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Asynchronous algorithm for integration of reaction–diffusion equations
for inhomogeneous excitable media
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~Received 23 March 2000; accepted for publication 18 July 2000!

An asynchronous algorithm for the integration of reaction–diffusion equations for inhomogeneous
excitable media is described. Since many physical systems are inhomogeneous where either the
local kinetics or the diffusion or conduction properties vary significantly in space, integration
schemes must be able to account for wide variations in the temporal and spatial scales of the
solutions. The asynchronous algorithm utilizes a fixed spatial grid and automatically adjusts the time
step locally to achieve an efficient simulation where the errors in the solution are controlled. The
scheme does not depend on the specific form of the local kinetics and is easily applied to systems
with complex geometries. ©2000 American Institute of Physics.@S1054-1500~00!00304-9#
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Spatially distributed systems encountered in applications
to physical problems are often inhomogeneous, with ei-
ther the local dynamics or the diffusion or conduction
properties varying widely with spatial location. If one
considers the propagation of excitable chemical or elec
trochemical waves through such media one must in addi-
tion account for the rapid variations of the fields in the
vicinity of the wave fronts which lead to stiff systems of
differential equations. Wave propagation in cardiac tis-
sue typifies such behavior. The heart is a very inhomoge
neous excitable medium. It consists of a variety of differ-
ent types of tissue, muscle and fiber with anisotropic
conduction properties. Both the excitability and the dif-
fusion depend strongly on the spatial location. The geom-
etry of the medium is also complex with specialized con-
duction pathways and ‘‘obstacles’’ arising from
anatomical features. The asynchronous algorithm devel-
oped here to simulate partial differential equation models
for such media exploits the wide variations in system
properties. It automatically adjusts the time step in spa-
tial regions where the dynamics varies sharply and incor-
porates error control so that the solution satisfies prede-
termined accuracy criteria. The algorithm utilizes a fixed
spatial grid so can be adapted easily to complex geom
etries and is applicable to any type of local dynamics.

I. INTRODUCTION

The reaction diffusion equation

]w~r,t !

]t
5R1¹.~D~r!¹w!), ~1!

describes the dynamical behavior of chemical reactions
heterogeneous media; for example, reactions occurring
porous materials, surface catalysis and a variety of biolog
systems including electrochemical wave propagation in c
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diac tissue. In this equationw(r,t) is a vector local state
variables~chemical concentrations, electrical potential, i
concentrations, etc.! at space pointr at time t. The vector
function of reaction rates is denoted byR(w(r,t);p) and de-
pends on a set of parametersp. In the most general case
D(r) is a tensor whose elements specify the diffusion
conduction properties of the medium for each variable
each spatial point.

Two characteristics of such reaction diffusion equatio
make their simulation difficult: the local reaction kinetic
may have contributions with very different time scales lea
ing to stiff differential equations and sharp front solution
and the structure of the inhomogeneities may be comp
with widely varying diffusion coefficients and local dynam
ics at different spatial locations. For example, for excita
cardiac tissue, the fast time scale corresponds to the r
depolarization of the cellular membrane. The use of a sm
time step which is needed to resolve this behavior make
more difficult to study the long time behavior of the physic
processes of interest. Cardiac tissue is also highly inho
geneous with specialized high conduction channels w
markedly different properties. Various schemes have b
devised for the simulation of excitable media because
their importance for applications.1–6

Wave propagation in the excitable FitzHugh–Nagum
~FHN! system provides a convenient model to illustra
some of the essential issues. For the FHN system the
ments of R are Ru5(u2u3/32v)/e and Rv5e(u1b
2av). Figure 1 shows a propagating wave in one spa
dimension for a50.5, b50.75, and e50.15 with space-
independent diffusion coefficientsDu51 andDv50.

The fast variation of theu field at the front compared to
the slow variation of thev field is a characteristic of the
stiffness of this system determined by the parametere. This
solution was obtained using an Euler scheme with the low
order symmetric finite difference form for the Laplacian
© 2000 American Institute of Physics
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wk~x,t1dt !5wk~x,t !1dtRk~w;p!

1
dtDk

dx2
@wk~x1dx,t !

1wk~x2dx,t !22wk~x,t !#, ~2!

with periodic boundary conditions. Herek labels the differ-
ent chemical species or variables. This widely used sch
is easy to implement in any dimension, can accommod
many different boundary conditions, does not depend o
specific form for the reaction term, and can be modified
simulate other spatial derivative terms easily. However
has poor stability properties and may require very sm
space and time steps to obtain accurate solutions.

The time step in the explicit Euler scheme cannot
increased indefinitely and is constrained by the requirem
that the numerical solution be stable to small perturbatio
The temporal evolution of an infinitesimal perturbation
given by the linearization of Eq.~2! which involves both the
Jacobian matrix associated with the reaction term,Jkl

5]Rk /]wl , and the diffusion terms. Since the solution
interest may be time dependent, a full nonlinear analy
must be carried out, defining the Lyapunov exponents
associated modes.

In the continuous space limit,dx→0, the weight of the
Jacobian terms tends to zero relative to the diffusion term
we omit the reaction term and focus on the Laplacian te
the resulting linear equation yields the stability constra
dt,dx2/(2 maxk Dk). This approximation is not generall
applicable when a finite grid is employed. For example,
the very large grid size limit,dx→`, the stability condition
arises from the diagonalization of the matrix (I 2dtJ) where
I is the unit matrix. For the rest state of excitable media,
magnitudes of all eigenvaluesl l must be smaller than unity
and the stability condition isul l u,1,; l . Thus, the possible

FIG. 1. Propagating wave solution of the FHN model fora50.5, b
50.75, e50.15, Du51, andDv50 obtained using an Euler scheme and
finite difference approximation for the Laplacian term withdx50.25 and
dt50.25dx2, and periodic boundary conditions. Variableu ~solid line!; v
~dashed line!.
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time step values will tend to a constant value for large g
sizes. Figure 2 shows the stability limit of an explicit Eul
scheme using first-order finite differences for the FHN mo
rest state~black dots! and pulse solution~filled squares!.
Saturation of the allowed time step is seen in both cases
occurs at a somewhat smaller value ofdx for the pulse so-
lution. This is typical of excitable media where the faste
dynamics is associated with the transition from the rest s
to the excited state. In the continuous space and time li
the linear stability analysis for the uniform rest state and
pulse solution coincide.

The differences in the stability thresholds in the pu
diffusive limit and in intermediate resolution simulations a
not negligible. The ‘‘effective’’ stability threshold may de
crease more slowly thandx2, leading to the use of a linea
variation of the time step with the grid size in some applic
tions ~see, for instance, Ref. 2!. Such behavior can be ex
pected only far from the continuous space limit and, inde
suggests the use of a smaller grid size to obtain accu
results. However, simulations performed at coarse or m
dium resolution provide useful qualitative insight into th
different dynamical regimes that may exist. An algorith
that is able to incorporate a wide range of spatial resoluti
is of considerable interest since it will allow a rapid, com
plete study of the dynamics using a single code. This is
of the appealing properties of Barkley’s algorithm1 for excit-
able media.

