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The propulsion of active particles by self-diffusiophoresis is driven by asymmetric catalytic reactions
on the particle surface that generate a mechanochemical coupling between the fluid velocity and the
concentration fields of fuel and product in the surrounding solution. Because of thermal and molecular
fluctuations in the solution, the motion of micrometric or submicrometric active particles is stochastic.
Coupled Langevin equations describing the translation, rotation, and reaction of such active parti-
cles are deduced from fluctuating chemohydrodynamics and fluctuating boundary conditions at the
interface between the fluid and the particle. These equations are consistent with microreversibility
and the Onsager-Casimir reciprocal relations between affinities and currents and provide a thermo-
dynamically consistent basis for the investigation of the dynamics of active particles propelled by
diffusiophoretic mechanisms. Published by AIP Publishing. https://doi.org/10.1063/1.5020442

I. INTRODUCTION

Nature often makes use of molecular machines that con-
vert chemical energy supplied by their environments into
directed motion that is then exploited to carry out var-
ious transport and other biological functions.1 One need
not rely on nature to construct small machines, and syn-
thetic self-propelled nano- and micro-motors use catalytic
chemical reactions on a portion of the motor to achieve
directed motion. Such motors have been made and are the
focus of much interest because of the myriad of potential
applications that make use of their small size and ability
to carry out active transport.2–8 These active particles are
driven by gradients of concentrations, electrochemical poten-
tials, or temperature generated by the surface reactions and
operate in nonequilibrium systems where energy transduc-
tion from reaction to motion is induced by mechanochem-
ical coupling through diffusiophoresis, electrophoresis, or
thermophoresis.9–11

Because of their micrometric or submicrometric sizes,
active particles are subjected to thermal and molecular fluctu-
ations in the solution, in which they reside, so that a stochastic
description of the system is required to study their dynamics.
In this regard, a challenging issue is how to bridge the gap
between the fluctuating chemohydrodynamics describing the
fluid and the stochastic movements of the active particle while
remaining consistent with the principles of nonequilibrium
thermodynamics.12–17

The purpose of the present paper is to address this issue
and set up a framework to deduce overdamped Langevin
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equations ruling the stochastic translation, rotation, and reac-
tion of an active particle self-propelled by diffusiophoresis,
starting from a fluctuating continuous-medium description.
The key element in this analysis is the need to understand
the interplay between the boundary conditions for the fluid
velocity and solute concentration fields at the interface with
the active particle. The boundary conditions express the
coupling between the interfacial processes generating the
mechanochemical coupling. These processes are the surface
reaction, the diffusiophoretic effect, and the interfacial friction
due to slip velocity. To be consistent with microreversibil-
ity, the linear response coefficients describing these interfacial
processes must satisfy the Onsager-Casimir reciprocal rela-
tions.18–22 Since the mechanochemical coupling is generated
by diffusiophoresis, there exists a reciprocal effect back onto
the concentration fields and the reaction, which has conse-
quences for the coupled stochastic equations ruling the motion
and reaction of the particle. Because of this reciprocal effect,
the reaction rate depends on the mechanical force exerted on
the particle. The inclusion of this reciprocal effect is essential
in order to obtain the mechanochemical fluctuation theorem
that governs the stochastic motion of the chemically propelled
motor.23

The plan of this paper is the following. In Sec. II, the
fluctuating chemohydrodynamics formulation is presented for
a solution containing a Janus particle with a catalytic sur-
face where an interfacial reaction takes place. The frequency-
dependent force, torque, and reaction rate of the particle are
deduced from these boundary conditions in Sec. III. In Sec. IV,
the low-frequency limit is considered in order to obtain ana-
lytical expressions for these quantities for a spherical Janus
particle composed of catalytic and noncatalytic hemispheres.
In this way, the diffusiophoretic force is expressed in terms
of diffusiophoretic constants and the reaction rate. In Sec. V,
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the coupled overdamped Langevin equations, as well as the
associated Fokker-Planck equation, are deduced for the
stochastic motion and reaction of the Janus motor and their
implications are studied. The conclusions are given in Sec. VI,
which summarizes the results and presents a perspective on
the work.

II. FLUCTUATING CHEMOHYDRODYNAMICS
WITH SURFACE REACTIONS

Fluctuating thermodynamics methods are well known
and provide a way to incorporate thermal fluctuations in
continuum descriptions of the dynamics.24–27 In the linear
regime, close to thermodynamic equilibrium, the fluctuation-
dissipation theorem provides a systematic method to set up
the stochastic differential equations describing the random
motion of the variables that are used to describe the dynamics
of the system. To implement this scheme, the different irre-
versible processes {α} are identified and the thermodynamic
entropy production rate is written as a linear combination
of products of their affinities {Aα} and noiseless currents
{〈Jα〉},12–17

1
kB

diS
dt
=

∑
α

Aα〈Jα〉 ≥ 0 , (1)

where kB is Boltzmann’s constant and 〈·〉 denotes the statis-
tical average over the fluctuations. The non-negativity of the
entropy production rate is the expression of the second law
of thermodynamics, implying that the entropy of an isolated
system increases up to a maximum reached at equilibrium.
Phenomenological linear relations are established between the
currents and the affinities

〈Jα〉 =
∑
β

LαβAβ (2)

in terms of linear response coefficients Lαβ so that the entropy
production rate takes the quadratic form

1
kB

diS
dt
=

∑
α,β

LαβAαAβ ≥ 0 . (3)

As a consequence of microreversibility, the linear response
coefficients obey the Onsager-Casimir reciprocal relations
Lαβ = εαεβLβα, where εα = ±1 when Aα is even or odd
under time reversal.16–22 Accordingly, only the coefficients
Lαβ that couple processes with the same parity under time
reversal contribute to the entropy production rate (3).

Fluctuating currents are obtained by adding a noise term
δJα(t) to the mean currents,

Jα =
∑
β

LαβAβ + δJα(t) . (4)

By virtue of the fluctuation-dissipation theorem holding close
to equilibrium, and since the system has many degrees of
freedom, the fluctuating quantities δJα(t) are assumed to be
Gaussian white noise processes characterized by

〈δJα(t)〉 = 0 and

〈δJα(t) δJβ(t ′)〉 = (Lαβ + Lβα) δ(t − t ′) , (5)

on time scales longer than correlation times.24–27 We note
that Eq. (5) vanishes if processes with opposite parities under

time reversal are coupled together by coefficients such that
Lαβ = �Lβα, in which case there is no associated noise to
consider.

