sN 2 _
TEFl(Pi /ZIL\AJ)JFVP(E) andAthe coupling potential energy for the spin-boson model, can be computed easily from the
Ve(R)=—2j_,¢R;5,=¥(R) 7. _ quantities given above.

We now establish that the approximate quantum-- |, he calculations presented below we have assumed an

classical evolution is exact for this Hamiltonian, i.e., it IS jnitially uncorrelated density matrix where the subsystem is
identical with the full quantum evolution. The quantum me-;, state|) and bath is in thermal equilibrium, so that the
chanical density matrix satisfies the von Neumann equationy;tig| density matrix has the form

apt) i

OP\Y ey - ,\ 1
s = #lHAOL, (33 P(0)=po(0)Z5 T F, ﬁs(O):( “y

0 O)’
whereZ, is the bath partition function. The partial Wigner
transform of this initial density operator’fs

ot Pw(R.P.0)=p5(0) ppl R.P), (42)
where A=Vp-Vg—Vg: Vp. One may easily verify that only where, in dimensionless variables,
the first order terms in the expansion of the exponential op-
erator,e"? =1+#A/2i, contribute to the right-hand side of N tanh( Bw;/2)
Eq. (34) in view of the fact thaH,(R,P) is a simple phase Pow( R:P):iﬂl I —
space function of its arguments depending quadraticallR on -
andP and the coupling term is linear iR. In this case Eq. F{ 2 tani{ Bw;/2) ( P2 wlzR,Z”
Xexg — + (43

and its partial Wigner transform3d

dpw(R,P,t)

i . . .~
= 7 (Aue () —pw(he" PRy, (39

(34) reduces to the quantum-classical Liouville equation and 2 2

o
thus, as stated, for the spin-boson model the evolution is '

given exactly by Eq(1). In order to compare our results with those in the litera-
In the calculations presented below we shall use dimenture we focus our attention on the computation of the expec-
sionless variables defined by tation value of the observable
. (M| , o . _ (1 o0
Rj: % Rj’ Pj:(hMjwc) PJ (35 O=o0,= 0o —1/° (44)
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whose average is the population difference in the quantum 1.08:
subsystem.

IV. RESULTS 0.5

For the spin-boson model the Feynman—Vernon influ-
ence functional technig@éprovides an elegant starting point
for investigations of the dynamics. Various treatments based '
on this approach have appeared in the literatét& In this
study we used the exact numerical results on a spin-boson
system with a finite number of oscillatétsobtained by em-
ploying an iterative path integral methodology developed by o
Makri and co-worker® as a basis for comparison with the qob—e
results of our surface-hopping scheme. 00 20 40 60 8.0
The dynamics of the spin-boson model with Ohmic
spectral density is characterized by the dimensionless paramtc. 1. Time dependence @(t) using finite-difference(+), first order
eters(), wnax and €. The statistical behavior of this model jump (0), and second order jum(®) approximations tds s, for £=0.007,
stems from the form chosen for the initial-time density includ_ing up to two nonadiaba_ltic Fransitions. The s_olid fines i_n this and the
matrix in Eq.(42) which depends on the additional param_foIIowmg figures are polynomial fits to the data points as guides the eye.
eter 8. The system parameters used in this study were
0=1/3 and wya=3, while the Kondo parameter and re-
duced temperature took the two sets of valiés0.007,
B=0.3) and(£=0.1, 8=3.0). The harmonic bath consisted of
ten oscillators. While Makri and Thompsdnhave shown _
that ten harmonic oscillators can mimic an infinite dimen-0f O(t) versus time computed using the surface-hopping al-
sional bath and used this discrete model to study the dynangorithm including up to fourif=4) nonadiabatic transitions
ics of the thermalization of the two-level quantum sub-along with the influence functional results for a Kondo pa-
system, we employed this number of oscillators and theifameter ofé=0.007. One can see that for the time interval
parameterization in our calculations simply to compare withshown our results fon=4 are in complete accord with those
their exact results. Consequently, we have explored a rangd Makri and Thompsofi® It is instructive to examine the
of coupling strengths for which a significant degree of nonaindividual adiabatic and nonadiabatic contributions to the
diabaticity is present, without studying the full range of surface-hopping solution as a function of time. These results
physically relevant values of the friction. are shown in Fig. 4. While the coupling to the bath is quite
Before presenting the comparison of the influenceweak and adiabatic dynamics dominates the structure for this
functional and surface-hopping results, we examine variougalue of the Kondo parameter, the dynamics has nonnegli-
possible choices for the numerical implementation of thegible nonadiabatic components. The convergence of the
nonadiabatic transition operatals . As discussed in surface-hopping results may also be gauged from an exami-
Sec. II, the action ofl, . may be computed using either a nation of this figure: th_e '[hlll’d qnd fourth orgier contributions
1%k are small over the entire time interval studied.