FIG. 2. Upper panel: results of the numerical stability analysis of the u
form solution of the FHN model obtained using the Euler scheme combi
with a first order finite difference approximation to the Laplacian~black dots
and solid black line!. The parameters are the same as in Fig. 1. Lower pa
results of the stability analysis of the pulse solution~solid squares!. The
dashed line isdt50.16dx2. The labeled regions in this figure refer to th
applicability of schemes based on various combinations of implicit~I! and
explicit ~E! evaluations of the reaction and diffusion terms, respectivelyA:
~E,E! ~Ref. 7!, B: ~I,E! ~Ref. 1!, C: ~I,I! ~Ref. 3!, andD: ~E,I!.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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Algorithms may be classified according to whether th
involve implicit or explicit evaluation of either one or bot
of the reaction and diffusion terms.8 Although implicit nu-
merical schemes are more difficult to implement, they
used frequently because of their good stability propert
One may delimit regions of applicability in (dx,dt) space
for each type of algorithm~see Fig. 2!. Some algorithms use
synchronous updating of all nodes of a regular lattice, wh
others, including our scheme, use an irregular distribution
time steps and/or grid sizes. Other examples of such sche
include the ‘‘Adaptive Mesh Size Refinement Algorithm
which uses a variable grid size and time step and has b
successfully applied to excitable media2 and the ‘‘Domain
Decomposition and Priority Queue Integration Algorithm
where an implicit integration method is interlaced with
explicit scheme using an asynchronous control procedur6

The paper is organized as follows. Section II presen
detailed description of an asynchronous time step algori
defined on a regular lattice. Section III shows why this alg
rithm is an efficient scheme for the simulation of unifor
media in regionsA and B in Fig. 2, and in regionD for
inhomogeneous media where localized high diffusion
mains exist. A discussion of our results and other scheme
presented in Sec. IV while the Appendices give some te
nical details to supplement the material in the text.

II. ASYNCHRONOUS SCHEME FOR
INHOMOGENEOUS MEDIA

The asynchronous algorithm is motivated by two fe
tures of inhomogeneous excitable media:~1! accurate inte-
gration requires different time steps in different spatial
gions and~2! the selection of the most appropriate time st
must be accompanied by error control of the solution.
integrate Eq.~1! from t50 to t5T, we partition the macro-
scopic timeT ~for instance the system size divided by t
front speed! into small time stepsDT determined by numeri-
cal instability constraints. Space is discretized into region
lengthdx defining a set of spatial grid points.

The first step in the algorithm is the classification
spatial points according to the time step needed to obtain
accurate solution. We define a parameteretol which deter-
mines the acceptable error~or an estimate of it! over the time
step DT. The erroremax is estimated using the differenc
between two numerical solutions. The first solutionwA is
obtained using a numerical scheme of ordernt , with a fixed
time stepdt. For simplicity,dt is taken to beDT divided by
an integerm. The second solutionwC is obtained withm
twice as large and a time step ofdt/2. ~An implementation of
such error estimates for an Euler scheme is given in App
dix A.! The solution at each spatial point is examined and
accepted if the absolute value of the difference between
two solutions is smaller than the control parameteretol . If
the solution at a spatial point has an acceptable error the
need not be integrated with a smaller time step.

At this stage in the algorithm there are two categories
spatial point: points accepted or rejected by the error cr
rion. We must now recompute the solution at the rejec
spatial points using a larger value ofm, saym8. The value of
m8 is determined by extrapolation using a temporal sche
Downloaded 02 Nov 2001 to 142.150.225.29. Redistribution subject to AI
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of ordernt and the maximum erroremax. It cannot be smaller
thanm11 and larger than a value that insures that errors
not accumulate because of a large numberNs of asynchro-
nous steps. More specifically,m8 may be determined from
~see Appendix A!

m85minS 11mS emax

etol
D 1/nt

,11RmD , ~3!

with

R5S ml

mf
D 1/(Ns21)

, ~4!

where mf and ml are the first and last values ofm in the
previous iteration.

We now perform two integrations using the new val
m8 and check the list of points previously rejected to det
mine those that may now be accepted. Before this can
done we must interpolate the solution values at the po
which have been accepted previously to obtain estimate
w(r,t) at intermediate times corresponding to the sma
time increments in order to evaluate the Laplacian term.
use a second order polynomial interpolation in time and
termine the expansion coefficients for each of the accep
points. The error estimation procedure yields the values
w(r,t) for at least three timest, t1DT/2 and t1DT. The
expansion coefficients are defined by

wk~r,t !5(
i 50

2

aik~r!t i . ~5!

In this version of the algorithm, we fix the order of the in
terpolation scheme, taking advantage of the error estima
procedure. We may introduce a variable order interpolat
scheme corresponding to the order of the integration sche
however, its implementation is more difficult it makes add
demands on the time and memory requirements of the a
rithm.

The evaluation of the Laplacian term would be prohib
tively time consuming if it were necessary to check that ea
of the points in the neighborhood of the given point had be
accepted or rejected. To overcome this difficulty and av
all loops over accepted points, we have used the follow
first order finite difference expression for the Laplacian ter

]2wk~x,t !

]x2 5
1

dx2 S 22wk~x,t !1(
i 50

2

~aik~x1dx!

1aik~x2dx!!t i D ,

where the interpolation coefficients are defined for rejec
points by

a0k~r!5wk~r,t !,

a1k~r!50, ~6!

a2k~r!50.

We then simply need to update the arraysa0k each time the
wk fields change at a point which has not yet been accep
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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815Chaos, Vol. 10, No. 4, 2000 Reaction–diffusion equations
We then setm5m8 and estimate a new value ofm8 and
repeat the procedure until there are no rejected points
Knowing the number of points which have been accep
after the first iteration we can estimate the next initial va
of m, mi , to avoid iterations where too many points will b
rejected. We have obtained good results by varyingmi so
that, on average, 85% of the points were accepted after
first step, and fixingNs53.

A. Algorithmic description of integration scheme

It is useful to present the method in algorithmic form
We introduce the following notation to simplify the prese
tation:

w0: Initial state at timet i

w1: Final state at timete usingm steps

w2/2: Final state at timete using 2m steps

w1/2: Intermediate state at time~ t i1te!/2 usingm steps

n1 : Constant5111/~2nt21!

n2/2: Constant521/~2nt21!

m1 : Constant51/nt

m2 : Constant51/~Ns21!

The integration scheme requires that one control the
rors during the asynchronous evolution. The integration
the system from timet i to time te , with DT5te2t i , in-
volves the following steps:

~i! First, we perform the initial synchronous step over
spatial points to determine the solutions at the th
time steps needed to estimate the errors and com
the interpolation coefficients. Symbolically we ma
write

1 Calculation ofw1

m5mi

dt5~te2ti!/m

tm5ti
w15w0

LOOPm times

w1←Evolution all ~w1,tm ,dt,nt!

tm5tm1dt
2 Calculation ofw1/2andw2/2

w2/25w0

tm5t i

dt5dt/2

LOOPm times

w2/2←Evolution all ~w2/2,tm ,dt,nt!

tm5tm1dt

w1/25w2/2

LOOPm times

w2/2←Evolution all ~w2/2,tm ,dt,nt!
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tm5tm1dt
GO TO III

Here ‘‘Evolution all’’ refers to the synchronous evo
lution of all points in the system.

The quantitymi must be chosen so that numeric
instability leads to an inaccurate, but not out-o
bound, value of the solution. An out-of-bound valu
will degrade the performance of the algorithm since
involves the calculation of arithmetic exception
which are time consuming. Note, however, that th
does not lead to a termination of the algorithm sin
the points where this occurs will be rejected.

~ii ! The second element is the asynchronous evolution
the system involving points that were rejected in t
error control procedure. Below ‘‘Evolution rejected
refers to such evolution.

