
Physica A 306 (2002) 199–210
www.elsevier.com/locate/physa

Phase front dynamics in inhomogeneously forced
oscillatory systems

Christopher Hemming, Raymond Kapral∗

Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ont.,
Canada M5S 3H6

Abstract

Resonantly forced reaction–di'usion systems possess phase-locked domains separated by phase
fronts. A nonequilibrium Ising–Bloch bifurcation in which a stationary Ising front loses stability
to a pair of counterpropagating Bloch fronts with opposite chirality exists in 2:1 forced systems.
For such systems, we study the e'ects of a spatially inhomogeneous forcing intensity which varies
in space across the bifurcation. In such a case, a propagating Bloch front which encounters a
domain where the forcing intensity lies in the Ising regime undergoes a change in chirality and
is re1ected from the Ising domain. This phenomenon is studied analytically and numerically
in one dimension. In two dimensions systems with regular and disordered forcing are studied;
the spatial arrangement of Ising domains may give rise to complex pattern dynamics. c© 2002
Elsevier Science B.V. All rights reserved.

1. Introduction

Reaction–di'usion systems in the far-from-equilibrium domain show a diversity of
spatio-temporal regular and chaotic patterns. An especially interesting class of such sys-
tems is oscillatory reaction–di'usion media which are resonantly forced by an external
periodic driving 7eld. The external forcing may resonantly lock the dynamics yielding
phase-locked states that are complicated spatiotemporal analogs of the phase-locked
states seen in simpler ordinary di'erential equation systems. These resonant patterns
typically involve the existence of spatial domains of phase-locked regions with di'erent
oscillation phases separated by fronts in which the phase changes rapidly between two
locked values. The number of di'erent types of phase-locked regions depends on the
frequency and amplitude of the forcing relative to that of the underlying oscillation of
the system. More speci7cally, if the unforced spatially homogeneous system has period
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T0 = 2�=!0 and the ratio of the forcing frequency !f to !0 is suAciently close to a
rational ratio of integers, !f =!0 ≈ n=m, for a strong enough forcing amplitude the sys-
tem’s oscillatory dynamics may become entrained to the external forcing. In this case
the system possesses n stable limit cycle solutions with periods T=nTf =2n�=!f ≈ mT0
which are mapped into each other under phase shifts t → t + kT=n for k = 0; 1; 2; : : : :
The geometry of these phase-locked zones may be complex and di'erent types of
chemical patterns can result from transverse instabilities of the phase fronts separating
the domains. Such patterns have been observed experimentally in the resonantly forced
light-sensitive Belousov–Zhabotinsky reaction [1–5].
Spatial inhomogeneities in reaction–di'usion systems can bring about qualitative

changes in the pattern dynamics and are obviously of relevance since many naturally
occurring reaction–di'usion processes take place in media that are spatially inhomoge-
nous. In the present context, if the external forcing is spatially inhomogeneous, new
phase locking phenomena appear. In experiments on reaction–di'usion systems such
inhomogeneous forcing can be realized by using light sources tailored to yield the
desired pattern of illumination. Wave propagation processes for random inhomoge-
neous 3:1 resonantly forced systems were studied earlier and phenomena such as phase
front roughening, pulse and compound front formation and their e'ects on spiral wave
dynamics were explored [6].
In this paper we study 2:1 resonantly forced systems with speci7c regular and random

patterns of inhomogeneous forcing where new phenomena appear. Rather than focusing
on a speci7c reaction–di'usion system, in these studies we employ the forced complex
Ginzburg–Landau (FCGL) equation

@
@t

A(r; t) = (
 + i�)A− (1 + i�)|A|2A+ �(r) JA+ (1 + i�)∇2A : (1)

Eq. (1) is the normal form of the Hopf bifurcation for a di'usively coupled 7eld
of nonlinear oscillators subject to external periodic forcing at the 2:1 subharmonic
resonance [7,8]. The quantity A(r; t) is a complex amplitude describing the envelope
of the oscillations and JA is its complex conjugate. For 2:1 forcing, when �¿�c = |�−
�
|=

