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An asynchronous algorithm for the integration of reaction—diffusion equations for inhomogeneous
excitable media is described. Since many physical systems are inhomogeneous where either the
local kinetics or the diffusion or conduction properties vary significantly in space, integration
schemes must be able to account for wide variations in the temporal and spatial scales of the
solutions. The asynchronous algorithm utilizes a fixed spatial grid and automatically adjusts the time
step locally to achieve an efficient simulation where the errors in the solution are controlled. The
scheme does not depend on the specific form of the local kinetics and is easily applied to systems
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Spatially distributed systems encountered in applications
to physical problems are often inhomogeneous, with ei-
ther the local dynamics or the diffusion or conduction
properties varying widely with spatial location. If one
considers the propagation of excitable chemical or elec-
trochemical waves through such media one must in addi-
tion account for the rapid variations of the fields in the
vicinity of the wave fronts which lead to stiff systems of
differential equations. Wave propagation in cardiac tis-
sue typifies such behavior. The heart is a very inhomoge-
neous excitable medium. It consists of a variety of differ-
ent types of tissue, muscle and fiber with anisotropic
conduction properties. Both the excitability and the dif-
fusion depend strongly on the spatial location. The geom-
etry of the medium is also complex with specialized con-
duction pathways and “obstacles” arising from
anatomical features. The asynchronous algorithm devel-
oped here to simulate partial differential equation models
for such media exploits the wide variations in system
properties. It automatically adjusts the time step in spa-
tial regions where the dynamics varies sharply and incor-
porates error control so that the solution satisfies prede-
termined accuracy criteria. The algorithm utilizes a fixed
spatial grid so can be adapted easily to complex geom-
etries and is applicable to any type of local dynamics.

I. INTRODUCTION

The reaction diffusion equation

ow(r,t)
at

=R+ V.(D(r)Vw)), (1)

diac tissue. In this equatiow(r,t) is a vector local state
variables(chemical concentrations, electrical potential, ion
concentrations, efcat space point at timet. The vector
function of reaction rates is denoted Byw(r,t);p) and de-
pends on a set of parametgrs In the most general case,
D(r) is a tensor whose elements specify the diffusion or
conduction properties of the medium for each variable at
each spatial point.

Two characteristics of such reaction diffusion equations
make their simulation difficult: the local reaction kinetics
may have contributions with very different time scales lead-
ing to stiff differential equations and sharp front solutions,
and the structure of the inhomogeneities may be complex
with widely varying diffusion coefficients and local dynam-
ics at different spatial locations. For example, for excitable
cardiac tissue, the fast time scale corresponds to the rapid
depolarization of the cellular membrane. The use of a small
time step which is needed to resolve this behavior makes it
more difficult to study the long time behavior of the physical
processes of interest. Cardiac tissue is also highly inhomo-
geneous with specialized high conduction channels with
markedly different properties. Various schemes have been
devised for the simulation of excitable media because of
their importance for applicatiors®

Wave propagation in the excitable FitzHugh—Nagumo
(FHN) system provides a convenient model to illustrate
some of the essential issues. For the FHN system the ele-
ments of R are R,=(u—u®3-v)/e and R,=e(u+p
—av). Figure 1 shows a propagating wave in one spatial
dimension for «=0.5, B=0.75, and e=0.15 with space-

describes the dynamical behavior of chemical reactions independent diffusion coefficieni3,=1 andD,=0.

heterogeneous media; for example, reactions occurring in

The fast variation of thel field at the front compared to

porous materials, surface catalysis and a variety of biologicahe slow variation of they field is a characteristic of the
systems including electrochemical wave propagation in carstiffness of this system determined by the parameteFhis
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solution was obtained using an Euler scheme with the lowest
order symmetric finite difference form for the Laplacian
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FIG. 1. Propagating wave solution of the FHN model fe=0.5, B
=0.75,€=0.15,D,=1, andD,=0 obtained using an Euler scheme and a
finite difference approximation for the Laplacian term witk=0.25 and
8t=0.256x2, and periodic boundary conditions. Variahlgsolid line); v
(dashed ling

FIG. 2. Upper panel: results of the numerical stability analysis of the uni-

— . form solution of the FHN model obtained using the Euler scheme combined
Wi(X, T+ Ot) =Wy (X, 1) + StR(W; p) with a first order finite difference approximatiog to the Lapladialack dots
and solid black ling The parameters are the same as in Fig. 1. Lower panel:
results of the stability analysis of the pulse soluti@olid squares The
dashed line is5t=0.166x2. The labeled regions in this figure refer to the
applicability of schemes based on various combinations of imgliciand
+ Wi (X— 8%, ) — 2w (X, 1) ], 2) explicit (E) evaluations of the reaction and diffusion terms, respectidely

(E,B) (Ref. 7, B: (,E) (Ref. 1), C: (1,1) (Ref. 3, andD: (E,I).

StD,
+ W[WK(X‘F 5X,t)

with periodic boundary conditions. Hekelabels the differ-
ent chemical species or variables. This widely used scheme
is easy to implement in any dimension, can accommodatéme step values will tend to a constant value for large grid
many different boundary conditions, does not depend on aizes. Figure 2 shows the stability limit of an explicit Euler
specific form for the reaction term, and can be modified tascheme using first-order finite differences for the FHN model
simulate other spatial derivative terms easily. However, itrest state(black dot$ and pulse solutior(filled squares
has poor stability properties and may require very smallSaturation of the allowed time step is seen in both cases but
space and time steps to obtain accurate solutions. occurs at a somewhat smaller value &f for the pulse so-
The time step in the explicit Euler scheme cannot bdution. This is typical of excitable media where the fastest
increased indefinitely and is constrained by the requiremerdynamics is associated with the transition from the rest state
that the numerical solution be stable to small perturbationsto the excited state. In the continuous space and time limit,
The temporal evolution of an infinitesimal perturbation isthe linear stability analysis for the uniform rest state and the
given by the linearization of Eq2) which involves both the pulse solution coincide.
Jacobian matrix associated with the reaction tery, The differences in the stability thresholds in the pure
=JRy/ow,, and the diffusion terms. Since the solution of diffusive limit and in intermediate resolution simulations are
interest may be time dependent, a full nonlinear analysisiot negligible. The “effective” stability threshold may de-
must be carried out, defining the Lyapunov exponents andrease more slowly thadx?, leading to the use of a linear
associated modes. variation of the time step with the grid size in some applica-
In the continuous space limiix— 0, the weight of the tions (see, for instance, Ref.)2Such behavior can be ex-
Jacobian terms tends to zero relative to the diffusion terms. Ipected only far from the continuous space limit and, indeed,
we omit the reaction term and focus on the Laplacian termsuggests the use of a smaller grid size to obtain accurate
the resulting linear equation yields the stability constraintresults. However, simulations performed at coarse or me-
St< 6x?/(2 max D). This approximation is not generally dium resolution provide useful qualitative insight into the
applicable when a finite grid is employed. For example, indifferent dynamical regimes that may exist. An algorithm
the very large grid size limitx—oe, the stability condition that is able to incorporate a wide range of spatial resolutions
arises from the diagonalization of the matrix-(5tJ) where is of considerable interest since it will allow a rapid, com-
| is the unit matrix. For the rest state of excitable media, theplete study of the dynamics using a single code. This is one
magnitudes of all eigenvalués must be smaller than unity of the appealing properties of Barkley’s algorithfor excit-
and the stability condition if\;|<1,VI. Thus, the possible able media.
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~ Algorithms may be classified according to whether theyof ordern, and the maximum errcp,y. It cannot be smaller
involve implicit or explicit evaluation of either one or both thanm-+ 1 and larger than a value that insures that errors do
of the reaction and diffusion ternisAlthough implicit nu- ot accumulate because of a large numiNgrof asynchro-

merical schemes are more difficult to implement, they arg,oys steps. More specificallyp’ may be determined from
used frequently because of their good stability propertieS(see Appendix A