1 Asynchronous calculation ofw1

dt5~te2ti!/m

tm5ti
w15w0 for rejected points
LOOP m times

w1←Evolution rejected~w1,ai ,tm ,dt,nt!

tm5tm1dt

a05w1 for rejected points
2 Calculation ofw1/2 andw2/2

w2/25w0 for rejected points

a05w1 for rejected points

tm5t i

dt5dt/2
LOOP m times

w2/2←Evolution rejected~w2/2,ai ,tm ,dt,nt!

tm5tm1dt

a05w2/2 for rejected points

w1/25w2/2 for rejected points
LOOP m times

w2/2←Evolution rejected~w2/2,ai ,tm ,dt,nt!

tm5tm1dt

a05w2/2 for rejected points
~iii ! This component of the algorithm specifies how t

error calculation is to be carried out and how the l
of rejected points is updated.

LOOP over active pointsr
error5uw2/22w1u
IF error,etol

w15n2/2w
2/21n1w1

ai←Interpolation~w0,w1/2,w1!

ELSE

a05w0

r added to the list of rejected point
IF error ,emax

emax5error
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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The error introduced by the interpolation procedure
of orderDT3. The error introduced by the approxima
tion of w at different times is approximatelyetol by
construction. Since the points which have been fi
accepted will act like a boundary condition and c
propagate the error to the rejected points~leading to
convergence to the wrong solution defined by the
proximate boundary condition!, one may specify a
smaller error, at least for the first step where most
the points will be accepted. In practice this featu
does not change the performance of the algorithm
nificantly ~see Sec. III!.

~iv! The error control algorithm is very sensitive to th
fast variations of the solution whenm is odd for a
multitime step algorithm, and always for a single tim
step algorithm~which reduces to the casem51), so
for the best detection and control of the numeric
instability we should choosem odd. This can be
achieved easily using integer division bym52(m/2)
11. We may takemi5mi62 to preserve the odd
character ofm.

~v! This component of the algorithm describes how t
parameters are updated.

IF number of rejected pointsÞ0
m1511m~emax/etol!

m1

m2511Rm

m5max~m1,m2!

m5m11, if m is even
GO TO II

ELSE
R511~mi /m!m2

depending on the number of rejected
points after the first synchronous loop
mi5mi62 or is unchanged

Finally, we note that some optimization of the procedu
can be achieved by retaining in memory the first time deri
tive at t i since it will be called more than once for rejecte
points.

III. RESULTS

In this section we compare the efficiency of the asy
chronous algorithm with a synchronous scheme for both
mogeneous and inhomogeneous media in one and two
mensions. In making such comparisons one must insure
the given discretization that not only are the solutions sta
but that they are free from unphysical high-frequency spa
and temporal oscillations.

A measure of the deviation from the physical branch
solutions is the integrated difference between the numer
pulse solution for a given spatial grid and the result fo
high-order temporal integration for the same spatial g
with any translation error eliminated by suitable displac
ment of the solutions. Figure 3 shows the integrated e
function for three different grid sizes varying the time ste
Downloaded 02 Nov 2001 to 142.150.225.29. Redistribution subject to AI
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The maximum value ofdt for which data is shown
roughly corresponds to the stability limitdtsta of the pulse
solution for each grid size. Physically acceptable solutio
which do not exhibit significant morphological difference
from the continuous time limit solutions exist fordt values
to the left of the dashed lines. The appearance of unphys
pulse solutions with high-frequency spatial oscillations, s
naled by rapid increases in the error functions, are found
dt values to the right of the dashed lines. These unphys
solutions are stable from a dynamical systems point of v
since all of the Lyapunov exponents are less than or equa
zero.9,10 Thus, it may be dangerous to carry out simulatio
close to the numerical stability limit unless errors are co
trolled.

We must also insure that our finite grid numerical so
tions can be taken to the continuous time limit in a consist
way. A natural and coherent way to converge to the conti
ous limit is to decrease the spatial grid size while adjust
the time step to satisfy the stability criteria. For an ordernt

temporal scheme and an orderns spatial scheme ind dimen-
sions we show in Appendix B that the time step must satis

dtnt5
B

A

ns11

ntd
dxns11[rdxns11, ~7!

whereA andB characterize the spatial and temporal erro
Unless otherwise specified, the one-step temporal ev

tion will be carried out using Eq.~2!.

A. One-dimensional homogeneous media

The full stability diagram of the pulse solution of th
FHN model for the parameters in Fig. 1 is given in Fig. 4

FIG. 3. Integrated difference between the numerical and exact shape o
front in the continuous time limit~obtained from very accurate solutions a
fixed grid size! versus normalized time step (dt/0.5dx251 is the instability
limit in the continuous limit!. From top to bottomdx51, 0.5, and 0.25. The
other parameters are the same as Fig. 1.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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817Chaos, Vol. 10, No. 4, 2000 Reaction–diffusion equations
The circles correspond to the stability limit for th
steady-state solution; i.e., the time step for a given grid s
which leads to out-of-bound values of the variables start
from the steady state. The squares denote the stability l
for the pulse solution. These pulse values lie below
asymptotic stability limit of the steady state and the tw
results differ widely in regionB in Fig. 2. For such pulse
solutions one may expect that a domain decomposition a
rithm will utilize a larger time step for regions that lie in th
rest state and will decrease the time step in the excited pa
the pulse solution. The triangles in Fig. 4 define the phys
branch of the pulse solution. Provided the curvedt5r dx2

lies below the physical branch, an explicit Euler scheme w
not exhibit stability problems.

For the parameters in Fig. 1, namelya50.5, b50.75,
e50.15, Du51 and Dv50, we may compare the Eule
scheme with a fixed time step, the synchronous Euler sch
with a variable time step using the error control procedu
and the asynchronous algorithm. The system size is 2
Since this case probes the transition between regionsA and
B in Fig. 2 we fixeddx51 anddt50.05 which lies below
the destabilization limit of the physical branch~;0.09! and
below dt50.16 obtained usingr50.16 which will yield the
most efficient simulation~cf. Appendix B!. We have per-

FIG. 4. Numerical stability analysis of the Euler scheme combined w
first-order finite differences. The parameters are the same as Fig. 1.
solid line is the result of the analysis of the linearized equation for
uniform system in the rest state. This curve exhibits the expected behav
the continuous limitdt50.5dx2 ~upper dashed line! and in the large grid
size limit dt,2/ulmaxu. The intermediate region shows the discrepancy
tween the pure diffusive limit and the full problem including the Jacob
term. The circles correspond to the time step which leads to out-of-bo
values in the simulation starting from steady state. This time step valu
usually somewhat larger than that predicted by the linear stability ana
since the perturbation can saturate in the nonlinear stage of the evol
leading to unphysical solutions. The squares correspond to the stability
defined as the first time step leading to out-of-bound values starting from
pulse solution. There is a significant difference between this curve and
result of the analysis of the rest state. There are no points fordx.2 because
the pulse solution cannot be sustained for such large values ofdx. The
triangles define the physical branch of the pulse solution. The lower da
line is obtained fromdt52B/A dx250.16dx2.
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formed 105 iterations providing a reference time unit for fu
ther comparisons. For the synchronous variable time s
Euler scheme, we chose the parameteretol such that the av-
erage time step is the same as the fixed time step algori
i.e., Dt50.05 andetol50.05. The CPU time needed is 3.1
times longer than for the Euler scheme with a fixed tim
step, which mainly arises from the need to perform th
iterations instead of one and the additional computati
needed to carry out the error estimation.