Making the assumption of local thermodynamic equi-
librium, the same principles may be used to construct the
stochastic equations for spatially extended systems.25–28

The general stochastic thermodynamics method outlined
above will now be applied to describe Janus motors propelled
by a diffusiophoretic mechanism. A Janus motor is a spherical
particle with catalytic and noncatalytic hemispheres, and we
suppose that it is suspended in a multi-component fluid con-
taining solute species, labeled by the index k, that interact with
the motor through short range intermolecular potentials uk . We
further assume that the reversible reactions A 
 B occur on
the catalytic hemisphere and call species A the fuel and B the
product. These chemical reactions produce inhomogeneous cA

and cB concentration fields in the motor vicinity that lead to a
body force on the motor. If no external forces act on the system
and momentum is conserved, fluid flows arise in the surround-
ing medium which are responsible for motor propulsion. The
forms that the stochastic equations for the fluid velocity and
concentration fields take in the solution and on the surface are
given below.

A. Stochastic equations in the bulk phases

If the exothermicity of the reaction is negligible, we may
suppose that the system remains isothermal with an invariant
and uniform temperature T. The hydrodynamic and diffusive
processes in the solution surrounding the catalytic Janus par-
ticle are described by the coupled Navier-Stokes and diffusion
equations. The fluctuating Navier-Stokes equation ruling the
velocity field v is given by

ρ (∂tv + v · ∇∇∇v) = −div P , (6)

where ρ is the mass density and P is the pressure tensor.25–28

The fluid is assumed to be incompressible,

∇∇∇ · v = 0, (7)

so that the mass density remains uniform. In this case, the
pressure tensor is related to the gradients of the velocity field
by the phenomenological linear relations,

Pij = P δij − η
(
∂ivj + ∂jvi

)
+ πij , (8)

where P is the hydrostatic pressure, η is the shear viscosity,
and πij are Gaussian white noise fields characterized by

〈πij(r, t)〉 = 0 and

〈πij(r, t) πkl(r′, t ′)〉 = 2kBTη(δikδjl + δilδjk)δ(r − r′) δ(t − t ′)

(9)

in accord with the general relations given in Eqs. (4) and
(5), where the current corresponds to the viscous part of the
pressure tensor and the affinity to the gradient of the velocity
field.25–28

The fluctuating diffusion equations for the concentration
fields ck of the different solute species k = 1, 2, . . ., s have the
form
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∂t ck +∇∇∇ · jk = 0 . (10)

In a dilute solution where cross-diffusion is negligible, the
fluctuating current densities can be expressed as

jk = ckv − Dk∇∇∇ck + ηηηk , (11)

in terms of the molecular diffusivity Dk of species k and
Gaussian white noise fields ηk satisfying26,27

〈ηηηk(r, t)〉 = 0 and (12)

〈ηηηk(r, t)ηηηk′(r′, t ′)〉 = 2Dkckδkk′δ(r − r′) δ(t − t ′) 1,

with 1 denoting the 3 × 3 identity matrix. With respect to
Eqs. (4) and (5), here the currents correspond to the diffusive
part of current densities and the affinities correspond to the
gradients of chemical potentials µk = µ0

k + kBT ln(ck/c0).17

Moreover, the noise terms on the pressure and current densities
are uncorrelated, 〈πij(r, t)ηηηk′(r′, t ′)〉 = 0.

Inside a solid Janus particle of radius R, the velocity and
concentration fields take the following values:29

v(r, t) = V(t) +ΩΩΩ(t) × [r − R(t)] and ck(r, t) = 0, (13)

for ‖r �R(t)‖ < R and k = 1, 2, . . ., s, where R(t) is the position
of the center of mass of the Janus particle, V(t) is its velocity,
and Ω(t) is its angular velocity.

B. Stochastic equations at the interface

Several processes take place at the interface between the
fluid and the Janus particle. First, there is a frictional force
along the interface associated with the partial slip of the veloc-
ity field between the fluid and the solid particle. Second, the
reaction A
 B takes place on the catalytic hemisphere of the
Janus particle with local rate,

w = κ+cA − κ−cB , (14)

where κ± are rate coefficients. Third, a diffusiophoretic force
is exerted by the diffusing species on the Janus particle. All
these processes can be described by boundary conditions on
the velocity and concentration fields by extending interface
nonequilibrium thermodynamics21,22,30,31 to stochastic pro-
cesses.32 These boundary conditions take account of transport
between the bulk of the solution and the interface with the solid
particle.

The transport properties that are tangential to the inter-
face are determined as in Ref. 22 using the expression for the
interfacial thermodynamic entropy production to identify the
interfacial currents and affinities. Here, the relevant currents
are the tangential components of the pressure tensor P and
the surface current density js

k of species k. The corresponding
affinities, respectively, are proportional to the slip velocity vslip

between the fluid and the solid, and the tangential gradient∇∇∇⊥
of the surface chemical potential µs

k of species k. According
to Eqs. (4) and (5), we expect there to be a coupling between
them as follows:

n · P · 1⊥ = −
Lvv

T
vslip −

∑
k

Lvk

T
∇∇∇⊥µ

s
k + f s

fl, (15)

js
k = −

Lkv

T
vslip −

∑
l

Lkl

T
∇∇∇⊥µ

s
l + ηηηs

k , (16)

where n denotes a unit vector normal to the interface and
oriented toward the fluid, and 1⊥ ≡ 1 − nn.

In Eq. (15), the quantity λ = Lvv/T is the coefficient of
sliding friction.33 The fluctuating force per unit area associated
with sliding friction, f s

fl(r, t), is discussed in Ref. 32 and is given
by the Gaussian white noise process satisfying

〈f s
fl(r, t)〉 = 0 and

δs(r, t) 〈f s
fl(r, t) f s

fl(r′, t ′)〉 δs(r′, t ′)

= 2kBTλ δs(r, t) δ(r − r′) δ(t − t ′) 1⊥ , (17)

where δs(r, t) is the interfacial Dirac distribution.22

In Eq. (16), the coefficients Lkl characterize diffusive
transport tangential to the interface. If surface cross-diffusion
were neglected, these coefficients would be related to the
surface diffusion coefficients Ds

k . Indeed, in the presence of
adsorbates with excess surface density Γk for species k, the
second term on the right-hand side of Eq. (16) would read
−Ds

k∇∇∇⊥Γk in agreement with Fick’s law for surface diffusion,
if Lkl/T = δklDs

kΓk/(kBT ). In this case, the interfacial Gaussian
white noise terms ηηηs

k associated with surface diffusion would
satisfy relations similar to Eqs. (17), but with Ds

kΓk in place of
kBTλ.