√
1 + �2 there are two phase-locked states which di'er in phase by �, determined

from the 7xed point solutions of Eq. (1), corresponding to the two limit cycle solutions
of the underlying reaction–di'usion system. We assume that the forcing intensity �(r)
depends on position. In addition to providing a generic description of reaction–di'usion
dynamics in the vicinity of a Hopf bifurcation, Eq. (1) appears in optics and in the
description of liquid crystals in the presence of magnetic 7elds [9–11].
For �¿�c, the one-dimensional form of Eq. (1) exhibits front solutions between

spatially uniform domains in which A takes one of two values corresponding to stable
phase-locked states. There is a stationary front solution, called the Ising front, which
is invariant under the transformation (A; x) → (−A;−x). There exists a bifurcation in
which the Ising front loses stability and a pair of stable front solutions travelling in
opposite directions emerge; taking the front velocity c as the order parameter, this is a
pitchfork bifurcation known as the nonequilibrium Ising–Bloch (NIB) bifurcation (see
Fig. 1) [12]. The parameter � ≡ �|A(s)| associated with a front, where s is the front
position and �=±1 for the two Bloch fronts, is also useful as an order parameter (see
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Fig. 1. Left: schematic bifurcation diagram for the nonequilibrium Ising–Bloch bifurcation in the 2:1 FCGL
equation. Front velocity c is plotted against �. The Bloch front solutions are indicated by solid curves, the
Ising front is shown by long dashes where it is stable and by short dashes where it is unstable. Below �c
there are no front solutions because the system is not phase-locked. Right: a pair of Bloch front solutions
(solid line, long dashes) and an Ising front solution (short dashes) plotted in the complex A-plane. The two
solid dots represent the phase-locked states. The arrow indicates graphically the parameter � for the Bloch
front that is plotted in solid line.

Fig. 1(b)). The presence of an NIB bifurcation in the 2:1 FCGL equation suggests
that it is a generic feature of 2:1 resonantly forced oscillatory media, and indeed it
has been found in a wide variety of such systems, both theoretical and experimental,
as well as in bistable reaction–di'usion systems [11,10,13–17]. In the general case
the two stationary states are not equivalent and the pitchfork unfolds to a limit-point
bifurcation. In systems near the NIB bifurcation, perturbations may drive the front from
one Bloch solution branch to the other, thereby causing a front reversal. Reversals due
to front curvature, advective 7elds and boundary e'ects have been studied [15–20].
In this paper we consider the NIB bifurcation with spatially inhomogeneous forcing

where there are important e'ects on the nature and dynamics of the Ising or Bloch
fronts that separate phase-locked domains. In particular, if the forcing parameter varies
locally from values that support Ising fronts to values that support Bloch fronts the
character of the dynamics and pattern formation processes will be strongly in1uenced.

2. Front reversals in one dimension

Consider a simple one-dimensional situation where �(x) = �NIB + b(x − x0) varies
linearly with position. For �(x)6 �NIB the system supports Bloch fronts while for
�¿�NIB it supports Ising fronts. Further, suppose the two phase-locked states are
equivalent so that the Ising front is stationary in the homogeneous system. Given this
situation, one may initiate a Bloch front in the spatial domain x¡x0 which travels to
the right (increasing x). Fig. 2(a) shows that the Bloch front propagates to the right
for a certain distance at which point it is re1ected and a Bloch front with opposite
parity travelling in the opposite direction is produced. Except where stated otherwise,
numerical simulations were conducted with the parameter values 
=1, �=0:1, �=−0:1,
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Fig. 2. Left: plot of s(t) (solid line, left axis) and c = ṡ(t) (dashes, right axis) for a Bloch front travelling
in a system in which �(x) varies linearly with x across the NIB bifurcation, �(x) = �NIB + b(x − x0), with
b= 8× 10−6 and x0 = 668:498. Right: plot of A(x; t) in the A-plane at various times during the simulation.
The solid curve corresponds to t=1000; subsequent curves are taken at later times at intervals of Nt=5000.
The arrow indicates the direction of increasing time.
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Fig. 3. Plot of s(t) (solid line, left axis) and c(t) (dashed line, right axis) for a Bloch front travelling in a
system in which �(x) is a step function between Bloch and Ising domains, �(x) = �I�(x− x0) + �B�(x0 − x),
where � is the Heaviside function, �B = 0:43, �I = 0:44 and x0 = 1250:125.