1. Simulation results: Coarse resolution

The asynchronous algorithm was implemented with
precision ofetol50.05 over the time step fixed at the stabili
limit Dt50.5. Even though the time step is ten times larg
we do not demand a larger error since 0.05 is the maxim
error allowed to constrain the numerical instability.~As
noted earlier, the constraint on the allowed error after
first synchronous step can be larger, and we chooseetol

first

50.01.! The CPU time, normalized by its value for the fixe
time step synchronous Euler scheme,~CPU/E!, is 1.05 for
this simulation. In this regime the algorithm is about thr
times faster than the synchronous version of the varia
time step algorithm and takes about the same time as
simple fixed time step Euler scheme. We have checked
the solution does not have high-frequency unphysical os
lations. The velocities of the pulse solution are summariz
in Table I. These results show that a better solution can
obtained for the same computational cost.

The efficiency of the algorithm will depend on facto
such as the fractions of the system in the rest state and
excited states, the stiffness of the solution and the grid s
For instance, increasing the system size from 200 to 800,
ratio CPU/E is 0.64 instead of 1.05. The maximum speed
one may obtain is controlled by the ratio between the sta
ity limit of the rest state and the pulse solution, divided by
factor of ;3 arising from the error control algorithm. Fo
this particular case the asymptotic ratio is about 1/3. T
ratio does not vary significantly withe since both stability
limits are roughly proportional toe.

A similar analysis must be carried out for each system
interest and an implicit scheme may have to be used if
asymptotic ratio is about one.

he
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TABLE I. Relative CPU times for different algorithms for the pulse solutio
in the homogeneous case. From top to bottom: synchronous Euler sc
with fixed time step, synchronous Euler scheme with variable time s
controlled byetol , and the asynchronous variable time step Euler sche
controlled byetol andetol

first for the first synchronous step. The velocity in th
continuoustime limit is ;2.540 and the relative error is determined wi
respect to this value. The local parameters are the same as in Fig. 1dx
51 and the system sizeL5200.

Update Time step Dt etol etol
first CPU/E Vel Error

sync fixed 0.05 ¯ ¯ 1.00 2.318 8.8%
sync var 0.05 0.05 - 3.15 2.529 0.5%
async var 0.50 0.05 0.01 1.05 2.495 1.5%
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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2. Simulation results: Continuous limit

Cases wherer!1 can be simulated efficiently using th
asynchronous scheme since the error function assoc
with the pulse solution is sharply peaked in the vicinity
the pulse. Table II shows a comparison of the CPU times
the asynchronous and fixed time step Euler schemes fo
FHN model with dt/dtsta51/25, mimicking cases wher
r51/50. The asynchronous scheme is eight times faster
the synchronous version and three times faster than the E
scheme. For this excitable medium model we could not fi
an example with very smallr, but smallr values are com-
mon in simulations of oscillatory media with a high-tempo
frequency and a small wave length.

B. One-dimensional inhomogeneous media

Next consider an inhomogeneous medium where the
fusion coefficient varies in space. We assume the diffus
coefficientDv50 while the spatial variation inDu reflects a
localized inhomogeneity centered atx0 , Du5D(x)51
19 exp(2(x2x0)

2/200) ~cf. top panel of Fig. 5!.
In an inhomogeneous system with spatially depend

diffusion coefficient the evolution of a localized perturbati
depends on the spatial location. As usual, to investigate

TABLE II. CPU time and front speed using different algorithms for the 1
pulse solution for the same parameters as in Fig. 1 anddx50.5. The system
size is 100 space units and less than 40% of the system is in the rest
The ratiodt/dsta51/25 for the upper part of this table. The velocity in th
continuous time limit is 2.7368.

Scheme Dt etol etol
first CPU/E CPU/S Vel

Euler 0.005 ¯ ¯ 1 0.32 2.7095
Sync 0.125 6 1023

¯ 3.10 1 2.73664
Async 0.125 6 1023 6 1024 0.38 0.12 2.7334

FIG. 5. Diffusion coefficient~upper curve! and pulse solution at three dif
ferent times~lower curves! versus position for the FHN model. In the centr
spatial region the diffusion coefficient is ten times larger than elsewh
One can clearly observe the variation of the action potential duration
refractory period as the pulse passes through the high-diffusion region
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stability one must diagonalize the linear stability matrix, e
cluding the Jacobian term in the continuous limit.11 For dx
50.5, the instability threshold is such that 2dt/dx2

.1/Dmax. The first unstable eigenmode shown in Fig. 6
localized, as are all the unstable eigenmodes for 1/Dmax

,2dt/dx2,1/Dmin . For 2dt/dx2.1, the first delocalized
modes appear~see Fig. 7!. There is one order of magnitud
~roughly the ratio between the maximum and minimum v
ues of the diffusion coefficient! between the time steps a
which localized and delocalized modes appear.

Consequently, a time step which yields a stable solut
will lead to inefficient simulation in those parts of the syste
which do not control the instability. The use of a variab

ate.

e.
d

FIG. 6. First unstable eigenmode in the continuous limit for the system w
a spatially dependent diffusion coefficient. Parameters are:dx50.5, dt
50.5dx2/Dmax.

FIG. 7. Lowest unstable delocalized eigenmodes. Parameters aredx
50.5, dt50.505dx2.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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819Chaos, Vol. 10, No. 4, 2000 Reaction–diffusion equations
grid size, i.e., varying the grid sizedx such that
dx(x)/AD(x);Cst, is a possible solution to this problem
This is probably the most efficient solution in one-dimens
~1D!, and such a scheme was employed in a study of vo
filaments in order to deal with a numerical instability th
arises in this problem.12 Such a scheme requires a speci
grid for each spatial distribution of the diffusion coefficie
values which, in turn, requires extensive data manipula
making it difficult to implement the method efficiently i
higher dimensions. However, the localization of the first u
stable modes suggests that an efficient simulation may
carried out using domain decomposition.

1. Simulation results

We first analyze the efficiency of the algorithm for th
integration of the inhomogeneous FHN system in the r
state. Figure 8 shows twenty instantaneous values of the
ror function obtained using the asynchronous algorithm w
dx50.3, Dt50.045, etol52 1023 and etol

first52 1024 for the
same parameters as in Fig. 1.

The reference value ofetol was fixed so that the averag
time step of the synchronous error control algorithm is j
below the stability limit, i.e.,etol.2 1024 for Dt50.0045.
The time step for the appearance of the first delocali
mode is ten times larger, and one demands an error sm
than 2 1023 overDt50.045. The error parameter for the fir
synchronous step was ten times smaller. This figure sh
that the error control procedure constrains the error in
region of the system where the diffusion coefficient is lar
One may also check that the time step is, on average, fif
times smaller in this region than in the region where
diffusion coefficient is low. Using these parameters, ab
75% of the sites are accepted after the first iteration.

Table III shows results similar to those obtained pre
ously for the homogeneous system. For small system s

FIG. 8. Twenty different realizations of the error function~difference be-
tween uniform rest state and the numerical solution! using the asynchronous
algorithm with Dt50.045, etol52 1023 and etol

first52 1024. The upper and
lower solid lines mark the maximum and minimum values obtained for e
lattice node.
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~the high diffusion region occupies about 20% of the syst
length!, the asynchronous scheme required as much C
time as the fixed time step scheme but provides error con
and, locally, is a second order scheme. Again the efficie
increases for larger systems~i.e., for systems where the hig
diffusion region is a smaller fraction of the total system siz!
and varies linearly with the ratioDmax/Dmin . The efficiency
can be increased further by varying these parameters.