One may delimit regions of applicability indk, 6t) space

. . . 1n¢
for each type of alg_onthn(lsee Fig. 2 Some algorlthms use m =min| 1+m| =" 1+ Rm|, 3
synchronous updating of all nodes of a regular lattice, while ol
others, including our scheme, use an irregular distribution of .
. L with
time steps and/or grid sizes. Other examples of such schemes
include the “Adaptive Mesh Size Refinement Algorithm” m; | YNs= 1)
which uses a variable grid size and time step and has been R= E ' 4

successfully applied to excitable metliand the “Domain
Decomposition and Priority Queue Integration Algorithm” Wherem; and m; are the first and last values ai in the
where an implicit integration method is interlaced with anPrevious iteration.
explicit scheme using an asynchronous control procetiure. ~ We now perform two integrations using the new value
The paper is organized as follows. Section Il presents &' and check the list of points previously rejected to deter-
detailed description of an asynchronous time step algorithrinine those that may now be accepted. Before this can be
defined on a regular lattice. Section |1l shows why this algo-done we must interpolate the solution values at the points
rithm is an efficient scheme for the simulation of uniform Which have been accepted previously to obtain estimates of
media in regionsA and B in Fig. 2, and in regiorD for w(r,t) at intermediate times corresponding to the smaller
inhomogeneous media where localized high diffusion dolime increments in order to evaluate the Laplacian term. We
mains exist. A discussion of our results and other schemes lse a second order polynomial interpolation in time and de-
presented in Sec. IV while the Appendices give some techtermine the expansion coefficients for each of the accepted

nical details to supplement the material in the text. points. The error estimation procedure yields the values of
w(r,t) for at least three timeg t+AT/2 andt+AT. The
II. ASYNCHRONOUS SCHEME EOR expansion coefficients are defined by
INHOMOGENEOUS MEDIA 2
The asynchronous algorithm is motivated by two fea- Wk(r,t)ZiZO ay(nt'. 6)

tures of inhomogeneous excitable media) accurate inte-
gration requires different time steps in different spatial re-In this version of the algorithm, we fix the order of the in-
gions and(2) the selection of the most appropriate time stepterpolation scheme, taking advantage of the error estimation
must be accompanied by error control of the solution. Toprocedure. We may introduce a variable order interpolation
integrate Eq(1) fromt=0 tot=T, we partition the macro- scheme corresponding to the order of the integration scheme;
scopic timeT (for instance the system size divided by the however, its implementation is more difficult it makes added
front speedinto small time stepAT determined by numeri- demands on the time and memaory requirements of the algo-
cal instability constraints. Space is discretized into regions ofithm.
length 6x defining a set of spatial grid points. The evaluation of the Laplacian term would be prohibi-
The first step in the algorithm is the classification of tively time consuming if it were necessary to check that each
spatial points according to the time step needed to obtain aof the points in the neighborhood of the given point had been
accurate solution. We define a parametgy which deter- accepted or rejected. To overcome this difficulty and avoid
mines the acceptable err@r an estimate of jtover the time  all loops over accepted points, we have used the following
stepAT. The errore, IS estimated using the difference first order finite difference expression for the Laplacian term:
between two numerical solutions. The first solutioR is

obtained using a numerical scheme of ordgr with a fixed FPwi(x,1) _ i _ & ,

time stepst. For simplicity, 8t is taken to beAT divided by S 2Wk(X,t)+i:Eo (@i (x+ %)
an integerm. The second solutionv: is obtained withm

twice as large and a time step 8if/2. (An implementation of +ag(x— o))t

such error estimates for an Euler scheme is given in Appen- 1k '

dix A.) The solution at each spatial point is examined and is h the int lati ficient defined f ected
accepted if the absolute value of the difference between th@here the interpolation coetlicients are detined for rejecte

two solutions is smaller than the control paramedgy. If points by
the solution at a spatial point has an acceptable error then it g, (r)=w,(r,t),
need not be integrated with a smaller time step.

At this stage in the algorithm there are two categories of ~ auk(r)=0, (6)
spatial point: points accepted or rejected by the error crite-
rion. We must now recompute the solution at the rejected
spatial points using a larger valuemf saym’. The value of We then simply need to update the arrayg each time the
m’ is determined by extrapolation using a temporal schemey, fields change at a point which has not yet been accepted.

a(r)=0.
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We then setn=m’ and estimate a new value of’ and
repeat the procedure until there are no rejected points left.
Knowing the number of points which have been accepted
after the first iteration we can estimate the next initial value
of m, m;, to avoid iterations where too many points will be
rejected. We have obtained good results by varyimgso
that, on average, 85% of the points were accepted after the
first step, and fixingNg= 3.

A. Algorithmic description of integration scheme

It is useful to present the method in algorithmic form.
We introduce the following notation to simplify the presen-
tation: -

(it)

wP: Initial state at timet;

w': Final state at time, usingm steps

w22 Final state attime, using 2n steps

wY2  Intermediate state at tim@; +t,)/2 usingm steps

v, Constant 1+ 1/(2™—1)

vyt Constant —1/(2™—1)

m1: Constant 1/n,

Mo: Constant 1/(Ng—1)

The integration scheme requires that one control the er-
rors during the asynchronous evolution. The integration of
the system from time; to time t,, with AT=t.—t;, in-
volves the following steps:

(i) First, we perform the initial synchronous step over all
spatial points to determine the solutions at the three
time steps needed to estimate the errors and compute
the interpolation coefficients. Symbolically we may
write

1 Calculation ofw*
m=m
St=(t—t)/m
to=t,
wt=wP
LOOPmMtimes
wl—Evolution all (wh,t,,, 8t,n,) (iii)
t=t,+ ot
2 Calculation ofw"?andw?/?
w22=wP
tm=t;
ot=6t/2
LOOPmMtimes
w?2— Evolution all (W?2 t,,, 5t,n,)
t=t+ Ot
W= 22
LOOPmMtimes
w?2—Evolution all (W2 t,,, 6t,n,)

Reaction—diffusion equations 815

t=tm+ ot
GO TO Il

Here “Evolution all” refers to the synchronous evo-
lution of all points in the system.

The quantitym; must be chosen so that numerical
instability leads to an inaccurate, but not out-of-
bound, value of the solution. An out-of-bound value
will degrade the performance of the algorithm since it
involves the calculation of arithmetic exceptions
which are time consuming. Note, however, that this
does not lead to a termination of the algorithm since
the points where this occurs will be rejected.

The second element is the asynchronous evolution of
the system involving points that were rejected in the
error control procedure. Below “Evolution rejected”
refers to such evolution.