� = −0:15, for which �c � 0:2472 and �NIB � 0:4353. 1 The change in the Bloch
front type is demonstrated in Fig. 2(b) by the change in the sign of � with time.
Since � passes through zero the conversion between the two Bloch fronts occurs by
passage through an Ising front. A similar phenomenon occurs in the case where �(x)
is a step function de7ning distinct Bloch and Ising domains. In a simulation with
�(x) = �I�(x − x0) + �B�(x0 − x), where �c ¡�B ¡�NIB and �I ¿�NIB, and �(x) is the
Heaviside function, we observe a front reversal which takes place on a length scale
on the order of the front width (see Fig. 3). This case is a model for the �(r) 7eld
in the two-dimensional disk studies discussed in Section 3 where the �(r) 7eld is
discontinuous at the boundary between the Ising and Bloch regions.

1 Numerical integrations were performed using explicit forward di'erencing with discretization step sizes
N x=0:25, Nt=0:01 or N x=1, Nt=0:02. In two-dimensions a nine point discrete Laplacian with fourth-order
accuracy was used.
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For spatially uniform forcing Eq. (1) possesses travelling front solutions A(x; t) =
A(x − ct) which satisfy

(
 + i�)A− (1 + i�)|A|2A+ � JA+ c
@
@x

A+ (1 + i�)
@2

@x2
A= 0 : (2)

When the parameters �; �; � are all zero, then Eq. (1) may be written in variational
form as

@
@t

A(x; t) =−�F[A; JA]
� JA

; (3)

where the functional F[A; JA] is given by

F[A; JA] =
∫ +∞

−∞
dx

{
−
|A(x)|2 + |A(x)|4

2
− �

2
( JA

2
+ A2) +

∣∣∣∣@A(x)@x

∣∣∣∣
2
}

: (4)

In this spatially uniform variational case, one may 7nd exact analytic expressions for
the Bloch and Ising front solutions. Writing these as A0 =X0 + iY0, the complementary
pair of Bloch fronts is

X0 =
√

 + � tanh(x

√
2�) ;

Y0 =±
√

 − 3�

cosh(x
√
2�)

: (5)

and the Ising front is

X0 = (
 + �)1=2 tanh

[(

 + �
2

)1=2

x

]
;

Y0 = 0: (6)

It is a consequence of the variational property of the system that both the Ising and
Bloch fronts have zero velocity.
While it is diAcult to examine the front reversal phenomenon analytically for general

parameter values and arbitrary forms of the spatial variation of �(x), one may gain
insight into its origin by studying systems near the variational limit with small gradients
in the � 7eld. Coullet et al. derived the form of the NIB bifurcation by considering
a perturbation about the variational case in which the nonvariational parameters �; �
and � are of order � [12]. We extend their approach by taking �(x) to vary linearly in
space with �′ = d�(x)=dx ∼ O(�).

We expand in � about the variational and spatially uniform front solution A0, evalu-
ated for � ≡ �(s), where �(s) is the value of �(x) at the front position s. As the front
travels, the zeroth order solution A0 will change in time, however, since both �′ and
the front velocity c = ṡ are of order �, the lowest order at which terms arising from
the front motion will appear is O(�2). We make a coordinate change to the moving
frame � = x − s(t∗) − �ṡ(t)(t − t∗) which has the same instantaneous velocity as the
front at the arbitrary reference time t∗. Writing the front as A= A0 + �a+ O(�2), and
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substituting this form into Eq. (2), we obtain

(
 + i��)(A0 + �a)− (1 + i��)(A0 + �a)2( JA0 + � Ja) + �ṡ(A0� + �a�)

+ (�(s) + ��′(s)�)( JA0 + � Ja) + (1 + i��)(A0�� + �a��) + O(�2) = O(�2) : (7)

At order � we obtain the linear equation in a= [ar ai]T,

(1− 2|A0|2 + @��)a+ (�(s)− A2
0) Ja=−i�A0 + i�|A0|2A0

− i�A0�� − cA0� − �′(s)� JA0 : (8)

The zero eigenvector of the adjoint of the linear operator on the left-hand side of Eq.
(8) is [X0� Y0�]. Applying the solvability condition to this equation and using the Bloch
front solutions Eq. (5) for A0 we obtain

ṡ=− 3�′(s)(
 − �(s))
2�(s)(3
 − �(s))

±
(
(
 + �(s))(
 − 3�(s))

2�(s)

)1=2 3�((�− �)�(s) + �
 − �)
2(3
 − �(s))