Next, we consider the performance of the asynchron
algorithm for the pulse solution. Results for various syst
sizes are given in Table IV. Comparisons are made betw
the Euler scheme withdt50.003 and the synchronous erro
control algorithm with the sameDt andetol parameters. For
the Euler scheme we did not use a time step
0.16dx2/Dmax since this will provide efficient simulation in
the high diffusion region and very accurate temporal integ
tion in the small-diffusion bulk of the system where the tim
step for efficient simulation, 0.16dx2/Dmin , is about ten time
larger. We simply chosedt50.003 close to the stability limit
0.0045 for dx50.3. The parameteretol was fixed as dis-
cussed previously.

The results show that even for small system sizesL
551230.3.160 where the high-diffusion domain occupie
25% of the system length! the asynchronous algorithm easi
compensates for the overhead incurred by the error con
procedure and is faster than the Euler scheme. The r
CPU/E varies roughly as 0.11160/N and confirms that the
maximum theoretical acceleration factor is given
Dmax/Dmin . We have also performed an analysis of the v
locity. As in the homogeneous case the asynchron
scheme is more accurate than the Euler scheme.

We next consider more realistic and demanding simu
tions of two-dimensional homogeneous and inhomogene
media.

h

TABLE III. Relative CPU times using the same algorithm as in Table I
the rest state in the inhomogeneous case. The system sizeL5200. The local
parameters are the same as in Fig. 1;dx50.3 and the nature of the inho
mogeneous diffusion coefficient is described in the text.

Update Time step Dt etol etol
first CPU/E

sync fixed 0.0045 ¯ ¯ 1.00
sync var 0.0045 2 1024

¯ 3.40
async var 0.0450 2 1023 2 1024 1.03

TABLE IV. Relative CPU times varying the system size for the asynch
nous scheme applied to the pulse solution propagating through the inho
geneous medium~see text!. The comparison Euler scheme used a fixed tim
step of53 1023. The synchronous variable time step algorithm used
same time stepDt, the same error control parameteretol , and the same
system size. The local parameters are the same as in Fig. 1 withdx50.3.

N Dt etol etol
first CPU/E CPU/S

512 0.03 1 1023 1 1024 0.93 0.41
666 0.03 1 1023 1 1024 0.88 0.34
1024 0.03 1 1023 1 1024 0.66 0.26
2048 0.03 1 1023 1 1024 0.52 0.17
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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C. Two-dimensional homogeneous media

As an example of the simulation of wave propagation
two-dimensional media we examine spiral wave dynam
Figure 9 shows both theu andv fields of a spiral wave using
the same parameters as in Fig. 1.

There is almost no site in the rest state and one can
expect faster simulation times because of the difference
the stability properties of the rest and the excited states, o
least not as large an acceleration factor as for the 1D cas
the large system limit.

For dx50.5 we fixdt.0.08dx250.02@extrapolating to
two-dimensional~2D! the formulas for efficient simulation
using the same set of local parameters# which is about 1/3 of
the stability limit in the continuous limitdt,0.25dx2

50.0625. In practice, for this value of the grid size, t
maximum time step allowed is about 0.05. Settingetol

.0.01, the synchronous error control algorithm leads todt
;0.02 on average and is about 3.3 times slower. The a
chronous version is 60% faster, but still slower than the E
ler scheme. Data are summarized in Table V.

The asynchronous scheme is only about twice as fas
the synchronous version of the algorithm. These results d
onstrate the influence of the solution properties on the e
ciency of the algorithm. This is the situation when the e
plicit nature of the numerical scheme and its stabil
constraints prevent efficient simulation. Of course, for s
tems where the ratioB/A is much smaller than 1/D, the
stability limit is not a determining factor and the maximu
acceleration is then dominated by the spatial variations in
error function, should such variations exist.

D. Two-dimensional inhomogeneous media

As an example of a more complex inhomogeneous m
dium we suppose that the diffusion coefficient varies r

FIG. 9. Theu ~left! andv ~right! fields of the spiral solution for the sam
parameters as in Fig. 1 withdx50.5 and lattice size is 2563256. A linear
gray scale is used from the minimum to the maximum of each field.

TABLE V. Relative CPU times of different algorithms for the spiral sol
tion in a homogeneous medium using the same parameters as in Fig. 1
dx50.5. The lattice size is 2563256 with no-flux boundary conditions.

Scheme Dt etol etol
first CPU/E CPU/S

Euler 0.02 ¯ ¯ 1 0.30
Sync 0.02 0.01 ¯ 3.27 1
Async 0.08 0.04 0.01 1.42 0.43
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domly through most of the medium with values ranging b
tween 0.75 and 1.25 and, in addition, there is a localized h
diffusion domain~taken to have the form of the letter Y!
where the maximum value ofDu is 10. Figure 10~left panel!
shows theDu diffusion field using a nonlinear gray scale.

This example was chosen as a caricature of a piec
cardiac tissue where the inhomogeneity arises from the
ferent conduction characteristics of cardiac cells in the tis
and the high-diffusion regions mimic specialized conduct
channels like Bachman’s bundle in the atrium or Purkin
fibers in the ventricles.13

Figure 10 also shows an instantaneous view of a sp
wave in such an inhomogeneous medium. One can see
deformation induced by the high conduction Y-shaped ch
nel. Table VI summarizes the simulation time results a
shows that the asynchronous algorithm is twice as fast as
Euler scheme and about six times faster than the sync
nous version of the algorithm. As in the 1D case, the ma
mum value of the acceleration factor is controlled mainly
the ratio between the largest diffusion value and the aver
value.

IV. DISCUSSION

In the preceding sections we introduced criteria wh
allow one to distinguish regimes where use of the asynch
nous scheme is appropriate for both homogeneous and i

ith

FIG. 10. Spiral solution in an inhomogeneous medium. The local reac
parameters are the same as in Fig. 1 withDv50. TheDu field ~left panel!
contains three longitudinal structures converging in the center of the lat
forming a Y-shape whereDu;10. The background is such thatDu

P@0.75,1.25#. Theu andv fields are shown in the center and right pane
dx50.5 and the lattice size is 2563512 ~the aspect ratio of the picture is
preserved!.

TABLE VI. Relative CPU times of different algorithms for the spiral solu
tion using the same parameters as in Fig. 1 withdx50.5 for an inhomoge-
neous medium: maximum value ofDu;10; 80% of the sites are such tha
DuP@0.75,1.25#, andDv50 for all sites~see text for detail!. The lattice size
is 2563512 with no-flux boundary conditions.

Scheme Dt etol etol
first CPU/E CPU/S

Euler 0.002 ¯ ¯ 1 0.32
Sync 0.020 5 1024

¯ 3.15 1
Async 0.020 5 1024 5 1024 0.52 0.16
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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821Chaos, Vol. 10, No. 4, 2000 Reaction–diffusion equations
mogeneous media. For example, the ratio between the
step for efficient simulation and the stability threshold,

R15
dteff

dtsta
52D

B

A
,

determines when the conditionally stable character of the
plicit Euler scheme is a handicap. We have shown in App
dix B how one may estimateA and B from computational
data or approximately using the typical physical scales of
problem.