1 Asynchronous calculation oft
St=(t.—t;)/m
t=t;
wt=wP forrejected points
LOOP mtimes
w'—Evolution rejected w!, & ,t,, 8t,n;)
t=t,+ ot
ap=Ww! for rejected points
2 Calculation ofw*? andw??
w??=wP for rejected points
ap=w! for rejected points
t=t;
ot=6t/2
LOOP mtimes
w?2— Evolution rejected w?? a; ,t,, 8t,n;)
to=tm+ Ot
a,=w?'? for rejected points
w2=w?'2 for rejected points
LOOP m times
w?%— Evolution rejected w22, ,t,,, 6t,n;)
to=t,+ ot
a,=w?'? for rejected points
This component of the algorithm specifies how the
error calculation is to be carried out and how the list

of rejected points is updated.
LOOP over active points

error=|w?2—w!|
IF error<ey,

W= 1y 224 vyt

a,< Interpolation(w®, w2 w')
ELSE

ag=w°

r added to the list of rejected point
IF error <epay

Emax— €rror
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The error introduced by the interpolation procedure is 15 |
of orderAT3. The error introduced by the approxima-
tion of w at different times is approximatelg,, by
construction. Since the points which have been first 5r
accepted will act like a boundary condition and can
propagate the error to the rejected poifleading to
convergence to the wrong solution defined by the ap-
proximate boundary condition one may specify a
smaller error, at least for the first step where most of
the points will be accepted. In practice this feature
does not change the performance of the algorithm sig-
nificantly (see Sec. Il
(iv) The error control algorithm is very sensitive to the }
fast variations of the solution whem is odd for a 80 - }
multitime step algorithm, and always for a single time 40t }
|
|
|

Integrated difference

step algorithm(which reduces to the case=1), so
for the best detection and control of the numerical
instability we should choosen odd. This can be 09 o4 " 06 o' y
achieved easily using integer division by=2(m/2) 5t/(0.58x°)

+1. We may takem,=m;*=2 to preserve the odd _ _
FIG. 3. Integrated difference between the numerical and exact shape of the

Ch,araCter om . . front in the continuous time limifobtained from very accurate solutions at
(v)  This component of the algorithm describes how theiyeq grid sizé versus normalized time stept(0.56x2=1 is the instability

parameters are updated. limit in the continuous limit. From top to bottomsx=1, 0.5, and 0.25. The
other parameters are the same as Fig. 1.

cvosepessesassresesssime

IF number of rejected pointg0

m =1+ m((':'max/etol)M1 . . .
The maximum value ofst for which data is shown

mp=1+7Rm roughly corresponds to the stability liméitg, of the pulse
M= maxmy,m) solution for each grid size. Physically acceptable solutions
m=m+1, if mis even which do not exhibit significant morphological differences
GO TO I from the continuous time limit solutions exist fét values
ELSE to the left of the dashed lines. The appearance of unphysical
R=1+(m;/m)*2 pulse solutions with high-frequency spatial oscillations, sig-
depending on the number of rejected naled by rapid increases in the error functions, are found for
points after the first synchronous loop ot values to the right of the dashed lines. These unphysical
m;=m;+2 or is unchanged solutions are stable from a dynamical systems point of view

since all of the Lyapunov exponents are less than or equal to
Finally, we note that some optimization of the procedurezero®° Thus, it may be dangerous to carry out simulations
can be achieved by retaining in memory the first time derivaclose to the numerical stability limit unless errors are con-
tive att; since it will be called more than once for rejected trolled.
points. We must also insure that our finite grid numerical solu-
tions can be taken to the continuous time limit in a consistent
way. A natural and coherent way to converge to the continu-
. RESULTS ous limit is to decrease the spatial grid size while adjusting
the time step to satisfy the stability criteria. For an order

In this section we compare the efficiency of the asyn-

chronous algorithm with a synchronous scheme for both ho’ggmporal scheme and an orderspatial scheme id dimen-

mogeneous and inhomogeneous media in one and two dfions we show in Appendix B that the time step must satisfy,

mensions. In making such comparisons one must insure for B ng+1

the given discretization that not only are the solutions stable = A nd

but that they are free from unphysical high-frequency spatial

and temporal oscillations. whereA and B characterize the spatial and temporal errors.
A measure of the deviation from the physical branch of Unless otherwise specified, the one-step temporal evolu-

solutions is the integrated difference between the numericdion will be carried out using Eq2).

pulse solution for a given spatial grid and the result for a

high-order temporal integration for the same spatial grid, ) _ .

with any translation error eliminated by suitable displace-A' One-dimensional homogeneous media

ment of the solutions. Figure 3 shows the integrated error The full stability diagram of the pulse solution of the

function for three different grid sizes varying the time step. FHN model for the parameters in Fig. 1 is given in Fig. 4.

SxNstl= poxX"s*t 1 7
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TABLE I. Relative CPU times for different algorithms for the pulse solution

in the homogeneous case. From top to bottom: synchronous Euler scheme
with fixed time step, synchronous Euler scheme with variable time step
controlled byey,, and the asynchronous variable time step Euler scheme
controlled bye, andeﬂj’lSt for the first synchronous step. The velocity in the
continuoustime limit is ~2.540 and the relative error is determined with
respect to this value. The local parameters are the same as in F&y. 1;
=1 and the system size= 200.

Update Time step At eo et CPUE Vel  Error

L
sync fixed 0.05 --- 1.00 2.318 8.8%
sync var 0.05 0.05 - 3.15 2529 0.5%
async var 050 0.05 0.01 1.05 2495 15%
107
formed 16 iterations providing a reference time unit for fur-
o7 0 ] ther comparisons. For the synchronous variable time step

Sx Euler scheme, we chose the parametgrsuch that the av-
FIG. 4. Numerical stabilit Wsis of the Euler sch bined with ST 29€ time step is the same as the fixed time step algorithm,
. 4. Numerical stability analysis of the Euler scheme combined with. _ _ . .
first-order finite differences. The parameters are the same as Fig. 1. Thlee" At=0.05 ande,=0.05. The CPU time r_‘eede‘?' IS 3‘_15
solid line is the result of the analysis of the linearized equation for thelimes longer than for the Euler scheme with a fixed time
uniform system in the rest state. This curve exhibits the expected behavior istep, which mainly arises from the need to perform three

the C|°”““U°U5/|”m“jt=g-5&2 (Upger dashed ”?\ea”d ir? ”(‘je large gridb iterations instead of one and the additional computations
size limit st<2/|\had. The intermediate region shows the discrepancy be- : :

tween the pure diffusive limit and the full problem including the Jacobian needed to carry out the error estimation.
term. The circles correspond to the time step which leads to out-of-bound

values in the simulation starting from steady state. This time step value is

usually somewhat larger than that predicted by the linear stability analysis

since the perturbation can saturate in the nonlinear stage of the evolution  gimulation results: Coarse resolution
leading to unphysical solutions. The squares correspond to the stability limit

defined as the first time step leading to out-of-bound values starting from the The asynchronous algorithm was implemented with a
pulse solution. There is a significant difference between this curve and the