Diffusiophoresis is characterized by the coefficients Lvk

in Eq. (15). If there is local equilibrium between the species k
at the interface and in the solution because transport is faster in
the normal direction than in the tangential one, the surface and
bulk chemical potentials should be equal, µs

k = µk , and both
are determined by the bulk concentration ck . Accordingly, we
deduce from Eq. (15) the following boundary condition on the
tangential component of the velocity field,

vslip ≡ 1⊥ · {v(r, t) − V(t) −ΩΩΩ(t) × [r − R(t)]}

= 1⊥ ·
{

b
[
∇∇∇v(r, t) +∇∇∇v(r, t)T

]
· n + f s

fl(r, t)/λ

−
∑

k

bk∇∇∇ck(r, t)

}
(18)

for ‖r � R(t)‖ = R. Here, b = η/λ is the slip length, and the bk

are the diffusiophoretic constants,

bk ≡ kB
Lvk

λck
=

kBT
η

(
K (1)

k + b K (0)
k

)
, (19)

which are given in terms of the quantities,

K (n)
k ≡

∫ R+δ

R
dr (r − R)n

[
e−βuk (r) − 1

]
, (20)

where δ is the finite range of the intermolecular potentials uk(r)
in the direction r that is radial from the center of mass of the
Janus particle, and β = (kBT )−1.34–37 The expression (18) for
the slip velocity that includes the diffusiophoretic term with
the constants (19) in the presence of partial slip was obtained



134104-4 P. Gaspard and R. Kapral J. Chem. Phys. 148, 134104 (2018)

previously.37 Here we assume that the reaction has a negligi-
ble effect on the diffusiophoretic constants. In addition to the
boundary condition (18), the normal component of the velocity
field obeys38

n · v(r, t) = n · V(t) (21)

for ‖r � R(t)‖ = R.
In order to satisfy microreversibility, the linear response

coefficients in Eqs. (15) and (16) must obey the Onsager-
Casimir reciprocal relations,

Lkv = −Lvk and Lkl = Llk , (22)

because vslip is odd under time reversal, while ∇∇∇⊥µs
l is even.

The relations in the first equality show that diffusiophoresis
has a reciprocal effect back onto the surface current density
(16), but there is no noise associated with diffusiophoresis as
a consequence of Eq. (5).

The boundary conditions on the concentration fields are
determined by the transport of the species in the direction
normal to the interface, the surface reaction rate (14), and
the reciprocal effect of diffusiophoresis. For species k, the
boundary condition can be expressed as

n · (ck v − Dk ∇∇∇ck)R = νk(w + ξs) − Σs
k , (23)

where νk is the stoichiometric coefficient, which is positive
for the product, νB = 1, and negative for the reactant, νA = �1,
and ξs(r, t) is the interfacial noise associated with the surface
reaction (14) and satisfying

〈ξs(r, t)〉 = 0 and

δs(r, t) 〈ξs(r, t) ξs(r′, t ′)〉 δs(r′, t ′)

= (κ+cA + κ−cB) δs(r, t) δ(r − r′) δ(t − t ′). (24)

Furthermore, there is a possible sink into the interface given
by

Σ
s
k = ∂tΓk +∇∇∇⊥ · (Γkvs + js

k), (25)

where vs is the surface velocity and js
k is the surface cur-

rent density (16), which is determined, in particular, by the
reciprocal effect of diffusiophoresis. This effect is a conse-
quence of microreversibility and the Onsager-Casimir recipro-
cal relations in the coupling with the coefficients Lkv between
interfacial solute transport and the slip velocity, in analogy
with the cross effects related to thermal slip.21,22 If there is
local equilibrium between the interface and the bulk of the
solution, the excess surface density is driven by the corre-
sponding concentration according to Γk = K (0)

k ck(r = R) with
the proportionality constant given by Eq. (20) for n = 0.35,36

Otherwise, the excess surface density Γk is an autonomous
interfacial field ruled by Eq. (25).31

The boundary conditions (18), (21), and (23) will be used
in Sec. III to determine the effects of the surrounding solution
on the Janus motor.

III. FREQUENCY-DEPENDENT FORCE,
TORQUE, AND REACTION RATE

The force exerted on the Janus particle by the fluid is
determined by the surface integral of the pressure tensor at the

interface S(t) between the fluid and the Janus particle and, if
present, an external force Fext. As a consequence, Newton’s
equation for the Janus particle is given by

m
dV
dt
= −

∫
S(t)

P(r, t) · n dS + Fext, (26)

where m = ∫V(t) ρsol dr is the mass of the Janus particle and
ρsol is its mass density.28,29

In a similar manner, a torque is exerted by the fluid
on the Janus particle so that the angular velocity obeys the
equation

I · dΩΩΩ
dt
= −

∫
S(t)
∆r ×

[P(r, t) · n
]

dS + Text, (27)

where the inertia tensor I of the Janus particle has the compo-
nents Iij = ∫V(t) ρsol

(
∆r2 δij − ∆ri∆rj

)
dr with ∆r ≡ r � R(t),

and Text is an external torque.32,39–41

The overall reaction rate of the Janus particle is given
by

W =
∫
S(t)

dS (κ+ cA − κ− cB)R , (28)

where the surface integral is carried out over the catalytic
hemisphere of the Janus particle because the rate constants
κ± vanish on the noncatalytic hemisphere.

A. Linearization and induced force density

The aforementioned stochastic partial differential equa-
tions are nonlinear, and they are linearized in order to
obtain their solutions.28,29 The linearization is justified if the
Reynolds number

Re ≡
VdR
ν
� 1 (29)

so that the flow is laminar. Here Vd is the diffusiophoretic
velocity of the Janus particle and ν = η/ρ is the kinematic
viscosity. The condition (29) is well satisfied for micron-size
Janus motors with typical velocities Vd ∼ 10�5 m/s in water
solutions where ν ' 10�6 m2/s, since Re ∼ 10�5. In this low
Reynolds number regime, the advective term v · ∇ is negligible
in comparison with the time derivative ∂t , which is of order
ν/R2.

Following Bedeaux and Mazur,28 the problem is reformu-
lated by introducing an induced force density field f ind(r, t) to
represent the effects of the boundary conditions on the veloc-
ity field so that the linearized equation of motion of the fluid
becomes

ρ ∂tv(r, t) = −div P(r, t) + f ind(r, t), (30)

for an incompressible fluid where Eq. (7) holds, and with the
pressure tensor given in Eq. (8). Taking the coordinate origin
at the center of the Janus particle, the induced force density
field is chosen to vanish in the fluid, f ind(r, t) = 0 if r > R, and
to comply with the constraints that the velocity field satisfies
the linear equation v(r, t) = V(t) + Ω(t) × r if r ≤ R, and the
hydrostatic pressure is zero in the solid particle, P(r, t) = 0 if r
< R. As a consequence of Eq. (30), the induced force density
in the solid particle is given by
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f ind(r, t) = ρ
d
dt

[V(t) +ΩΩΩ(t) × r] if r < R , (31)

but it is singular on the interface.29

The linearized problem is solved by Fourier transforma-
tion in time,

v(r,ω) =
∫ +∞

−∞

dt eiωt v(r, t), (32)

for the velocity and other fields so that Eq. (30), using Eqs. (7)
and (8), becomes(
−iωρ − η∇2

)
v(r,ω) = −∇∇∇P(r,ω) −∇∇∇ · πππ(r,ω) + f ind(r,ω),

(33)

∇2P(r,ω) = −∇∇∇∇∇∇ : πππ(r,ω) +∇∇∇ · f ind(r,ω). (34)

Introducing the Green function,

G(r,ω) =
1

4πηr
exp (−αr) with α =

√
−iω/ν (35)

(Re α ≥ 0), the solution of Eqs. (33) and (34) can be expressed
as

v(r,ω) = v0(r,ω) +
∫

dr′
{

G(r − r′,ω) +
1

α2

∂

∂r′
∂

∂r′

×
[
G(r − r′, 0) − G(r − r′,ω)

]}
· f ind(r′,ω)

(36)

in terms of the induced force density and the fluctuating veloc-
ity field v0 in the absence of the particle.28,29,38 The correlation
functions of the Gaussian white noise velocity field v0 may be
determined directly from Eq. (9). In the following, Eq. (36) is
used to determine the force and the torque of the fluid on the
particle.