If R1@1 the time step is constrained by the stabil
limit and efficient simulations are not possible with explic
schemes. In this circumstance fully implicit or semi-implic
schemes can be used, but one must re-determine theA andB
coefficients which are scheme dependent~usually A and B
are larger for implicit schemes!.

If R1!1 the simulation lies within the stability limit
The key factor to consider is the large fluctuations in
error function in different spatial domains. One may u
larger time steps and/or grid sizes where the solution
smooth. For excitable media the magnitude of this eff
depends on the fractionR2 of the medium in the rest state

If R1;1 in homogeneous media, the problem is mo
complex because varying the time step without varying
grid size leads to a delocalized numerical instability. In t
continuous limit it is not possible to constrain the numeri
instability without varying the grid size (dt}dx2). For a
coarse resolution~large grid size! the stability limit is con-
trolled by the reaction term and the fastest time scale.
excitable media this usually corresponds to the up-strok
the wave~associated with the transition from rest to excit
states!. If the rest state occupies a large region of the syst
for example, as is the case in normal cardiac wave propa
tion, one may perform faster simulations using the asynch
nous scheme. The relevant criterion is the ratio between
stability threshold of the pulse solution and that for the s
tem in the rest state

R35dtsta
rest/dtsta.

If this ratio is large the asynchronous scheme with fixed g
size will be efficient. The maximum theoretical accelerati
factor varies like 1/(R2R3). If R3'1, one must use an im
plicit scheme for the reaction term and/or the first step of
asynchronous scheme. In this case an explicit variable
size algorithm will be less useful since it does not lead to
increase of the time step.

For inhomogeneous systems we must introduce new
rameters that characterize the localization of the unsta
mode:R45dtsta

deloc/dtsta
loc , and the fraction of the system wit

high diffusion coefficient,R5 . The corresponding efficienc
criterion is

R 1
deloc5

dteff

dtsta
deloc

52Dmin

B

A
.

The ideal case corresponds toR4@1, R5!1 and R 1
deloc

,1 and the asynchronous scheme will be efficient from fi
to coarse resolutions.
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A limitation of the algorithm we have presented is th
utilization of the synchronous error control procedure wh
introduces an overhead factor of 3 in the simulation w
respect to the fixed time step Euler scheme. Alternative v
sions of error control exist; for example, estimates based
the local spatial or temporal gradient or the fourth-order s
tial derivative or the second order temporal derivative~since
they appear in the error function!. We have performed simu
lations using the first order temporal partial derivative for t
error estimate. The codes execute roughly twice as fast a
asynchronous multistep algorithm.

A. Previous work

The literature on numerical schemes is large and i
difficult to make comparisons between algorithms becaus
the various criteria used to determine their efficiency. Bel
we comment on several schemes designed for the simula
of excitable media in order to put our asynchronous al
rithm into perspective.

1. Adaptive mesh size refinement algorithm

The Adaptive Mesh size Refinement Algorithm has be
applied recently to wave propagation in cardiac models
one and two dimensions by Cherryet al.2 This algorithm is a
multigrid size/time step algorithm where three different res
lutions are fixed at the start of the simulation@three pairs of
(dx,dt)]. Using error estimation, the algorithm dynamical
fixes the resolution which must be used. Their results sh
how the algorithm is able to use the coarse and med
resolutions in the smoothest parts of the system. Recon
tion between the different resolutions is carried out us
interpolation of the missing time values.

They simulate a complex 2D regime where propagat
wave break-up leads to a dynamical multispiral state. T
integration is eleven times faster than the Euler scheme a
finest resolution. In the one-dimensional simulation, the fr
speeds agree to within 0.1%. This result was obtained u
a very small time step (dt50.003 ms! relative to the grid
size (dx50.0125 cm!. The typical diffusion coefficient of
the heart excitable medium is about 1023 cm2 ms21. This
gives dtstab5dx2/(2D)50.08 ms, i.e., 26 times the valu
used in their simulation. The use of very small time st
avoids problems related to numerical instability, but has
be justified on the basis of a discussion ofr. A factor of 10
smaller in the time step than the pure diffusive theoreti
limit is frequently employed and is not specific to this pap
~see Ref. 7 for instance!.

A linear variation of the time step relative to the gr
size is recommended in Ref. 2. Since the error function v
ies like dx2 and dt, the weight of the temporal error term
decreases with respect to the spatial error term as one
from the finest to the coarsest spatial resolution. From
point of view, this constraint plays the same role as our
rameteretol

first which must be chosen smaller thanetol to limit
the systematic error propagation.

2. Semi-implicit schemes

Fully implicit integration schemes are rarely used sin
they require minimization of a very large and nonlinear
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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822 Chaos, Vol. 10, No. 4, 2000 G. Rousseau and R. Kapral
of equations, potentially leading to convergence difficulti
Semi-implicit schemes, also called mixed explicit–implic
schemes, are widely used for simulation of stiff systems
equations. In such schemes only few terms in Eq.~1! are
implicitly integrated. For the reaction rates,1,4 one may use
immediate implicit integration when possible for a speci
type of reaction term, or an iterative procedure which
usually efficient for a few-variable system. The use of i
plicit schemes for the gradient terms requires that one c
sider technical issues like matrix inversion3 or multigrid
iterations.5

References 1 and 4 describe an algorithm where a s
implicit scheme is used, allowing a large time step for coa
resolution~RegionB in Fig. 2!. This algorithm is very pow-
erful since it covers a very large range of grid sizes, from
partial differential equation continuous limit to the cellul
automaton limit~the local variables are reduced to few d
crete states!. The method is limited because it relies on
specific form of the local reaction term used to carry o
efficient implicit integration. The low accuracy of the im
plicit scheme is compensated by using a second-order
plicit scheme; even the reaction term is integrated explic
by a first order Euler scheme.

In the continuous limit, schemes of this type a
dominated by the instability in the diffusion term. Implic
integration of the discretized diffusion term can be us
to perform simulations in regionD. Quantitative compari-
sons at constant error between the Euler scheme and s
implicit schemes have not yet been carried out. Keener
Bogar5 show that using a Crank–Nicolson scheme to in
grate the bidomain equations in cardiac tissue, the simula
is about 40 times faster than that using a simple Eu
scheme. The error in the front velocity is about 2.5% relat
to the Euler scheme with same grid size and a time s
close to the stability limit. They used an elegant and effici
form of the bidomain equation leading to a very fast alg
rithm that reduces the computational overhead by a facto
2. Further analysis of the results is difficult since neither
solution in the continuous time and/or space limit nor t
weight of the spatial discretization error term~criterion R1)
are known.

3. Asynchronous mixed schemes

Although there are several differences, our algorithm
longs to the same class as that described by Quanet al.6

~adaptive variable time step with fixed grid size!. One of the
main differences is the utilization of an implicit scheme f
the first synchronous step. They show that this choice ca
efficient for a system where the number of active sites is v
small.

Their asynchronous evolution steps are different fr
ours since they allow any time step values between 0 andDt
for the sub-iterations requiring the management of ‘‘a pri
ity queue.’’ Their algorithm is more complex because
mixes two different schemes, an Euler scheme and
Cooley–Dodge scheme with a modified alternatin
direction-implicit method. Also, the efficient implementatio
of an error control procedure with an implicit scheme
quires investigation.
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A direct comparison with their algorithm is difficul
since they have not considered the continuous timeand
space limit and model cardiac tissue by a discrete networ
excitable cells connected by resistors. Time steps are
mated using the temporal derivative and a threshold co
sponding to the maximum variation of the action potent
through one iteration. They also include model specific c
teria related to some of the ion gate variables.