result of the analysis of the rest state. There are no point&for2 because Pre_c's'on Ofem': 0.05 over the tlme step fl).(ed at t_he Stablllty
the pulse solution cannot be sustained for such large valuexoffhe  limit At=0.5. Even though the time step is ten times larger,
triangles define the physical branch of the pulse solution. The lower dashese do not demand a larger error since 0.05 is the maximum
line is obtained fromst=2B/A 6x*=0.16x". error allowed to constrain the numerical instabilityAs
noted earlier, the constraint on the allowed error after the
first synchronous step can be larger, and we chc&{:‘ﬁé
The circles correspond to the stability limit for the =0.01) The CPU time, normalized by its value for the fixed
steady-state solution; i.e., the time step for a given grid sizéme step synchronous Euler schend€PU/B), is 1.05 for
which leads to out-of-bound values of the variables startinghis simulation. In this regime the algorithm is about three
from the steady state. The squares denote the stability limtimes faster than the synchronous version of the variable
for the pulse solution. These pulse values lie below thdime step algorithm and takes about the same time as the
asymptotic stability limit of the steady state and the twosimple fixed time step Euler scheme. We have checked that
results differ widely in regiorB in Fig. 2. For such pulse the solution does not have high-frequency unphysical oscil-
solutions one may expect that a domain decomposition algdations. The velocities of the pulse solution are summarized
rithm will utilize a larger time step for regions that lie in the in Table I. These results show that a better solution can be
rest state and will decrease the time step in the excited part abtained for the same computational cost.
the pulse solution. The triangles in Fig. 4 define the physical The efficiency of the algorithm will depend on factors
branch of the pulse solution. Provided the cuite=p 6x? such as the fractions of the system in the rest state and the
lies below the physical branch, an explicit Euler scheme willexcited states, the stiffness of the solution and the grid size.
not exhibit stability problems. For instance, increasing the system size from 200 to 800, the
For the parameters in Fig. 1, namel=0.5, 8=0.75, ratio CPU/E is 0.64 instead of 1.05. The maximum speed up
€=0.15, D,=1 and D,=0, we may compare the Euler one may obtain is controlled by the ratio between the stabil-
scheme with a fixed time step, the synchronous Euler schemnity limit of the rest state and the pulse solution, divided by a
with a variable time step using the error control procedurefactor of ~3 arising from the error control algorithm. For
and the asynchronous algorithm. The system size is 20QGhis particular case the asymptotic ratio is about 1/3. This
Since this case probes the transition between regloaad  ratio does not vary significantly witle since both stability
B in Fig. 2 we fixedéx=1 and 6t=0.05 which lies below limits are roughly proportional te.
the destabilization limit of the physical bran¢k0.09 and A similar analysis must be carried out for each system of
below 6t=0.16 obtained using=0.16 which will yield the interest and an implicit scheme may have to be used if the
most efficient simulationcf. Appendix B. We have per- asymptotic ratio is about one.
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TABLE II. CPU time and front speed using different algorithms for the 1D
pulse solution for the same parameters as in Fig. 1&ne0.5. The system 0.3
size is 100 space units and less than 40% of the system is in the rest state.
The ratio 6t/ 5= 1/25 for the upper part of this table. The velocity in the

continuous time limit is 2.7368. 2 g0
& o
Scheme At €l efirst CPU/E CPU/S Vel
Euler 0.005 1 0.32 2.7095 0.3 -
Sync 0.125 6 10° 3.10 1 2.73664 . .
Async 0125 610° 610° 0.38 0.12 2.7334 10
107°
2. Simulation results: Continuous limit 5
107°
<=2

Cases wherp<1 can be simulated efficiently using the
asynchronous scheme since the error function associated 4=
with the pulse solution is sharply peaked in the vicinity of i
the pulse. Table 1l shows a comparison of the CPU times of o™ ' ‘ '

. . 80 90 100 110 120
the asynchronous and fixed time step Euler schemes for the X
FHN model with &/&Sta: 1/25, mimiCking cases where FIG. 6. First unstable eigenmode in the continuous limit for the system with

_ . . . . 6. Firstu i i inuous limi Y. wi

p—1/50. The asynChrqnous SCheme_ IS e|ght times faster tha‘,p spatially dependent diffusion coefficient. Parameters &xe: 0.5, &t
the synchronous version and three times faster than the Eulefp ssx2/p ..
scheme. For this excitable medium model we could not find
an example with very smap, but smallp values are com-

mon in simulations of oscillatory media with a high-temporal stability one must diagonalize the linear stability matrix, ex-
frequency and a small wave length. cluding the Jacobian term in the continuous lifdiFor 8x

=0.5, the instability threshold is such thatdt26x?
=1/Dnhax The first unstable eigenmode shown in Fig. 6 is
localized, as are all the unstable eigenmodes fd@ 14

Next consider an inhomogeneous medium where the dif<2 6t/ 5x><1/D ,,. For 26t/5x?>>1, the first delocalized
fusion coefficient varies in space. We assume the diffusiomodes appeafsee Fig. 7. There is one order of magnitude
coefficientD ,= 0 while the spatial variation i, reflects a  (roughly the ratio between the maximum and minimum val-
localized inhomogeneity centered af, D,=D(x)=1 ues of the diffusion coefficientbetween the time steps at
+9 exp((X—x%g)%200) (cf. top panel of Fig. b which localized and delocalized modes appear.

In an inhomogeneous system with spatially dependent Consequently, a time step which yields a stable solution
diffusion coefficient the evolution of a localized perturbation will lead to inefficient simulation in those parts of the system
depends on the spatial location. As usual, to investigate th@&hich do not control the instability. The use of a variable

B. One-dimensional inhomogeneous media

Sw
o
o

.
0 50 100

X
FIG. 5. Diffusion coefficientupper curv@ and pulse solution at three dif- 0 50 100 150 200
ferent timeglower curve$ versus position for the FHN model. In the central X

spatial region the diffusion coefficient is ten times larger than elsewhere.
One can clearly observe the variation of the action potential duration andFIG. 7. Lowest unstable delocalized eigenmodes. Parameters dare:
refractory period as the pulse passes through the high-diffusion region. =0.5, 5t=0.5056x2.
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0.003 . . TABLE lll. Relative CPU times using the same algorithm as in Table | for
the rest state in the inhomogeneous case. The systerhsi280. The local
parameters are the same as in Figdt=0.3 and the nature of the inho-

0.002 mogeneous diffusion coefficient is described in the text.
Update Time step At €l efirst CPU/E
0:001 sync fixed 0.0045 e e 1.00
sync var 0.0045 2 10 3.40
async var 0.0450 2 16 210 1.03

0.000 Bsibimbuiliodshiiilibiialiy.

error

—0.001

(the high diffusion region occupies about 20% of the system
length, the asynchronous scheme required as much CPU

-0.002 1 . . . .
time as the fixed time step scheme but provides error control
and, locally, is a second order scheme. Again the efficiency
-0.003 : : w increases for larger systerfise., for systems where the high
0 50 100 150 200

X diffusion region is a smaller fraction of the total system size
and varies linearly with the ratiD /D nin- The efficiency
FIG. 8. Twenw different realizations of the error f_uncti(]ﬂifference be- can be increased further by varying these parameters.
tween uniform rest state and the numerical solytissing the asynchronous .
algorithm with At=0.045, e =2 102 ande™=2 10-%. The upper and Next, we consider the pe_rformance of the agynchronous
lower solid lines mark the maximum and minimum values obtained for eack®lgorithm for the pulse solution. Results for various system
lattice node. sizes are given in Table IV. Comparisons are made between
the Euler scheme witldt=0.003 and the synchronous error
control algorithm with the samAt ande,, parameters. For
grid size, i.e., varying the grid sizeSx such that the Euler scheme we did not use a time step of
ox(x)/D(x)~Cst, is a possible solution to this problem. 0.165x?/D,,, since this will provide efficient simulation in
This is probably the most efficient solution in one-dimensionthe high diffusion region and very accurate temporal integra-
(1D), and such a scheme was employed in a study of vortexon in the small-diffusion bulk of the system where the time
filaments in order to deal with a numerical instability that step for efficient simulation, 0.18¢*/D,;,, is about ten time
arises in this problent: Such a scheme requires a specific|arger. We simply chosét=0.003 close to the stability limit
grid for each spatial distribution of the diffusion coefficient 0.0045 for 5x=0.3. The parametee,, was fixed as dis-
values which, in turn, requires extensive data manipulatiotyssed previously.
making it difficult to implement the method efficiently in The results show that even for small system sizes (
higher dimensions. However, the localization of the first un-=512x 0.3~ 160 where the high-diffusion domain occupies
stable modes suggests that an efficient simulation may bgsy, of the system lengthhe asynchronous algorithm easily
carried out using domain decomposition. compensates for the overhead incurred by the error control
procedure and is faster than the Euler scheme. The ratio
CPUJ/E varies roughly as 031160N and confirms that the
We first analyze the efficiency of the algorithm for the maximum theoretical acceleration factor is given by
integration of the inhomogeneous FHN system in the resb, . /D,. We have also performed an analysis of the ve-
state. Figure 8 shows twenty instantaneous values of the elacity. As in the homogeneous case the asynchronous
ror function obtained using the asynchronous algorithm withscheme is more accurate than the Euler scheme.
6x=0.3, At=0.045, e,=2 10 ° and e"™'=2 104 for the We next consider more realistic and demanding simula-
same parameters as in Fig. 1. tions of two-dimensional homogeneous and inhomogeneous
The reference value @, was fixed so that the average media.
time step of the synchronous error control algorithm is just
below the stability limit, i.e..eq=2 10 % for At=0.0045.
The time step for the appearance of the first delocalized
mode is ten times Iarger, and one demands an error Smallnous scheme applied to the pulse solution propagating through the inhomo-
than 2 10°° overAt=0.045. The error parameter for the first geneous mediurtsee text The comparison Euler scheme used a fixed time
synchronous step was ten times smaller. This figure showgep of=3 10 2. The synchronous variable time step algorithm used the
that the error control procedure constrains the error in theame time step\t, the same error control parametgy, and the same
region of the system where the diffusion coefficient is large System size. The local parameters are the same as in Fig. 1owitl0.3.
One may also check that the time step is, on average, fifteen