B. Force of the fluid on the Janus particle

The fluctuating force exerted by the fluid on the Janus
particle can be expressed in terms of the induced force density
as28

F(ω) = −
∫
S

P(r,ω) · n dS = −
∫

r≤R
dr∇∇∇ · P(r,ω)

= −iωρ
4πR3

3
V(ω) −

∫
r≤R

dr f ind(r,ω). (37)

The relation between the induced force density and the unper-
turbed velocity field v0 remains to be determined. For this
purpose, the Fourier transforms of the boundary conditions
(18) and (21) are averaged over the surface to obtain

1⊥ · v(r,ω)
s
− b 1⊥ ·

[
∇∇∇v(r,ω) +∇∇∇v(r,ω)T]

· n
s

(38)

+ 1⊥ · vs
fl(r,ω)

s
+

∑
k

bk 1⊥ · ∇∇∇ck(r,ω)
s
=

2
3

V(ω) ,

nn · v(r,ω)
s
=

1
3

V(ω) , (39)

where

(·)
s
=

1

4πR2

∫
r=R

(·) dS . (40)

In writing these equations, it has been assumed that the dif-
fusiophoretic constants bk take uniform values on the entire
spherical surface of the particle, otherwise they should be
included in the surface average on the left-hand side of Eq. (38).
Using the identity R∫ r=Rnn · v dS = ∫ r ≤Rv dr, Eq. (39) can be
written as the volume average of the velocity field,

V(ω) = v(r,ω)
v
=

3

4πR3

∫
r≤R

v(r,ω) dr . (41)

From this point, the calculations in Sec. 3 of Ref. 38 can
be followed step-by-step. Expression (36) for the velocity field
is substituted in Eqs. (38) and (41) to get the volume integral of
the induced force f ind(r,ω) appearing on the right-hand side of
Eq. (37). In this way, the force (37) is obtained in the form of
a generalized Faxén theorem that includes contributions from
diffusiophoresis. This force can be written as the sum of three
terms,

F(ω) = −γ(ω)V(ω) + Fd(ω) + Ffl(ω). (42)

The first term is the frequency-dependent Stokes drag force
�γ(ω)V(ω), where γ(ω) is the frequency-dependent Stokes
friction coefficient,

γ(ω) = 6πηR
[ (1 + αR)(1 + 2b/R)

1 + b(3 + αR)/R
+
α2R2

9

]
. (43)

The second term is the frequency-dependent diffusiophoretic
force,

Fd(ω) =
6πηR (1 + αR)

1 + b(3 + αR)/R

∑
k

bk 1⊥ · ∇∇∇ck(r,ω)
s
, (44)

while the third term is the Langevin fluctuating force,

Ffl(ω) = 6πηR

{
α2R2

3
v0(r,ω)

v
+

1 + αR
1 + b(3 + αR)/R

×
[
1 +

b
R

(
2 − R

∂

∂R

)]
v0(r,ω)

s

+
1 + αR

1 + b(3 + αR)/R
1⊥ · vs

fl(r,ω)
s
}

, (45)

which depends on the fluctuating unperturbed velocity field
v0(r, ω) and can be shown to obey the fluctuation-dissipation
theorem,28,32

〈Ffl(ω)〉 = 0 and

〈Ffl(ω) F∗fl(ω′)〉 = 4π kBT Re γ(ω) δ(ω − ω′) 1. (46)

The expressions for the Stokes drag force and Langevin
fluctuating force given above were obtained earlier.32,38 The
frequency-dependent translational friction coefficient for stick
boundary conditions is known42 and agrees with Eq. (43) for
b = 0.

The equation of motion for a Brownian particle corre-
sponding to the frequency-dependent friction has a memory
kernel with a long-time tail and an extra acceleration term giv-
ing an effective mass m + mfluid/2 where mfluid is the mass
of the displaced fluid.43–46 The long-time tail also manifests
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itself in the time-dependent correlation function of the fluc-
tuating force. In the noiseless limit, the equation of motion is
consistent with that in Refs. 47 and 48. The effects of the long-
time tail become negligible at low frequency if the Lorentz
condition m � mfluid is satisfied, in which case the standard
Langevin equation is recovered for a Brownian particle with-
out the diffusiophoretic force.44 A crossover to the Langevin
low-frequency regime occurs for |αR|∼ 1 around the frequency
ω ∼ ν/R2 characteristic of shear viscosity. This low-frequency
limit will be considered in Sec. IV.

If the compressibility of the fluid is taken into account,
modifications appear beyond the frequencyω' vsound/R where
vsound is the sound velocity.49 This is a very large frequency in
the case of water where ω ' 1.5 × 109 s�1 so that these effects
will be neglected here.

C. Torque of the fluid on the Janus particle

A Faxén-like theorem for the torque on a spherical parti-
cle using methods similar to those for the force was derived
earlier.39–41 Extending such calculations to include the diffu-
siophoretic contribution, we find that the torque can also be
written as the sum of three contributions,

T(ω) = −γr(ω)ΩΩΩ(ω) + Td(ω) + Tfl(ω), (47)

with the frequency-dependent rotational friction coefficient
given by

γr(ω) = 8πηR3(1 − 3 ξ)
1 + αR + (αR)2/3

1 + αR + ξ(αR)2
, (48)

where ξ = b/(R + 3b).41 For stick boundary condition (b = 0),
the known expression42 is recovered.

The diffusiophoretic torque is

Td(ω) =
3

2R2
γr(ω)

∑
k

bkr ×∇∇∇ck(r,ω)
s
, (49)

while the random torque Tfl(ω) is a Gaussian white noise
process with

〈Tfl(ω)〉 = 0,

〈Tfl(ω) T∗fl(ω′)〉 = 4π kBT Re γr(ω) δ(ω − ω′) 1. (50)

The frequency dependence of the torque undergoes a similar
crossover as for the force around the viscosity characteristic
frequency ω ∼ ν/R2. The low-frequency limit will be taken in
Sec. IV.