first order jump approximation was shown to be accurate we
have used this expression to evalubstj«gk. Figure 3 is a plot

finite-difference scheme or various orders of the jump
approximation. For this purpose we have checked
the precision with which we can perform the dynamical evo-
lution by examining the phase space observaliét) 4
=Tr' f[dRAPQy(R,P,t)ps(0)ppw(R,P). In Fig. 1 we plot
O(t) versus time and show that the finite difference and 1
first and second order jump approximations are in accord for 2r T
the entire simulation time. This agreement is model I ]
dependent and for other models larger differences have been
observed?

We have also examined how well the computed evolu-
tion satisfies the conservation laws of the model. In particu-

lar, we have verified that the norm of the initial density L i

operator and the expectation value of the Hamiltonian 3 -

Hy are well conserved. As examples, in Fig. 2 we show ) N N S
Hw(R,P,t)=Tr' Hy(R,P,t)ps(0) versus time for a given 0020 40 60 80

phase space poinR(P) as well as its phase space average ¢

ﬁ(t). One can see that both quantities are conserved to @G. 2. Plots ofHy(R,P,t) for a given phase space poinR,{P) and
high degree of accuracy. its phase space averag#(t) vs time. (O), (ﬁ(R,P,t)—H_L(R,P,O))

We now compare our surface-hopping results with thex105/Hy(R,P,0); (), (H(t)—H(0))x10/H(0), where Hy(R,P,0)
known numerically exact results for this model. Since the=30.278 072 and(0)=33.654 133.
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FIG. 3. O(t) vs time for £&=0.007. Influence functional result®) (see FIG. 5. O(t) vs time for£=0.1. Comparison of surface-hopping ¢p to
tex®), surface-hopping results farup to 4 (V). (V) and exact influence functioné®) (see text results.

Figures 5 and 6 present the results for a strongel. CONCLUSION

subsystem—bath coupling streng$%0.1, where the nona- The results presented in this paper demonstrated that
diabatic contributions are even more significant. The surfacequantum-classical equations of motion can be solved accu-
hopping results compare favorably with the influence funcrately using a surface-hopping algorithm for a quantum sub-
tional results. They are almost indistinguishable from thesystem interacting with a many-body bath. In addition to
exact Feynman—Vernon influence functional results of Makriconfirming the ability of the method to correctly describe the
and Thompson(Fig. 5. The decomposition into adiabatic gynamics of the spin-boson model by comparison with nu-
and nonadiabatic contributions is presented in Fig. 6 angherically accurate results for this system, a number of addi-
shows that substantial nonadiabatic effects exist and adiq.'ronal features have been incorporated into the Surface_
batic dynamics is poor approximation to the true dynamicshopping algorithm. The operatdrplays an important role in
In the figure we can also see that the'5 andn=6 nona-  quantum-classical dynamics since it accounts for nonadia-
diabatic contributions are small up to approximatétyS  patic transitions and momentum transfer to and from the
and are significant for times greater than7, indicating that  path. We have presented a systematic way to evaluate this
for longer times nonadiabatic contributions with»6 must operator in a numerically stable fashion by a hierarchy of
be included to achieve convergence. - momentum-jump approximations involving only momentum
The time scale for the decay of the observablét) translation operators, instead of a less stable finite difference
depends on the magnitude of the Kondo parameter. Our caikpproximation to the momentum derivatives appearing in
culations explored weak to moderate values of this couplinghis operator.
parameter and intermediate times. For fairly weak coupling One of the principal motivations for developing
(6=0.007 decay occurs over several oscillation periods,a quantum-classical description is to be able to treat
while for moderate coupling strengtig=0.1) the decay is the dynamics of a many-body environment interacting with
much faster. Our results are restricted to roughly one periodh quantum subsystem in a detailed fashion. Even for the
for the period of the oscillation considered in the simulation.extensively-studied spin-boson model, interesting informa-

1.0 : , . , . 1.0 g—r——————————

0.0 5.0 10.0 0.0 2.0 4.0 6.0 8.0

FIG. 4. Contributions t(ﬁ(t) vs time for&=0.007. Individual contributions  FIG. 6. Decomposition oﬁ(t) for £&=0.1 into adiabatic and individual
are: adiabatic dynamics,=0, (OJ); nonadiabatic contributionsy=1, (< ); nonadiabatic contributionsa=0, (CJ); nonadiabatic contributionsy=1,
n=2, (A); n=3, (<); n=4, (>). (©); n=2,(A); n=3,(<); n=4, (>); n=5,(V); n=6, (+).
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