1. Simulation results

BLE IV. Relative CPU times varying the system size for the asynchro-

: . . : . , At €l elist CPU/E CPU/S
times smaller in this region than in the region where the
. . .. . . 3 4
diffusion coefficient is low. Using these parameters, about 512 0.03 110 1100 0.93 0.41
0 ; g ; 666 0.03 110° 1104 0.88 0.34
75% of the sites are accepted after the first iteration. 3 4
. . . 1024 0.03 110 1100 0.66 0.26
Table Ill shows results similar to those obtained previ- 594g 0.03 1103 1104 0.52 0.17

ously for the homogeneous system. For small system sizes
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FIG. 9. Theu (left) andv (right) fields of the spiral solution for the same

parameters as in Fig. 1 witbix=0.5 and lattice size is 256256. A linear
gray scale is used from the minimum to the maximum of each field.

FIG. 10. Spiral solution in an inhomogeneous medium. The local reaction
parameters are the same as in Fig. 1 vilth=0. TheD,, field (left pane)
contains three longitudinal structures converging in the center of the lattice,
As an example of the simulation of wave propagation informing a Y-shape whereD,~10. The background is such thd,
two-dimensional media we examine spiral wave d namicse[0.75,1.23. Theu andv fields are shown in the center and right panels.
. ) P . Yy . 5x=0.5 and the lattice size is 25612 (the aspect ratio of the picture is
Figure 9 shows both theandv fields of a spiral wave using preserves
the same parameters as in Fig. 1.
There is almost no site in the rest state and one cannot
expect faster simulation times because of the differences afomly through most of the medium with values ranging be-
the stability properties of the rest and the excited states, or &wveen 0.75 and 1.25 and, in addition, there is a localized high

least not as large an acceleration factor as for the 1D case itiffusion domain(taken to have the form of the letter)Y

C. Two-dimensional homogeneous media

the large system limit. where the maximum value @, is 10. Figure 1Qleft pane)
For x=0.5 we fix 5t=0.085x?=0.02[extrapolating to  shows theD, diffusion field using a nonlinear gray scale.
two-dimensional(2D) the formulas for efficient simulation This example was chosen as a caricature of a piece of

using the same set of local paramejeviich is about 1/3 of cardiac tissue where the inhomogeneity arises from the dif-
the stability limit in the continuous limitst<0.256x>  ferent conduction characteristics of cardiac cells in the tissue
=0.0625. In practice, for this value of the grid size, theand the high-diffusion regions mimic specialized conduction
maximum time step allowed is about 0.05. Setting, channels like Bachman's bundle in the atrium or Purkinje
~0.01, the synchronous error control algorithm leadsto  fibers in the ventricle$®
~0.02 on average and is about 3.3 times slower. The asyn- Figure 10 also shows an instantaneous view of a spiral
chronous version is 60% faster, but still slower than the Euwave in such an inhomogeneous medium. One can see the
ler scheme. Data are summarized in Table V. deformation induced by the high conduction Y-shaped chan-
The asynchronous scheme is only about twice as fast ael. Table VI summarizes the simulation time results and
the synchronous version of the algorithm. These results denshows that the asynchronous algorithm is twice as fast as the
onstrate the influence of the solution properties on the effiEuler scheme and about six times faster than the synchro-
ciency of the algorithm. This is the situation when the ex-nous version of the algorithm. As in the 1D case, the maxi-
plicit nature of the numerical scheme and its stabilitymum value of the acceleration factor is controlled mainly by
constraints prevent efficient simulation. Of course, for systhe ratio between the largest diffusion value and the average
tems where the rati®/A is much smaller than IV, the value.
stability limit is not a determining factor and the maximum
acceleration is then dominated by the spatial variations in they. DISCUSSION

error function, should such variations exist. . ) . o )
In the preceding sections we introduced criteria which

allow one to distinguish regimes where use of the asynchro-

nous scheme is appropriate for both homogeneous and inho-
As an example of a more complex inhomogeneous me-
dium we suppose that the diffusion coefficient varies ran-
TABLE VI. Relative CPU times of different algorithms for the spiral solu-
tion using the same parameters as in Fig. 1 witl+ 0.5 for an inhomoge-
TABLE V. Relative CPU times of different algorithms for the spiral solu- neous medium: maximum value Bf,~10; 80% of the sites are such that
tion in a homogeneous medium using the same parameters as in Fig. 1 wifb, [0.75,1.25, andD,= 0 for all sites(see text for detajl The lattice size

D. Two-dimensional inhomogeneous media

ox=0.5. The lattice size is 256256 with no-flux boundary conditions. is 256x 512 with no-flux boundary conditions.

Scheme At €l efrst CPU/E CPU/S Scheme At €l efirst CPUIE CPU/S
Euler 0.02 1 0.30 Euler 0.002 : 1 0.32
Sync 0.02 0.01 3.27 1 Sync 0.020 510* 3.15 1
Async 0.08 0.04 0.01 1.42 0.43 Async 0.020 5 10* 510 0.52 0.16
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mogeneous media. For example, the ratio between the time A limitation of the algorithm we have presented is the

step for efficient simulation and the stability threshold, utilization of the synchronous error control procedure which
introduces an overhead factor of 3 in the simulation with
Ry= Otest —9 B respect to the fixed time step Euler scheme. Alternative ver-
SMeia A’ sions of error control exist; for example, estimates based on

) . the local spatial or temporal gradient or the fourth-order spa-
determines when the conditionally stable character of the X5 gerivative or the second order temporal derivatisiece

plicit Euler scheme is a handicap. We have shown in Appengyey appear in the error functiprive have performed simu-
dix B how one may estimaté and B from computational |44ions using the first order temporal partial derivative for the

data or approximately using the typical physical scales of the, o estimate. The codes execute roughly twice as fast as the

problem. _ _ _ __asynchronous multistep algorithm.
If R,>1 the time step is constrained by the stability

limit and efficient simulations are not possible with explicit 5 previous work
schemes. In this circumstance fully implicit or semi-implicit

schemes can be used, but one must re-determing #mel B The literature on numerical schemes is large and it is
coefficients which are scheme dependargually A and B difficult to make comparisons between algorithms because of
are larger for implicit schemes the various criteria used to determine their efficiency. Below

If R;<1 the simulation lies within the stability limit. We comment on several schemes designed for the simulation