D. Reaction rate and concentration fields

The advection-diffusion equations (10) and (11) for the
concentration fields and their boundary conditions (23) can be
linearized if the Péclet numbers are small enough,

Pek ≡
VdR
Dk
� 1 . (51)

This condition holds for a micron-size Janus particle mov-
ing at the velocity Vd ∼ 10�5 m/s where the solute molecu-
lar diffusion coefficients are of order Dk ∼ 10�9 m2/s so that
Pek ∼ 10�2. Under such circumstances, the advective term in

Eq. (11) is negligible and we obtain the linearized fluctuating
diffusion equation

∂t ck = Dk∇
2ck −∇∇∇ · ηηηk . (52)

In terms of the Fourier transforms of the concentration
fields,

ck(r,ω) =
∫ +∞

−∞

dt eiωt ck(r, t), (53)

Equation (52) can be written as(
−iω − Dk∇

2
)

ck(r,ω) +∇∇∇ · ηηηk(r,ω) = σk(r,ω), (54)

where the source term σk is defined on the reactive interface
and may be determined using the linearized boundary condi-
tions (23). This source plays a role that is analogous to the
induced force density. The diffusion Green functions satisfy
the equation (

−iω − Dk∇
2
)

Gk(r,ω) = δ(r) (55)

and are given by

Gk(r,ω) =
1

4πDkr
exp (−αkr) with αk =

√
−iω/Dk

(56)
(Re αk ≥ 0). The solution of Eq. (54) can be expressed in terms
of these Green functions as

ck(r,ω) = ck0(r,ω) +
∫

dr′Gk(r − r′,ω)σk(r′,ω), (57)

where ck0(r, ω) is the unperturbed fluctuating concentration
field in the absence of the effects of σk and is given by the
solution of(

−iω − Dk∇
2
)

ck0(r,ω) +∇∇∇ · ηηηk(r,ω) = 0 . (58)

These equations can be solved by methods that are similar to
those described above for the velocity field by considering the
averages of Eq. (57) over the volume and the surface of the
Janus particle.50 The following expression for the frequency-
dependent reaction rate (28) is found:

W (ω) = 4πRDkνk(1 + αkR)
[
ck(r,ω)

s
− ck0(r,ω)

s]

+ iω
4πR3

3
νk ck0(r,ω)

v
. (59)

Contrary to Eq. (42) for the force or Eq. (47) for the torque, the
expression (59) does not have a closed form. If the catalytic sur-
face was spherical, the frequency-dependent rate would also
be given by

W (ω) = 4πR2
[
κ+cA(r,ω)

s
− κ−cB(r,ω)

s]
(60)

so that Eqs. (59) and (60) could be combined to obtain an
expression involving the surface and volume averages of the
unperturbed concentration fields, together with the terms of
diffusiophoretic origin. However, Eq. (60) does not hold in the
hemispherical geometry of a Janus particle because the rate
constants κ± vary along the surface of the particle. Therefore,
the inversion of Eq. (59) is not straightforward for a Janus par-
ticle. However, we see that αk plays a role similar to α for the
velocity field; thus, the frequency dependence should present
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a crossover for |αkR| ∼ 1, corresponding to the frequency
ω ∼ Dk /R2 characteristic of the diffusion of molecular species
k. The low-frequency limit will be analyzed in Sec. IV.

In circumstances where the conditions (51) do not hold,
we note that the advection-diffusion equations (10) and (11)
can be solved by expanding the fields in powers of the Péclet
numbers.

IV. LOW-FREQUENCY LIMIT

In this section, we consider the low-frequency limit for the
frequency-dependent force (42), torque (47), and rate (59). In
this regime, the two conditions |αR| � 1 and |αkR| � 1 are
satisfied, corresponding to the frequency range where both
ω � ν/R2 and ω � Dk /R2 apply.

A. Translation and rotation

In the low-frequency limit ω � ν/R2, the force (42)
is expressed in terms of frequency-independent translational
friction coefficient

γ = 6πηR
1 + 2b/R
1 + 3b/R

, (61)

which is related to the Janus particle diffusion coefficient by the
Einstein formula, D ≡ kBT /γ = (βγ)�1. The diffusiophoretic
force has the simpler form

Fd(ω) =
6πηR

1 + 3b/R

∑
k

bk 1⊥ · ∇∇∇ck(r,ω)
s
. (62)

Using the expression (19) for the diffusiophoretic constants,
bk , the diffusiophoretic force and friction coefficient adopt the
forms

Fd(ω) = 6πR kBT
∑

k

K (1)
k 1⊥ · ∇∇∇ck(r,ω)

s
(63)

and γ = 6πηR for stick boundary conditions, b = 0, and

Fd(ω) = 2πR2kBT
∑

k

K (0)
k 1⊥ · ∇∇∇ck(r,ω)

s
(64)

and γ = 4πηR for perfect slip boundary conditions, b =∞. The
diffusiophoretic force is well defined in both limits.

Also, in the low-frequency limit, the torque (47) is
given in terms of the frequency-independent rotational friction
coefficient

γr =
8πηR3

1 + 3b/R
, (65)

and the diffusiophoretic torque is

Td(ω) =
12πηR

1 + 3b/R

∑
k

bk r ×∇∇∇ck(r,ω)
s
. (66)

In the limit of perfect stick, we have

Td(ω) = 12πR kBT
∑

k

K (1)
k r ×∇∇∇ck(r,ω)

s
(67)

and γr = 8πηR3, which is consistent with a result obtained
previously in this limit.36 For perfect slip, we have

Td(ω) = 4πR2kBT
∑

k

K (0)
k r ×∇∇∇ck(r,ω)

s
(68)

and γr = 0. For a spherical Janus particle, the diffusiophoretic
torque vanishes by cylindrical symmetry, Td(ω) = 0, so that
only the frictional torque due to viscosity remains.

We note that, in the low-frequency domain ω � ν/R2,
long-time tail effects play a negligible role. For a micromet-
ric particle with R = 10�6 m in water, this range extends
up to ω � 106 s�1, corresponding to the microsecond time
scale.

B. Diffusion and reaction

For diffusion, the low-frequency regime where |αkR|
� 1 for all the species k corresponds to the range ω � Dk /R2

∼ 103 s�1 for molecular diffusivities of the order of Dk ∼ 10�9

m2/s. In this regime, the concentration fields take their static
profile around the Janus particle and can thus be determined
by standard methods.51,52

For a spherical Janus particle of radius R, the stationary
concentrations ck(r, θ) (k = A, B) may be obtained for small
enough Péclet numbers (51) by solving the diffusion equations,
∇2ck = 0, subject to the boundary conditions,

Dk∂rck |r=R = −νk χ(θ) (κ+cA − κ−cB)r=R ,

ck |r=∞ = c̄k , (69)

with χ(θ) = H(cos θ) where the Heaviside function H(ξ) takes
the values H(ξ) = 1 on the catalytic hemisphere and H(ξ) = 0
on the chemically inactive hemisphere. Here, we discard the
noise and sink terms in the boundary conditions (23) in order
to obtain an analytical expression for the main contribution
to the reaction rate. The effects of these terms on the reac-
tion rate will be restored in Sec. V by using the Onsager-
Casimir symmetry, but at the level of the overdamped Langevin
equations.