In a regime with complex dynamics they obtain a
acceleration factor of;4 with respect to a synchronou
implicit scheme. The overhead introduced by this sche
in comparison to the simple Euler method is not discuss

B. Higher-order schemes

As shown in Table II, asynchronous schemes using
explicit first iterate are efficient for homogeneous systems
the continuous limit ifR1!1. In this case utilization of a
higher order scheme must be considered as a possible w
improve significantly the numerical integration.

Table VII summarizes the relative CPU times and re
tive errors in the front speed using the same parameters
Fig. 1 for a relatively small system (L5100) in order to
decrease the number of grid points in the rest state. The t
shows that higher-order temporal schemes perform very w
in terms of CPU time versus relative error in the front spe

Since the order of the temporal scheme is larger than
‘‘coherence’’ value with respect to error function and th
stability limit criteria for the explicit scheme, the time step
quickly dominated by the stability limit, fixing the maximum
acceleration factor to 1/R1 divided by the overhead induce
by the high-order scheme. For instance, the RK2 sche
with a time step ten times larger than that for the Eu
scheme executes five times faster and provides more acc
results. Note that we assume in this case thatR151/100.
This implies that the error in the front speed arising from t
spatial discretization is also about 0.25%. Synchron
schemes also perform well when one reduces the accu
from 1.5 1023 to 1.5 1022. Finally, our asynchronous
scheme yields results equivalent to the best fixed time s
scheme, demonstrating its efficiency. One cannot easily

TABLE VII. CPU times and front speeds of different algorithms for the 1
pulse solution using the same parameters as in Fig. 1 withdx50.5. The
system size is 100 and less than 40% of the system is in the rest state
ratio dt/dsta51/100. RK2 refers to the second order fixed time step Rung
Kutta scheme. Sync.n refers to the synchronous multistep error control
cedure using a Runge–Kutta scheme of ordern. The third-order synchro-
nous scheme requires on average five steps to reach the expected ac
instead of 100 using first order scheme. The parameters areetol

first50.1etol for
the asynchronous scheme.

Scheme Dt etol CPU/E CPU/S Vel

Euler 0.00125 ¯ 1 0.33 0.255%
RK2 0.00125 ¯ 1.97 0.65 0.004%
RK2 0.0125 ¯ 0.20 0.07 0.018%

Sync.1 0.125 1.5 1023 3.04 1 0.004%
Sync.3 0.125 1.5 1023 0.53 0.18 0.004%
Sync.1 0.125 1.5 1022 0.37 0.12 0.022%
Sync.3 0.125 1.5 1022 0.28 0.09 0.004%
Async 0.125 1.5 10À3 0.19 0.07 0.033%
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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823Chaos, Vol. 10, No. 4, 2000 Reaction–diffusion equations
tend the performance of higher-order schemes to cases w
R1;1 since a prefactor in the stability condition must
taken into account.

C. Remarks

We have presented a simple asynchronous algorithm
discussed the dynamical regimes where it will yield efficie
simulations. The efficiency was defined with respect to
‘‘maximum or theoretical acceleration factor,’’ taking int
account its variation with system parameters~size, local stiff-
ness, stability ratiosRi , . . . !.

We have shown that the scheme will be efficient in th
different cases:

~i! For homogeneous media, with coarse resoluti
when the pulse solution is stiffer than rest state a
most of the system is in the rest state,

~ii ! for homogeneous/inhomogeneous media in the c
tinuous limit whenR1!1 and the error function is
sharply peaked,

~iii ! for inhomogeneous media in the continuous lim
when localized inhomogeneities lead to localized u
stable eigenmodes.

We have mainly limited our results to cases whereR1

'1 and, indeed, it is difficult to find other examples f
excitable media. Should this be a general property of ex
able media, this would constrain significantly the type
efficient simulation one may perform for such systems.

The method described in this paper does not rely on
form of the local dynamics, is easily implemented for ar
trary geometries and should prove useful for simulations o
variety of problems such as wave propagation in cardiac
sue which is an inhomogeneous medium with complex lo
stiff dynamics and a complex geometry.
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APPENDIX A: VARIABLE TIME STEP ALGORITHM

1. Single time step

One may estimate the error in a simulation by perfor
ing two integrations with different time steps as follows: L
wA be the solution att. To obtain the solution att1dt one
may take one step using the Euler scheme with time stepdt,
or two steps using the time stepdt/2. We let wB and wC ,
respectively, be these two estimates:

wB~x,t1dt !5wA~x,t !1dt
]wA

]t
~x,t !,

wC~x,t1dt !5wA~x,t !1
dt

2

]wA

]t
~x,t !

1
dt

2

]

]t S wA~x,t !1
dt

2

]wA

]t
~x,t ! D .
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The following relations amongwA(x,t1dt), wB(x,t1dt)
andwC(x,t1dt) apply

wA~x,t1dt !5wB~x,t1dt !2
dt2

2

]2wA~x,t !

]t2
1O~dt3!,

wA~x,t1dt !5wC~x,t1dt !2
dt2

4

]2wA~x,t !

]t2
1O~dt3!.

The difference betweenwB andwC is approximately the
same as betweenwA andwB , or wA andwC . One can impose
the condition that distance betweenwB andwC must never be
larger than a predetermined amountetol . If the distance be-
tweenwB and wC is too large, then the solution is not ac
cepted and the time step is decreased. Since the error f
tion can be very inhomogeneous for extended systems,
may consider the maximum value of the difference over
grid points,emax5maxruwB(r)2wC(r)u.

Taking into account the first-order nature of the Eu
scheme the new time stepdt8 is given by

dt85cdtA etol

emax
. ~A1!

The prefactorc,1 ~typically c'0.9) will suppress the con
tributions of higher-order terms if they are not too large.
emax is less thanetol , the solution is accepted but the tim
step is increased using the same formula since it could be
small if emax!etol . Finally, these two solutions can be use
to obtain more accurate estimates ofwA(x,t1dt)52wC(x,t
1dt)2wB(x,t1dt)1O(dt3), by cancelingdt2 terms.

For a temporal scheme of ordernt , the instantaneous
and cumulative first error terms, respectively, vary as

dtnt11
]nt11w

]tnt11
and DTdtnt

]nt11w

]tnt11
.

Then the estimate ofdt8 is

dt85cdtS etol

emax
D 1/(nt11)

, ~A2!

and the general linear combination ofwB andwC is given by

wA~x,t1dt !5
2nt

2nt21
wC~x,t1dt !

2
1

2nt21
wB~x,t1dt !1O~dtnt12!.