The key factor to consider is the large fluctuations in theOf excitable media in order to put our asynchronous algo-
error function in different spatial domains. One may use'ithm into perspective.
larger time steps and/or grid sizes where the solution isl. Adaptive mesh size refinement algorithm

smooth. For excitable media the magnitude of this effect The Adaptive Mesh size Refinement Algorithm has been
depends on the fractioR, of the medium in the rest state. applied recently to wave propagation in cardiac models in

If R,~1 in homogeneous media, the problem is more,ne anq two dimensions by Chereyal? This algorithm is a

complex because varying the time step without varying the, , iqrid size/time step algorithm where three different reso-
grid size leads to a delocalized numerical instability. In thelutions are fixed at the start of the simulatifthree pairs of
continuous limit it is not possible to constrain the numerical(gx St)]. Using error estimation, the algorithm dynamically

. e . . . . 2 1 " 1

instability without varying the grid size &=dx"). For a  fi aq the resolution which must be used. Their results show
coarse resolutlomlar_ge grid size the stability Ilmlt is con- pow the algorithm is able to use the coarse and medium
trolled by the reaction term and the fastest time scale. Fofesolutions in the smoothest parts of the system. Reconnec-

excitable media this usually corresponds to the up-stroke Gf, peween the different resolutions is carried out using
the wave(associated with the transition from rest to eXCItedinterpolation of the missing time values

states. If the rest state occupies a large region of the system, They simulate a complex 2D regime where propagating

for example, as is the case in normal cardiac wave propagiyaye preak-up leads to a dynamical multispiral state. The
tion, one may perform faster simulations using the asynchrogoqation is eleven times faster than the Euler scheme at the
nous scheme. The relevant criterion is the ratio between thg, ot resolution. In the one-dimensional simulation, the front
stabl_llty threshold of the pulse solution and that for the Sys’speeds agree to within 0.1%. This result was obtained using
tem in the rest state a very small time step§t=0.003 m$ relative to the grid
size (6x=0.0125 cm. The typical diffusion coefficient of
the heart excitable medium is about focn? ms™!. This

If this ratio is large the asynchronous scheme with fixed griddives dts= 6x*/(2D)=0.08 ms, i.e., 26 times the value
size will be efficient. The maximum theoretical accelerationused in their simulation. The use of very small time step
factor varies like 1/R,R3). If R3~1, one must use an im- avoids problems related to numerical instability, but has to
plicit scheme for the reaction term and/or the first step of arPe justified on the basis of a discussionpofA factor of 10
asynchronous scheme. In this case an explicit variable grigmaller in the time step than the pure diffusive theoretical
size algorithm will be less useful since it does not lead to adimit is frequently employed and is not specific to this paper
increase of the time step. (see Ref. 7 for instange

For inhomogeneous Systems we must introduce new pa- A linear variation of the time Step relative to the grld
rameters that characterize the localization of the unstablgize is recommended in Ref. 2. Since the error function var-
mode:R,= 6t38°9 5t'% | and the fraction of the system with ies like ox? and ét, the weight of the temporal error term

sta . .
high diffusion coefficientRs. The corresponding efficiency decreases with respect to the spatial error term as one goes

criterion is from the finest to the coarsest spatial resolution. From our
point of view, this constraint plays the same role as our pa-
St B rameterefr™ which must be chosen smaller thag, to limit

2Dmin - the systematic error propagation.

Rs= é\t;?;y Olsta-

deloc__ _
RiT= deloc

sta

The ideal case corresponds ®,>1, Rg<1 and R 2. Semi-implicit schemes
<1 and the asynchronous scheme will be efficient from fine  Fully implicit integration schemes are rarely used since
to coarse resolutions. they require minimization of a very large and nonlinear set
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of equations, potentially leading to convergence difficulties TABLE VII. CPU times and front speeds of different algorithms for the 1D
Semi-implicit schemes, also called mixed explicit—implicit pulse solution using the same parameters as in Fig. 1 ®%th0.5. The

schemes. are widelv used for simulation of stiff svstems o ystem size is 100 and less than 40% of the system is in the rest state. The
! wiaely u imuiat ISy atio 8t/ 55,= 1/100. RK2 refers to the second order fixed time step Runge—

equations. In such schemes only few terms in Bg.are  Kutta scheme. Sync.n refers to the synchronous multistep error control pro-

implicitly integrated. For the reaction ratt$,one may use cedure using a Runge—Kutta scheme of omdeThe third-order synchro-

immediate implicit integration when possible for a SpeCifiCnous scheme requires on average five steps to reach the expected accuracy
. I i

type of reaction term, or an iterative procedure which iS|nstead of 100 using first order scheme. The parameters'sre 0.1e,, for

. . . “the asynchronous scheme.
usually efficient for a few-variable system. The use of im-

plicit schemes for the gradient terms requires that one con-Scheme At €l CPUE  CPUIS Vel
§|der_ tec?mcal issues like matrix inversfoor multigrid Euler 0.00125 1 033 0.255%
Iterations. RK2 0.00125 1.97 0.65 0.004%
References 1 and 4 describe an algorithm where a semi- RK2 0.0125 0.20 0.07 0.018%
implicit scheme is used, allowing a large time step for coarse Sync.1 0.125 15 1?; 3.04 1 0.004%

resolution(RegionB in Fig. 2). This algorithm is very pow- Sync.3 0.125 15T 053 0.18 0.004
ful si ('t 9 9 I) 9 f orid si yfp the Syned 0.125 1.51C¢ 0.37 0.12 0.022%
erful since it covers a very large range of grid sizes, from the g\ '3 (155 1510 028 009 0.004%
partial differential equation continuous limit to the cellular  async 0.125 151072 0.19 0.07 0.033%

automaton limit(the local variables are reduced to few dis-
crete states The method is limited because it relies on a
specific form of the local reaction term used to carry out
efficient implicit integration. The low accuracy of the im- A direct comparison with their algorithm is difficult
plicit scheme is compensated by using a second-order ims'in

licit sch i th tion t is int ted licit ce they have not considered the continuous tene
plicit scheme, even the reaction term 1S integrated explicl yspace limit and model cardiac tissue by a discrete network of
by a first order Euler scheme.

. - . excitable cells connected by resistors. Time steps are esti-
In the continuous limit, schemes of this type are

dominated by the instability in the diffusion t Imolicit mated using the temporal derivative and a threshold corre-
dominated by the instability i the diftusion term. implici ponding to the maximum variation of the action potential
integration of the discretized diffusion term can be use

. : ) . o . hrough one iteration. They also include model specific cri-
to perform simulations in regiol. Quantitative compatri-

i tant bet the Eul h d teria related to some of the ion gate variables.
Sons at constant error between the Euler scneme and semi- -, o regime with complex dynamics they obtain an

implicit schemes ha\(e not yet been. carried out. Keener angcceleration factor of~4 with respect to a synchronous
Bogar shoyv that. using a ernk—NpoIspn scheme_to Intfa"lmplicit scheme. The overhead introduced by this scheme
grate the bidomain equations in cardiac tissue, the simulatio comparison to the simple Euler method is not discussed
is about 40 times faster than that using a simple Euler '

scheme. The error in the front velocity is about 2.5% relativeB. Higher-order schemes
to the Euler scheme with same grid size and a time step  Aq shown in Table Il, asynchronous schemes using an

close to the stability limit. They used an elegant and efficienty )icit first iterate are efficient for homogeneous systems in
form of the bidomain equation leading to a very fast algo-he continuous limit ifR;<1. In this case utilization of a

rithm that reduces the computational overhead by a factor Orﬁigher order scheme must be considered as a possible way to
2. Further analysis of the results is difficult since neither th‘?mprove significantly the numerical integration.

solution in the continuous time and/or space limit nor the
weight of the spatial discretization error teferiterion R ,)
are known.