The concentration fields of species k around a spherical
Janus particle of radius R are given by

ck(r, θ) = c̄k + νk
R

Dk

(
κ+c̄A − κ−c̄B

)
f (r, θ) , (70)

where the function f (r, θ) satisfies the diffusion equation
∇2f = 0 with the boundary conditions R ∂r f |R = H(cos θ)
(Da f − 1)R and f |∞ = 0 in spherical coordinates (r, θ, φ)
aligned parallel to the particle axis. The boundary condi-
tion at the particle surface r = R involves the dimensionless
Damköhler number

Da ≡ R

(
κ+

DA
+
κ−
DB

)
. (71)

Letting k± = 4πR2κ±, we see that this number takes the
form Da = k+/kDA + k−/kDB , where kDk = 4πDkR are the
Smoluchowski diffusion-controlled rate coefficients. In the
reaction-limited regime, k± � kDk and Da � 1, while in the
diffusion-controlled regime k± � kDk and Da� 1.

To obtain the solution, f (r, θ) is expanded in Legendre
functions Pl(ξ), with ξ = cos θ,
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f (r, θ) =
∞∑

l=0

al Pl(ξ)(R/r)l+1. (72)

The coefficients are given by al =
∑∞

l′=0

(
M−1

)
ll′

Al′ , where

Mll′ = 2(2l + 1)−1 (l + 1) δll′ + Da Bll′ with Al = ∫
1

0 dξ Pl(ξ)
and Bll′ = ∫

1
0 dξ Pl(ξ) Pl′(ξ).

Using these results, the mean value of the reaction rate
(28) may be written as

Wrxn = Γ (κ+c̄A − κ−c̄B) , (73)

with Γ = 2πR2(1 � Da γJ ), where

γJ =
1

2πR2

∫
r=R

dS f (r, θ) H(cos θ) =
∞∑

l=0

al Al . (74)

Equivalently, the mean reaction rate is given by Eq. (59) in the
limit ω = 0, showing that Γ = 4πR2a0. The surface average of
the aforementioned boundary condition satisfied by f (r, θ) at
r = R confirms that a0 = (1�Da γJ )/2. The dimensionless coef-
ficients a0 and γJ may be obtained by numerical evaluations
as a function of the Damköhler number (71). The Appendix
gives additional details pertaining to the dependence of γJ on
Da.

At thermodynamic equilibrium, the concentrations c̄k

should satisfy the Guldberg-Waage condition,

c̄A,eq

c̄B,eq
=
κ−
κ+
= exp

∆µ0

kBT
, (75)

where ∆µ0 = µ0
B − µ

0
A is the standard free energy of the reac-

tion A → B. The free energy of the reaction is related to the
concentrations by ∆µ = ∆µ0 +kBT ln(c̄B/c̄A), which vanishes
at equilibrium, ∆µeq = 0, because of Eq. (75).

Now, the reaction is driven out of equilibrium if the con-
centrations are not in their equilibrium ratio (75). In this
respect, the nonequilibrium control parameter of the reac-
tion is defined in general as the dimensionless chemical
affinity

Arxn ≡ ln
κ+c̄A

κ−c̄B
= −
∆µ

kBT
, (76)

which is positive (respectively, negative) for the reaction run-
ning in the direction A→B (respectively, B→A) and vanishes
at equilibrium.

In the following, we consider the reaction in the linear
regime close to equilibrium where the deviations of the con-
centrations from their equilibrium values, δc̄k ≡ c̄k − c̄k,eq, are
small: |δc̄k | � c̄k,eq. In this regime, the chemical affinity can
be approximated as

Arxn '
δc̄A

c̄A,eq
−
δc̄B

c̄B,eq
, (77)

up to terms of second order in the concentration deviations
δc̄k .

Introducing the reaction diffusivity

Drxn ≡
Γ

2
(κ+c̄A + κ−c̄B) , (78)

associated with the reaction rate (73), the chemical affinity
(77) may also be written close to equilibrium as

Arxn =
Wrxn

Drxn
, (79)

up to terms with higher powers in the reaction rate (73).

C. The diffusiophoretic force

Since the concentration fields in Eq. (70) are now known,
we may write a more explicit expression for the diffusio-
phoretic force (62),

Fd =
4πηR

1 + 3b/R

(
bB

DB
−

bA

DA

)
(κ+c̄A − κ−c̄B) a1u, (80)

where we used the fact that

1⊥ · ∇∇∇f (r, θ)
s
=

u
R

∫ +1

−1
dξ ξf (R, θ) =

2
3

a1

R
u . (81)

The main features of the dependence of the coefficient a1 on
Da are given in the Appendix. From Eq. (80), we see that
the diffusiophoretic force is aligned parallel to the particle
axis

Fd = Fd u ≡ γ χWrxn u , (82)

where we have rewritten Fd in the second equality to define
the diffusiophoretic parameter χ,

χ ≡
Fd

γWrxn
=

a1

a06πR2 (1 + 2b/R)

(
bB

DB
−

bA

DA

)
, (83)

which will be useful in what follows. Using the approximation
given by Eq. (19) for the diffusiophoretic constants, we have
that

χ '
a1kBT

a06πηR2 (1 + 2b/R)
*
,

K (1)
B + bK (0)

B

DB
−

K (1)
A + bK (0)

A

DA

+
-

.

(84)
We see that Fd remains finite in the limits of perfect stick
(b = 0) and perfect slip (b→∞) boundary conditions.

Our calculation does not include corrections due to non-
vanishing Péclet numbers.36,37

V. COUPLED LANGEVIN EQUATIONS
IN THE OVERDAMPED REGIME

In an earlier study, overdamped Langevin equations for
translation, rotation, and reaction were written and used to
derive a nonequilibrium mechanochemical fluctuation theo-
rem for diffusiophoretic Janus motors.23 In this section, we
show how these Langevin equations can be derived from the
fluctuating thermodynamics formalism presented above, and
deduce further results about the nonequilibrium dynamics of
Janus motors.

A. Translation

The overdamped regime, where the friction due to viscos-
ity dominates the inertial effects, lies in the domain whereω�
6πηR/m = 4.5(ρ/ρsol) (ν/R2). This corresponds to the condition
ω � 106 s�1 for a solid particle with mass density ρsol ' 4.5
ρ. In this case, the overdamped regime essentially coincides
with the low-frequency domain where the Lorentz condition
is satisfied and the long-time tail effects can be neglected.
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Using the low-frequency limit of the force, we may imme-
diately write the Langevin equation for a spherical Janus
particle of mass m as

m
dV
dt
= −γV + Fd + Fext + Ffl(t) , (85)

where the translational friction coefficient γ is given in Eq. (61)
and the diffusiophoretic force in Eq. (82). We have also added
an external force, Fext. We notice that, in general, the Langevin
equation will contain an additional term that accounts for cou-
pling between translation and rotation, �γt,r·Ω, where γt,r is
the translation-rotation friction tensor. Since we consider a
spherical Janus particle, we have γt,r = 0.