2. Multitime step control

The previous solution will lead to an average time st
over which the error is bounded byetol . This average time
step depends on the order of the scheme. It is then m
useful to fix the maximum errorEtol over the time stepDT.
A simple way to do this is to impose a maximum error var
ing like etol5Etol dt/DT over each time stepdt. Then Eq.
~A2! becomes

dt85cdtS dtoldEtol

DTemax
D 1/nt

. ~A3!
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



ac
ar
-

is

a-
or

th

ly
t

is

th
d

h

e

fi-
th
b
a
ra
os
s

g
w

is
re
st

p-

e-
the

e
at
nes

m-
dif-

ize

be-
ence
cu-

em-
r

the

s

is

tent
s

ian

824 Chaos, Vol. 10, No. 4, 2000 G. Rousseau and R. Kapral
In this case a linear combination of solutions is made e
time an iterationdt is accepted. We may also form a line
combination of solutions everyDT assuming a linear accu
mulation of the highest order error term. IfDT is too large
this method will fail. In the algorithm we used, the error
controlled only att1DT and one must fix the numberm of
time steps into whichDt will be split. The extrapolation of
the new value ofm, m8, is done assuming linear accumul
tion of the error terms as described above and for a temp
scheme of ordernt we have

m8511mS emax

etol
D 1/nt

,

where the11 term serves the same function as thec pre-
factor.

To insure that errors do not accumulate because of
possibly large number of asynchronous steps, we limited~on
average! the number of refinement levelsNs by placing a
limit on the value ofm8. Defining

R5S ml

mf
D 1/(Ns21)

, ~A4!

wheremf is the first andml the last value ofm in the previ-
ous iteration, we choose,

m85minS 11mS emax

etol
D 1/nt

,11RmD . ~A5!

The control of the accuracy of the solution is done on
in time. Therefore, the error tolerance must decrease as
continuous limit is approached. A simple way to accompl
this consists in fixing the grid sizedx0 and choosingetol

0 so
that the numerical solution is on the physical branch and
simulation is efficient. Thenetol just has to be decrease
relative to the order of spatial discretization schemens , i.e.,

etol5etol
0 S dx

dx0D ns11

.

This procedure will not apply for larger values ofdx since
the solution may not remain on the physical branch. T
guideline we adopt is thatetol should not be larger than a few
percent of the typical value ofw since perturbations wer
assumed to be small.

APPENDIX B: CONVERGENCE TO THE CONTINUOUS
LIMIT

The finite-resolution numerical solution must be suf
ciently close to the continuous space and time solution of
reaction diffusion equation for applications to physical pro
lems. The convergence to the continuous limit must be c
ried out by taking into account both spatial and tempo
discretization. One would also like to determine the m
appropriate time step that is consistent with an accurate
lution but with minimal computational cost. The followin
procedure may be used to determine the most effective
to approach the continuum limit.

The determination of the error terms arising from d
cretization are difficult to estimate in general since one
quires a knowledge of the complete solution. Consider fir
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simple Euler scheme with a first-order finite difference a
proximation to the Laplacian. The cumulative errorE using
linear response has the form

E}Adt1Bdx2. ~B1!

A natural way to converge to the continuous limit is to d
crease the grid size while adapting the time step to satisfy
stability criteria. One can see that fixingdt5r dx2 both error
terms vary likedx2 and the error will vanish as the grid siz
goes to zero. Herer is a constant which must be fixed so th
the solution always lies on the physical branch. This defi
a ‘‘coherent’’ convergence to the continuous limit.

Generalizing the problem to higher dimensions, the co
putational cost using Euler scheme and first-order finite
ferences is proportional to

Cost}1/~dxddt !51/~dxd12r!. ~B2!

Substituting the expression fordt and dx as function ofr
and the cost variable we find

E}~Cost!22/d12~Ar1B!r2 2/d12. ~B3!

Keeping the computational cost constant we can minim
the error function as a function ofr giving r52B/Ad, and
thus

dt5
2B

Ad
dx2. ~B4!

In this development, we used only the coherence
tween the temporal and spatial schemes, so that converg
to the continuous limit is carried out without excessive ac
racy in the space or time integrations.

We can generalize the previous demonstration to a t
poral scheme of ordernt and a spatial discretization of orde
ns : The cumulative error function should behave as

E}Adtnt1Bdxns11, ~B5!

which in terms ofr5dtnt/dxns11 and CPU cost gives

E}~Ar1B!r2g1~Cost!2g2,

where

g15
ns11

ntd1ns11
,g25

nt~ns11!

ntd1ns11
.

Then the appropriate ratio between the time step and
grid size is

dtnt

dxns11
5

B

A

ns11

dnt
.

The stability limit provides a strong limitation on thi
result since, depending of the values ofA and B, we may
have a very inefficient simulation with a time step that
much smaller than necessary. One should note thatr varies
as the inverse of the spatial dimension. This is consis
with the variation of the stability limit for the continuou
limit with the inverse of the dimensiond. For the Euler
scheme and first-order finite difference form of the Laplac
operator, one hasdt5dx2/(2d).
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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As a result of these considerations it is important to fi
an appropriate value forr that leads to the smallest error fo
the lowest computational cost.

We now illustrate the application of these ideas to
FHN model computations. Figure 11 gives results for
velocity of the pulse fornt51 andns51 in one dimension
as a function ofdt for several values ofdx. We can inter-
polate the velocity curves fordx50.5 anddx50.25~the two
upper curves! for values ofdt between 0 anddx2/4. Assum-
ing a quadratic dependence indx and linear dependence i
dt, we can estimate the ratioB/A.0.08. In this case the
appropriate value ofdt is

dt.
0.16

d
dx2.

For the three different values ofdx used to construct Fig. 3
the numerical solution obtained with this time step lies
the physical branch.

This estimate ofr requires a knowledge of the velocit
of the pulse for four values ofdt anddx ~note that 1D results
can be used for calculations in higher dimensions!. Instead,
one may prefer to use the one-step error expression wh
for an Euler scheme with first order finite differences,
given by

ek~x,t,dt,dx!5
dt2

2

]2wk

]t2 1
dtDkdx2

12

]4wk

]x4 . ~B6!

Knowing one ‘‘physically’’ acceptable solution, one can e
timate the fourth order spatial derivative and the second
der temporal derivative using the equality for a propagat
wave, ]2wk /]t25V2 ]2wk /]x2, and then compare the tw

functions (12) ]2wk /]t2 and (Dk/12) ]4wk /]x4. Using a va-
riety of criteria such as the ratio of the maxima, the ratio

FIG. 11. Velocity of the excited wave versus the time step divided by
stability limit of the diffusion equation 0.5dx2, for three different values of
the grid size. The other parameters are the same as Fig. 1.
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the integral of the absolute value, or the average of the r
at each point where these functions are not zero, one obt
the estimate,B/A'0.12, which is in good agreement wit
the previous estimate. The difference arises from the se
tivity of the neutral mode to the two different kinds of pe
turbation.

In the absence of such information one may obtain
crude approximation tor from a knowledge of the physica
characteristics of the excited wave. The up-stroke part of
wave gives rise to the dominant contribution to the er
function. In the case under consideration, the transition
tween the rest and excited states occurs over a typical le
scale asDx'1 and the velocity of propagation isV'2.8.
From dimensional considerations one may estimateB/A by

B

A
;

1

6

Dk

V2Dx2 '0.02.

While crude, this estimate ofB/A, and thusr, is obtained at
almost no cost.

As an example consider wave propagation in the he
The conduction velocity in cardiac muscle is about 0.5 m
the diffusion coefficient is of order 1024 m2/s, and the gap in
the membrane potential between the rest state and the ex
state is about 0.1 V. Using 100 V/s for the up-stroke veloc
we find B/A'200, which must be compared to the equiv
lent stability limit ratio, i.e., 1/D'104. This estimate indi-
cates that both error terms in Eq.~B5! contribute to the ap-
proximation to the continuous limit solution. This i
probably a common property of an excited pulse, since b
diffusion and reaction terms are significant in the up-stro
part of the pulse solution.
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