Table VII summarizes the relative CPU times and rela-
tive errors in the front speed using the same parameters as in
Fig. 1 for a relatively small systemLE100) in order to
decrease the number of grid points in the rest state. The table
shows that higher-order temporal schemes perform very well

Although there are several differences, our algorithm bein terms of CPU time versus relative error in the front speed.
longs to the same class as that described by Qataai® Since the order of the temporal scheme is larger than the
(adaptive variable time step with fixed grid siz&ne of the  “coherence” value with respect to error function and the
main differences is the utilization of an implicit scheme for stability limit criteria for the explicit scheme, the time step is
the first synchronous step. They show that this choice can bguickly dominated by the stability limit, fixing the maximum
efficient for a system where the number of active sites is veracceleration factor to R, divided by the overhead induced
small. by the high-order scheme. For instance, the RK2 scheme

Their asynchronous evolution steps are different fromwith a time step ten times larger than that for the Euler
ours since they allow any time step values between 0A&nd scheme executes five times faster and provides more accurate
for the sub-iterations requiring the management of “a prior-results. Note that we assume in this case tRat1/100.
ity queue.” Their algorithm is more complex because it This implies that the error in the front speed arising from the
mixes two different schemes, an Euler scheme and apatial discretization is also about 0.25%. Synchronous
Cooley—Dodge scheme with a modified alternating-schemes also perform well when one reduces the accuracy
direction-implicit method. Also, the efficient implementation from 1.5102 to 1.510°2. Finally, our asynchronous
of an error control procedure with an implicit scheme re-scheme yields results equivalent to the best fixed time step
quires investigation. scheme, demonstrating its efficiency. One cannot easily ex-

3. Asynchronous mixed schemes
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tend the performance of higher-order schemes to cases whefae following relations amongva(x,t+ 8t), wg(X,t+ 6t)
R1~1 since a prefactor in the stability condition must beandw(x,t+ 6t) apply

taken into account. S
Ot d°wWu(X,t)

Wa(X,t+ 8t) =wg(X,t+ 8t) — — ————+O(t3),
C. Remarks A )= v )73 at? (o)
We have presented a simple asynchronous algorithm and 2 22w,(x,t)
discussed the dynamical regimes where it will yield efficient  w,(x,t+ 8t) =wc(x,t+ 6t) — e % +O(83).
ot

simulations. The efficiency was defined with respect to the

“maximum or theoretical acceleration factor,” taking into The difference betweewg andw is approximately the
account its variation with system parametgige, local stiff-  ¢3me as betweem, andwg, or w, andwc . One can impose

ness, stability ratio;, ...). _ - the condition that distance betweay andw. must never be
We have shown that the scheme will be efficient in threqarger than a predetermined amowgj. If the distance be-
different cases: tweenwg andwc is too large, then the solution is not ac-

(i)  For homogeneous media, with coarse resolutioncepted and the time step is decreased. Since the error func-

when the pulse solution is stiffer than rest state andion can be very inhomogeneous for extended systems, one
most of the system is in the rest state, may consider the maximum value of the difference over the

(i)  for homogeneous/inhomogeneous media in the cong"id POINts,emg,=max;|wg(r) —we(r)|.
tinuous limit whenR,<1 and the error function is Taking into account the first-order nature of the Euler
sharply peaked, scheme the new time steft’ is given by

(i) for inhomogeneous media in the continuous limit e
when localized inhomogeneities lead to localized un-  6t'=cét / o

stable eigenmodes. max
The prefactorc<1 (typically c~0.9) will suppress the con-

We have mainly limited our results to cases wh&¢  tributions of higher-order terms if they are not too large. If
~1 and, indeed, it is difficult to find other examples for €max is less thamtol, the solution is accepted but the time
excitable media. Should this be a general property of excitstep is increased using the same formula since it could be too
able media, this would constrain significantly the type ofsmall if e, <e,,. Finally, these two solutions can be used
efficient simulation one may perform for such systems. to obtain more accurate estimatesvgf(x,t+ 8t) = 2wa(x,t

The method described in this paper does not rely on the. St) —wig(x,t+ 8t) + O(8t3), by cancelingst? terms.
form of the local dynamiCS, is eaSily implemented for arbi- For a tempora| scheme of 0rde¥, the instantaneous

trary geometries and should prove useful for simulations of gnd cumulative first error terms, respectively, vary as
variety of problems such as wave propagation in cardiac tis-

(A1)

. . . . . ni+1 ng+1
sue which is an inhomogeneous medium with complex local S+l and AT&t”tﬁ
stiff dynamics and a complex geometry. otht+l gthtl’
ACKNOWLEDGMENT Then the estimate oft’ is
This work was supported in part by a grant from the = cot el | VY (A2)
Canadian Network of Centers of Excellence on Mathematics em '

of Information Technology and Complex Systenisll-

TACS). and the general linear combinationws§ andw is given by

Nt

2
APPENDIX A: VARIABLE TIME STEP ALGORITHM Wa(X,t+ 6t)= o1 We(X,t+ 6t)

1. Single time step

One may estimate the error in a simulation by perform- — ! Wg(X,t+ 8t)+ O(8t"+2),
ing two integrations with different time steps as follows: Let 2M—1

w, be the solution at. To obtain the solution at+ 6t one

may take one step using the Euler scheme with time 8tep 2. Multitime step control

or two steps using the time stefi/2. We letwg and wc,

. ) The previous solution will lead to an average time step
respectively, be these two estimates:

over which the error is bounded k. This average time
IWp step depends on the order of the scheme. It is then more

W (X, t+ 8 =Wa(X,1) + St —= (X, 1), useful to fix the maximum errdE,, over the time stepA T.

A simple way to do this is to impose a maximum error vary-

ot dwp ing like e, =E, St/AT over each time stept. Then Eq.
we(Xx,t+ &)_WA(X’t)+?_ﬁt (x,1) (A2) becomes
1/n
St W, ) (&oldEtol) '
- — A St'=cét A3
+ 5 S| Walx D+ = —= (x|, ATe . (A3)
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In this case a linear combination of solutions is made eaclsimple Euler scheme with a first-order finite difference ap-
time an iterationst is accepted. We may also form a linear proximation to the Laplacian. The cumulative eriousing
combination of solutions everkT assuming a linear accu- linear response has the form

mulation of the highest order error term.AfT is too large

this method will fail. In the algorithm we used, the error is EerAdt+B X%, (B1)
controlled only at+AT and one must fix the numbenof A natural way to converge to the continuous limit is to de-
time steps into whichAt will be split. The extrapolation of crease the grid size while adapting the time step to satisfy the
the new value ofn, m’, is done assuming linear accumula- stability criteria. One can see that fixidy= p x> both error

tion of the error terms as described above and for a temporaérms vary likesx? and the error will vanish as the grid size

scheme of orden; we have goes to zero. Herg is a constant which must be fixed so that
SR the solution always lies on the physical branch. This defines
m'=1+m o , a “coherent” convergence to the continuous limit.
tol

Generalizing the problem to higher dimensions, the com-
where the+1 term serves the same function as thpre-  putational cost using Euler scheme and first-order finite dif-
factor. ferences is proportional to

To insure that errors do not accumulate because of the der de2
possibly large number of asynchronous steps, we linfioed Coste1/(ox"dt) = 1A o™ “p). (B2)

average the number of refinement leveNs by placing a  sSupstituting the expression fait and ox as function ofp

limit on the value ofm’. Defining and the cost variable we find
1(Ng—1
:(ﬂ) (Ns—1) (A4) EOC(COS°72/d+2(Ap+ B)p7 2/d+2. (83)
m L
_ ' _ _ ~ Keeping the computational cost constant we can minimize
Wheremf is the first andn| the last value ofmin the previ- the error function as a function W‘g|v|ng p= ZB/Ad, and
ous iteration, we choose, thus
max 1ing 2B
m’'=min| 1+m ) ,1+Rm). (A5) _52 02
( ol ot Adb‘x . (B4)