According to the Langevin equation, the particle veloc-
ity becomes Maxwellian over the thermalization time scale
τt = m/γ. Since the mass is given by m = (4π/3)R3ρsol in
terms of the particle mass density ρsol, the thermalization time
becomes τt = 2ρsolR2/(9η) if b � R. For a silica micromet-
ric particle in water at 20 ◦C, the parameters take the val-
ues ρsol ' 1522 kg/m3, η ' 10�3 N s/m2, and R = 10�6 m
so that the thermalization time is estimated to be τt ' 3
× 10�7 s. This time scale is short enough to justify considering
the overdamped limit where the velocity distribution remains
Maxwellian.

In the overdamped limit, the inertial term proportional to
the mass m is negligible so, letting V = dr/dt, the Langevin
equation for a spherical Janus particle reduces to

dr
dt
= Vd + βD Fext + Vfl(t) , (86)

where we used γ�1 = βD to write the coefficient of Fext. The
fluctuating velocity field is Vfl(t) = Ffl(t)/γ and satisfies

〈Vfl(t)〉 = 0 ,

〈Vfl(t)Vfl(t ′)〉 = 2D δ(t − t ′) 1.
(87)

The diffusiophoretic velocity, Vd = Fd/γ, is

Vd =
1

1 + 2b/R

∑
k

bk 1⊥ · ∇∇∇ck(r)
s
= Vd u, (88)

where we have used Eq. (62). The unit vector u = (sin θ cos φ,
sin θ sin φ, cos θ) is taken to lie along the axis of the Janus parti-
cle and oriented from the inert toward the catalytic hemisphere.
The overdamped Langevin equation (86) has a standard form
used in other studies of active Janus particle dynamics; how-
ever, the general expression for the diffusiophoretic velocity
(88) that includes partial slip differs because of the form of the
diffusiophoretic force derived above. In the limit of perfect
stick, we obtain the usual expression,34

Vd =
kBT
η

∑
k

K (1)
k 1⊥ · ∇∇∇ck(r)

s
, (89)

while for perfect slip the result is

Vd =
kBT
η

R
2

∑
k

K (0)
k 1⊥ · ∇∇∇ck(r)

s
. (90)

The expression (88) for the diffusiophoretic velocity differs
from that obtained in Ref. 37 where the denominator 1 + 2b/R

is absent, but appears in our calculation which is based on the
generalized Faxen theorem.28,29

B. Rotation

For a spherical particle with inertia moment I = 2mR2/5
= 8πρsolR5/15, the overdamped regime, where the rotational
friction due to viscosity dominates the inertial effects, corre-
sponds to the domain whereω� 8πηR3/I = 15(ρ/ρsol) (ν/R2)
∼ 3× 106 s�1 for a solid particle with mass density ρsol ' 4.5 ρ.
In this case, the overdamped regime also essentially coincides
with the low-frequency domain ω � ν/R2.

Using Eq. (47), in this regime, the Langevin equation for
rotational motion of a Janus particle is given by

I · dΩΩΩ
dt
= −γrΩΩΩ + Td + Text + Tfl(t) , (91)

where Td is a torque due to diffusiophoresis, Text is an external
torque, and Tfl(t) is the Langevin fluctuating torque. Similar
to the translational Langevin equation, we have omitted a term
that couples rotation to translation (�γr,t·V) since this term
vanishes for our Janus particle, as does the diffusiophoretic
torque, Td = 0. The rotational velocity determines the time
evolution of the unit vector u according to

du
dt
= ΩΩΩ × u . (92)

If the Janus particle carries a magnetic moment µ = µu and
the system is subjected to a uniform external magnetic field
B, the external torque is given by Text = µ u × B, which has
the effect of orienting the magnetic moment (hence the unit
vector) in the direction of the magnetic field B.

If b� R, the thermalization time of the rotational velocity
is given by τr = I/γr = ρsolR2/(15η) = 3τt/10, which takes the
value τr ' 10�7 s for a micrometric particle in water. Again,
the time scale is short enough to justify taking the overdamped
limit,

du
dt
= −

1
γr

u × [Text + Tfl(t)]

=
µ

γr
(B − B · u u) −

1
γr

u × Tfl(t) . (93)

Note that this equation does not depend on the particle position
or the reactive state so that this stochastic equation is decou-
pled from the other equations; thus, it drives the direction u
independently of what happens for translation and reaction
because the Janus particle is spherical.

C. Reaction

The number n of reactive events during the time interval
[0, t] since the beginning of observation is also ruled by a
stochastic differential equation

dn
dt
= Wrxn + Wd + Wfl(t) , (94)

where W rxn is the aforementioned mean reaction rate, Wd is
a contribution from diffusiophoresis to be determined, and
Wfl(t) is a fluctuating rate. The rate (94) can be written as dn/dt
= �dNA/dt = dNB/dt in terms of the numbers of molecules A
and B in the solution.
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In the overdamped limit, we notice that the contribution
Wd is reciprocal to the diffusiophoretic term Vd = Fd/γ = χ
W rxn u in Eq. (86). Since the variables r and n are even under
time reversal, we can use the Onsager symmetry principle in
order to determine Wd. First, we identify the affinities or gener-
alized thermodynamic forces as the mechanical and chemical
affinities. The chemical affinity Arxn was defined earlier in
Eq. (79), while the mechanical affinity is Amech = β Fext. Gath-
ering the variables and the affinities in the four-dimensional
vectors X = (r, n) and A = (Amech, Arxn), the coupled stochas-
tic equations (86) and (94) can be expressed as dXα/dt = Jα
in terms of the currents (4) in the overdamped regime. Since
we know that the position r is ruled by Eq. (86) and that the
matrix of linear response coefficients should be symmetric
in order to satisfy Onsager’s reciprocal relations, we deduce
that

L = (Lαβ) = *
,

D 1 χDrxn u

χDrxn u Drxn

+
-

. (95)

This matrix is non-negative to satisfy the second law of thermo-
dynamics. As a consequence of Eqs. (4) and (95), the coupled
stochastic differential equations for the position r and the
number n are given by

dr
dt
= χWrxn u + βD Fext + Vfl(t) , (96)

dn
dt
= Wrxn + β χDrxnu · Fext + Wfl(t) , (97)

with the fluctuating velocity Vfl(t) and the fluctuating reaction
rate Wfl(t) given by the coupled Gaussian white noise pro-
cesses characterized by Eq. (5) with [δJα(t)] = [Vfl(t), Wfl(t)].
As required, Eq. (96) is identical to Eq. (86) since Vd = χW rxn.
We emphasize that Eqs. (96) and (97) are coupled to Eq. (93)
for rotation. The implication of the reciprocal effect is that an
external force combined with an external torque aligning the
Janus particle in a preferential orientation can influence the
reaction rate.23