(9)

as the equation of motion for the front position s. This equation is the same as
that obtained by Coullet et al. for the spatially uniform � case [12], except for the
−3�′(s)(
− �(s))=(2(3
− �(s))) term which appears because of the gradient in �. This
term gives rise to a di'erence in the speed of the two counter-propagating Bloch fronts;
the front moving up the gradient in � does not have the same speed as the one moving
down the gradient. The same analysis may be performed for the Ising front, using the
variational solution Eq. (6), and we 7nd

ṡ=
−3�′(s)

2(
 + �(s))
: (10)

As in the spatially uniform case, we obtain from Eq. (9) that �NIB = 
=3. The front
velocity at the bifurcation, ṡ(�NIB) = −9�′=8. Unlike the spatially uniform case, the
Ising front possesses a nonzero velocity when � varies spatially. Eq. (10) predicts that
the Ising front will move toward lower � and thus will eventually be expelled from
the Ising region in the case of linearly ramped �(x). The terms arising from the spatial
dependence of � are independent of the nonvariational parameters �; � and �, and
therefore are a feature of the variational system.
A comparison of the velocity relations Eqs. (9) and (10) for the case �′ �=0 with the

spatially uniform �′ = 0 case is shown in Fig. 4 (left panel). The spatially varying �
case possesses a stable 7xed point on the upper Bloch branch, indicated by a dot. Thus,
the analysis predicts that an ingoing Bloch front will become pinned near the Ising–
Bloch boundary rather than re1ect, which is in contrast to the numerical simulation
result for a system far from the variational regime. The front reversal for systems
well into the nonvariational regime arises from the breakdown of the perturbation
approximation. In simulations with smaller nonvariational parameters, the results agree
with the predictions of the perturbation calculation. Fig. 4 (right panel) shows front
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Fig. 4. Left: the c–� relation of Eqs. (9) and (10) for �′ = 0 (solid line) and �′ = 8× 10−6 (dashed line).
The dot indicates the stable 7xed point of Eq. (9). The constant �NIB = 1=3. Right: dependence of c on �
measured in numerical simulations of Eq. (1) in systems with spatially uniform � (dotted line). The other
curves in the right panel are c(s) versus �(s) in a system in which � varies linearly with spatial gradient
�′ = 8 × 10−6, from various initial conditions. The constant �NIB = 0:33278472. In all the cases in both
panels the other parameters are 
 = 1, � = 1× 10−4, � =−1× 10−4 and � =−1:5× 10−4.

trajectories from three simulations. In these an ingoing Bloch front becomes pinned,
a Bloch front of the same sign started between the 7xed point and the Ising–Bloch
boundary travels outward and becomes pinned at the same point, and a front well
inside the Ising region travels out of the region, emerging on the lower Bloch front
branch of the pitchfork. The agreement between the numerical simulation results and
Eqs. (9) and (10) is evident.

3. Regular arrays of disks

In two spatial dimensions Bloch front reversals may lead to more complex dynamics.
We suppose that the �(r) 7eld takes a value �= �B that lies within the Bloch regime
at all spatial points, except for r values within a collection of disks where �= �I, and
�I is in the Ising regime (“Ising disks”). More speci7cally, the �(r) 7elds we consider
are of the form

�(r) =

{
�I if |r− ri|¡R; i∈ 1; 2; : : : ; N ;

�B otherwise ;
(11)

where ri ; i = 1; 2; : : : ; N are the centers of the Ising disks, R is the disk radius, �B
satis7es �c ¡�B ¡�NIB with �c the � value below which phase locking does not occur,
and �I ¿�NIB. Diverse wave patterns can arise from the interaction of Bloch fronts
with Ising obstacles and we give several examples of such dynamics below. In the
studies described in this section, �B = 0:4 and �I = 0:5.
Suppose a Bloch front strikes a single Ising disk. In Fig. 5 we see that the front wraps

around the disk and reconnects on the other side of it. The result is two structures: the
original front, which passes through undisturbed (apart from the transient associated
with striking the disk), and an expanding, ultimately circular wavefront which is formed
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Fig. 5. A planar front, travelling to the right in a Bloch medium, incident on a single Ising disk of radius
R = 7:5. Boundary conditions are periodic on the top and bottom sides and no-1ux on the left and right
sides; the system size is 200× 200. Time increases from left to right in units of 200. For all 7gures in this
section: (i) the phase 7eld is shown using a nonlinear gray scale chosen to color the two types of Bloch
fronts black or white and the phase-locked states in the two medium gray shades; (ii) the circular disks
indicate where �(r) = �I, everywhere else �(r) = �B; (iii) arrows indicate the direction of front propagation.