The control of the accuracy of the solution is done only
in time. Therefore, the error tolerance must decrease as tr{ﬁ/e
continuous '”T"t {s_approach.ed. .A s:)mple way to acgomp"Shto the continuous limit is carried out without excessive accu-
this consists in fixing the grid sizéx” and choosinge, so racy in the space or time integrations
that the numerical solution is on the physical branch and the We can generalize the previous démonstration to a tem-
S|mu_lat|on is efficient, The_reto, .JUSt has_ to be decr_eased poral scheme of order, and a spatial discretization of order
relative to the order of spatial discretization schemei.e., n.: The cumulative error function should behave as

SX ng+1 s
_ a0
€0l = ew,( W)

In this development, we used only the coherence be-
en the temporal and spatial schemes, so that convergence

ExcAst"+Box"st1, (B5)
i i — Sthy ng+1 i
This procedure will not apply for larger values 6% since which in terms ofp= ot/ ox"s"= and CPU cost gives
the solution may not remain on the physical branch. The Ex(Ap+B)p~"2(Cosh~ 2,
guideline we adopt is tha, should not be larger than a few
percent of the typical value ofv since perturbations were
assumed to be small. ne+1 n(ng+1)

M hd+n+172"

where

nd+ng+1°
APPENDIX B: CONVERGENCE TO THE CONTINUOUS ) ) .
LIMIT Then the appropriate ratio between the time step and the

grid size is

The finite-resolution numerical solution must be suffi-
ciently close to the continuous space and time solution of the St Bngt+1
reaction diffusion equation for applications to physical prob- Sxst 1 A dn,
lems. The convergence to the continuous limit must be car-
ried out by taking into account both spatial and temporal  The stability limit provides a strong limitation on this
discretization. One would also like to determine the mostresult since, depending of the values Adfand B, we may
appropriate time step that is consistent with an accurate sdvave a very inefficient simulation with a time step that is
lution but with minimal computational cost. The following much smaller than necessary. One should notedhatries
procedure may be used to determine the most effective wags the inverse of the spatial dimension. This is consistent
to approach the continuum limit. with the variation of the stability limit for the continuous

The determination of the error terms arising from dis-limit with the inverse of the dimensiod. For the Euler
cretization are difficult to estimate in general since one rescheme and first-order finite difference form of the Laplacian
quires a knowledge of the complete solution. Consider first aperator, one hadt= §x?/(2d).
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3.0 . . . . the integral of the absolute value, or the average of the ratio
at each point where these functions are not zero, one obtains
the estimateB/A~0.12, which is in good agreement with
1 the previous estimate. The difference arises from the sensi-
tivity of the neutral mode to the two different kinds of per-
* % turbation.
g n | In the absence of such information one may obtain a
b " crude approximation tp from a knowledge of the physical
> . " characteristics of the excited wave. The up-stroke part of the
. " wave gives rise to the dominant contribution to the error
% " 05 function. In the case under consideration, the transition be-
°0. e tween the rest and excited states occurs over a typical length
% scale asAx~1 and the velocity of propagation ~2.8.
22 “ 1 From dimensional considerations one may estin@it& by
$..
%

2.8

24

" =002
AT BVAAXZ T

20 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

5 While crude, this estimate &/A, and thusp, is obtained at
8t/(0.58x") almost no cost.
FIG. 11. Velocity of the excited wave versus the time step divided by the As an exgmple cc_ms,der Wa_‘ve propaga_ltlon in the heart.
stability limit of the diffusion equation 0.5x2, for three different values of ~ 1he conduction velocity in cardiac muscle is about 0.5 m/s,
the grid size. The other parameters are the same as Fig. 1. the diffusion coefficient is of order 1d m%s, and the gap in
the membrane potential between the rest state and the excited
) ) o _state is about 0.1V. Using 100 V/s for the up-stroke velocity
As a result of these considerations it is important to findye find B/A~200. which must be compared to the equiva-
an appropriate value fgr that leads to the smallest error for |ant stapility limit ratio, i.e., ID~10*. This estimate indi-
the lowest computational cost. . cates that both error terms in E@®5) contribute to the ap-
We now illustrate the application of these ideas to theproximation to the continuous limit solution. This is
FHN model computations. Figure 11 gives results for theprobably a common property of an excited pulse, since both

velocity of the pulse fon;=1 andns=1 in one dimension gitfysion and reaction terms are significant in the up-stroke
as a function ofét for several values obx. We can inter- part of the pulse solution.

polate the velocity curves faix= 0.5 andéx= 0.25(the two

upper curvesfor values ofdt between 0 andx?/4. Assum-

ing a quadratic dependence &ix and linear dependence in 1D, Barkley, Physica DI9, 61 (1991

ot, we can estimate the ratiB/A=0.08. In this case the 2 Cherry, H. S. Greenside, and C. S. Henriquez, Phys. Rev.84tt.

appropriate value oft is 1343(2000.
3F. Fenton and A. Karma, Cha@s 20 (1998.
016 , “M. Dowle, R. M. Mantel, and D. Barkley, Int. J. Bif. Chad 2529
Ot= —g~ X (1997,

5J. P. Keener and K. Bogar, Cha8s234 (1998.
For the three different values @k used to construct Fig. 3, °W. Quan, S. Evans, and M. Hastings, IEEE Trans. Biomed. B59372

. - : ; - - (1998.
the numerical solution obtained with this time step lies on 7A. Xu and M. R. Guevara, Chad 157 (1998.

the phySical_ branch. _ _ ®See, W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
This estimate op requires a knowledge of the velocity = Numerical Recipe¢Cambridge University Press, Cambridge, 1996r a
of the pulse for four values aft and x (note that 1D results discussion and implementation of implicit and explicit schemes.

- . . . 9A. M. Stuart and A. R. Humphried)ynamical Systems and Numerical
can be used for calculations in higher dimensjoiisstead, Analysis(Cambridge University Press, Cambridge, 1996

one may prefer to use the one-step error expression whichirhe giscrete dynamical system we consider as an approximation of the
for an Euler scheme with first order finite differences, is continuous system is subject to a series of bifurcations which may even

given by lead to chaotic dynamics with positive Lyapunov exponents. These bifur-
cations are the precursors of the numerical instability which occurs for
St2 02Wk 5tDk5X2 (3’4Wk larger values oft.
ex(x,t,ot,6x)= > a2 + 12 g (B6) we confirmed numerically that the gradient term in Eq.which appears

because the diffusion coefficient is no longer constant does not signifi-

Knowing one “physically” acceptable solution, one can es- cantly change the properties we discuss in this section. For the sake of
' simplicity we shall neglect it and concentrate on the pure reaction-

timate the fourth order spatial derivative and the second or- gision form.
der temporal derivative using the equality for a propagating?G. Rousseau, H. Chatand R. Kapral, Phys. Rev. LeB0, 5671(1998;

wave, &zwk/&t2=V2 &zwklﬁxz, and then compare the two “Twisted vortex filaments in the three-dimensional complex Ginzburg—
. . Landau equation’(in preparation
4y 22 2 4 4
functions ) 9°wy /ot and (Dy/12) 9"w,/9x". Using a va-  13cqrgiac Electrophysiology: From Cell to Bedsidedited by D. P. Zipes

riety of criteria such as the ratio of the maxima, the ratio of and J. JalifqSaunders, Philadelphia, 1995

Downloaded 02 Nov 2001 to 142.150.225.29. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