Fig. 6. A Bloch front incident on an Ising disk with radius R = 5 in a system with periodic boundary
conditions on the left and right sides. On the top and bottom sides boundary conditions are no-1ux. The
system size is 62:5×100; the central portion with dimensions 62:5×50 is shown. From left to right, frames
correspond to t = 210, 300, 420, 450.

from the re1ected wave. The center of the expanding Bloch front does not lie on the
center of the Ising disk but slightly in front of it. For a suAciently small disk the front
passes over the disk without wavefront re1ection and hence no approximately circular
wavefront is formed; the front experiences only a transient perturbation.
We next consider a planar Bloch front incident on a row of Ising disks, or equiva-

lently, a single Ising disk with periodic boundary conditions at the edges perpendicular
to the front. For suAciently closely spaced disks, the incident front is unable to pen-
etrate through the gap between the disks (Fig. 6). Wave blocks arising in similar
geometries are common in excitable media [21], and may be explained in terms of
e'ects due to wavefront curvature. Reaction–di'usion fronts typically obey a velocity–
curvature relation of the form cn = cp −D' where cn is the normal front velocity, cp
is the planar front velocity, ' is the front curvature and D is a di'usion coeAcient.
Di'usion tends to reduce front curvature, which may be related to the gap size, and
for suAciently small gaps the front fails to propagate. For the Bloch fronts considered
here an additional factor plays a role: the Bloch type in the central portion of the front.
Between frames 3 and 4 of Fig. 6 (left to right) we see that the front has changed
Bloch type but this reversal is not due to a collision with an Ising region. Systems
are known where front curvature can induce a transition from one Bloch front branch
to the other [15,18–20,16]; however, in the 2:1 FCGL equation at these parameters, a
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Fig. 7. A Bloch front incident on a row of Ising disks of radius R = 5 with centers separated by 50 space
units. Time increases from left to right in units of 200. The initial front travels to the right. The net result of
the interaction is one re1ected front travelling to the left and two transmitted fronts travelling to the right.
Boundary conditions are periodic on the top and bottom sides and no-1ux on the left and right sides; the
system size is 200× 200.

Fig. 8. A Bloch front incident from the left on two rows of Ising disks of radius R=5. The vertical spacing
between the centers of disks is 50, the horizontal spacing is 25. From left to right and top to bottom, the
frames are taken at t=300, 400, 600, 800, 1200, 1300, 1500, 1700, 1800, 2100. An oscillating con7guration
is obtained as a result of the fronts re1ected between the two rows. In the time interval shown four fronts
are emitted from the right-hand side of the structure and three are emitted from the left-hand side. Boundary
conditions are periodic on the top and bottom sides and no-1ux on the left and right sides; the system size
is 200× 200.

circular disk can shrink to extinction without such a transition occurring, implying that
there is no critical curvature which forces a change in Bloch front type. The simula-
tions show that the phase defects where the front changes Bloch type move along the
front and eventually meet and annihilate.
Fig. 7 shows a system in which the disks are spaced slightly farther apart than

those in Fig. 6. In this case the wavefront “tongues” penetrate through the disks and
recombine, giving rise to a transmitted front and expanding approximately circular
fronts. Far from the disks, the net outcome of a front collision with this structure is
two transmitted plane fronts and a single re1ected front.
For the case where there are two rows of disks, for certain spacings between them,

an oscillating con7guration may arise (Fig. 8). The front re1ected when the wavefront
strikes the second row of disks travels back to the 7rst row, where it gives rise to a
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transmitted wavefront and a re1ected front. This process repeats, and an in7nite train
of fronts is emitted from each side. When the second row of disks is placed at a
suAciently large distance from the 7rst, the fronts re1ected from the second row of
disks may annihilate upon collision with the second front transmitted through the 7rst
row, thus quenching the transmitted fronts.

4. Spatially random forcing �elds

If the forcing 7eld is a time-independent stochastic function of position new types
of phase pattern dynamics are observed. As an example of such random forcing we
consider a spatially dichotomous random forcing 7eld: the system was divided into
square domains of length ‘ on each of which � was set equal to �1 with probability
p and �2 with probability q = 1 − p. The spatial average value of � is given by J� =
p�1 + (1 − p)�2 and it is interesting to see how the dynamics of the system with
inhomogeneous forcing di'ers from that with uniform forcing at J�. The dynamics
depends on the sizes ‘ of the spatial domains within which � is constant, the two
values of �, and the probability p. We considered two cases: (i) �1 = 0:3, within
the Bloch regime and �2 = 0:5, within the Ising regime, and (ii) �1 = 0, below the
phase-locking threshold �c and �2 = 1, within the Ising regime. Di'erent values of
J� = p�1 + (1 − p)�2 were obtained by varying the probability p. In the work below
we adjust p so that J�=0:38 for both cases (i) and (ii) and show that the dynamics is
not determined solely by the mean 7eld value J�.
Fig. 9 shows dynamics for case (i) in a system with periodic boundary conditions

from initial conditions containing two spatially uniform states separated by chiral planar
fronts,

A(x; y; 0) =




iA0 if 06 x¡w ;

−A0 if w6 x¡L=2 ;

−iA0 if L=26 x¡L=2 + w ;

A0 if L=2 + w6 x6L ;

(12)

where A0 is one of the phase-locked states for the uniform �= 0:38 system. In a spa-
tially uniform system with � ≡ 0:38, this initial condition will give rise to two planar
propagating Bloch fronts and no phase defects will be nucleated. In the spatially inho-
mogeneous case (i), a complex, irregular state with time-varying dynamics is obtained,
and the initial pattern has been obliterated. The fronts are Bloch-like, there are many
phase defects present, and there are many domain-splitting and front reversal events.
A qualitative explanation of these e'ects is as follows: di'usion leads to some local
averaging of the �(r) 7eld, yielding a local e'ective J�(r) which varies between the
Bloch and Ising regimes. 2 Hence, one has propagating Bloch fronts which reverse
upon encountering Ising domains.

2 A similar analysis was used for the 3:1 resonantly forced systems discussed in Ref. [6].
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Fig. 9. Phase 7eld of the 2:1 FCGL equation with �1 = 0:3, �2 = 0:5, p= 0:6, J�= 0:38, ‘= 1 (order of the
di'usion length), system size is 200× 200, with periodic boundary conditions. Time increases from left to
right in units of 1000 and results are shown after a transient time of t0 = 16 000 time units.

Fig. 10. Phase 7eld of the 2:1 FCGL equation with �1 = 0, �2 = 1, p= 0:62, J�= 0:38, ‘= 1, system size is
200× 200, with periodic boundary conditions. Time increases from left to right in units of 1000 and results
are shown after a transient time of t0 = 18 000 time units.

Fig. 10 shows dynamics for case (ii) from the same initial conditions. In contrast with
case (i), the initial pattern has persisted apart from roughening of the initially planar
fronts. Nearly all of the system is stationary, with the exception of some oscillatory
motion at some places along the fronts. In case (ii), where some of the noise domains
are forced below the phase-locking threshold, it may happen that small regions of the
system exhibit oscillatory local dynamics and emit waves into the surrounding medium.
However, the �(r) 7eld for the realization shown in Fig. 10 does not contain any of
these “pacemakers”, a fact which was determined by performing a simulation with the
spatially uniform initial condition A(x; y; 0) ≡ A0. Hence, the time-varying behavior
seen in Fig. 10 is a result of Bloch front reversal events. Note that in case (ii), no
regions of the systems are being forced with values lying in the Bloch regime, yet
Bloch-like front dynamics arise as a consequence of di'usive averaging.

5. Conclusions

The research described here shows that spatial inhomogeneities in the external forcing
7eld can lead to a variety of types of wave propagation which result in both periodic
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and irregular pattern formation dynamics in resonantly forced reaction–di'usion sys-
tems. In 2:1 resonantly locked systems the chemical patterns are associated with Bloch
front reversals when an Ising domain is encountered. Situations of the sort consid-
ered in this paper, including both spatially regular and random forcing 7elds, can be
realized in experiments on the periodically forced, light-sensitive Belousov–Zhabotinsky
reaction which has been studied with spatially uniform forcing 7elds. In addition, sim-
ilar phenomena should be seen if the spatial inhomogeneity exists in other system
parameters and if spatially uniform periodic illumination is applied. Consequently, the
phenomena described here could be found in naturally occurring oscillatory media,
where inhomogeneity is the rule rather than the exception, subject to periodic forcing.
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