D. The Fokker-Planck equation

The Fokker-Planck equation governing the time evolution
of the probability density p(r, n, u; t) can be written as

∂tp = −∂X ·JJJ + L̂rp (98)

with the associated current density

JJJ = L · A p − L · ∂Xp (99)

expressed in terms of the matrix (95) of linear response
coefficients, and the rotational diffusion operator

L̂rp =
Dr

sin θ

{
∂θ

[
sin θ (∂θp + βµB sin θ p)

]
+

1
sin θ

∂2
φp

}
,

(100)

where Dr ≡ kBT /γr is the rotational diffusion coefficient.
We notice that L̂rPr = 0 for the equilibrium rotational
distribution

Pr(u) =
1
Zr

exp(−βU) =
1
Zr

exp(βµB cos θ) (101)

for the potential energy U = �µB·u of the magnetic moment
in the external magnetic field B = (0, 0, B) oriented in the
z-direction.17

If rotation is faster than reaction, we may suppose that

p(r, n, u; t) ' P(r, n; t)Pr(u) (102)

with the probability density

P(r, n; t) =
∫

d cos θ dφ p(r, n, u; t) (103)

governed by

∂tP = − (χWrxn 〈u〉 + βD Fext) · ∇∇∇P
− (Wrxn + β χDrxn〈u〉 · Fext) ∂nP
+ D∇2P + 2χDrxn 〈u〉 · ∇∇∇∂nP + Drxn∂

2
nP, (104)

where 〈·〉 denotes a statistical average with respect to the
equilibrium canonical distribution (101) for the orientation.

If reaction is faster than rotation, the probability density

P(r, u; t) =
∫

dn p(r, n, u; t) (105)

is ruled by

∂tP + (χWrxn u + βD Fext) · ∇∇∇P = D∇2P + L̂rP. (106)

In the absence of external magnetic field B = 0, there is no
preferential orientation so that the rotational motion remains
diffusive and controlled by the rotational diffusion time

Tr =

∫ ∞
0

dt 〈u(0) · u(t)〉eq =
1

2Dr
. (107)

In this case, we thus recover the known result10 that the effec-
tive diffusion coefficient is given by Deff = D + V2

d /(6Dr).
The larger the magnitude of the diffusiophoretic velocity Vd,
the more enhanced the diffusive random walk of the Janus
particle.

A mechanochemical fluctuation theorem,23 which is
a consequence of microreversibility, was derived for the
nonequilibrium process ruled by the Fokker-Planck equation
(98) with (99).

E. Mechanochemical coupling and efficiencies

In order to investigate the implications of the previous
results, we suppose that the external force and the magnetic
field are oriented in the z-direction so that Fext = (0, 0, F) and
B = (0, 0, B). Therefore, the particle is oriented on average in
the same direction: 〈uz〉 = coth (βµB) � 1/(βµB). In this case,
the averages of Eqs. (96) and (97) give

d〈z〉
dt
= χWrxn〈uz〉 + βDF , (108)

d〈n〉
dt
= Wrxn + β χDrxn〈uz〉F , (109)

d〈x〉/dt = 0, and d〈y〉/dt = 0. Depending on the values of
the mechanical and chemical affinities, the mean velocity 〈ż〉
and rate 〈ṅ〉 can take positive, vanishing, or negative val-
ues. Equation (108) shows that the mean velocity vanishes
at the stall force Fstall = �Fd〈uz〉, which is proportional to the
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diffusiophoretic force Fd = γ χW rxn. Also, the mean reaction
rate is equal to zero at the force F0 = �W rxn/(β χDrxn〈uz〉)
according to Eq. (109). These two conditions are depicted
in Fig. 1 that shows the plane of the mechanical and chem-
ical affinities. For positive values of the chemical affinity Arxn,
the propulsion driven by the reaction exerts mechanical work
if the force is in the range Fstall < F < 0, corresponding to
the domain I in Fig. 1. If the force is sufficiently opposed to
propulsion to satisfy F < F0, the mean reaction rate (109) can
become negative in the domain II, meaning that the reaction is
reversed and reactant is synthesized from product, instead of
being consumed.

As for molecular motors,53 the efficiency of the mechan-
ical power of the motor can be characterized by

ηm ≡ −
Amech〈ż〉
Arxn〈ṅ〉

, (110)

and the efficiency of the reverse process of synthesis by
ηc ≡ 1/ηm. Since the thermodynamic entropy production rate
of the coupled processes

1
kB

diS
dt
= Amech〈ż〉 + Arxn〈ṅ〉 ≥ 0 (111)

is non-negative according to the second law of thermodynam-
ics, the mechanical and chemical efficiencies are bounded by
0 ≤ ηm ≤ 1 and 0 ≤ ηc ≤ 1 in their respective domains of
application. For a given chemical affinity, the maximal value
of the mechanical efficiency is given by

η(max) =
1 −

√
1 − q2

1 +
√

1 − q2
=

q2

4
+

q4

8
+ O(q6) , (112)

where q ≡ χ〈uz〉
√

Drxn/D satisfies the condition q2 ≤ 1.
Accordingly, the efficiency of self-propulsion increases with
the diffusiophoretic coupling |χ|. A similar expression holds
for the chemical efficiency.23 The locations where the effi-
ciencies reach their maximal values are depicted as dashed
lines in Fig. 1. These results show the analogy between
self-diffusiophoretic active particles and molecular motors.

FIG. 1. Schematic representation of the different regimes of the active particle
in the plane of the mechanical and chemical affinities. In domain I, diffusio-
phoretic mechanical work is powered by the reaction. In domain II, an external
force of sufficient magnitude acting in a direction opposite to that of the Janus
particle velocity can yield the synthesis of fuel from product.

VI. CONCLUSION AND PERSPECTIVES

Equations of motion describing the stochastic dynamics
and reaction of an active Janus particle self-propelled by diffu-
siophoresis were derived in this paper, starting from the fluc-
tuating chemohydrodynamics of the solution surrounding the
particle and the boundary conditions for the fluid velocity and
concentration fields at the interface with the particle. Utilizing
Green-function methods and generalizations of the Fáxen the-
orem,28,29,32,38,50 the frequency-dependent force, torque, and
reaction rate of the particle were deduced from the boundary
conditions and the fluctuating chemohydrodynamic equations.
In particular, the diffusiophoretic force and torque exerted on a
spherical Janus particle are obtained analytically in terms of the
particle radius, the shear viscosity, the slip length, the diffusio-
phoretic constants, and the concentration gradients at the inter-
face with the solute. Furthermore, an explicit relation is estab-
lished for the diffusiophoretic coupling parameters. The diffu-
siophoretic force, torque, and coupling parameter are shown to
remain finite in the two limits of perfect stick and slip. In this
way, the contributions to the force and torque from friction by
the fluid viscosity, diffusiophoresis by the concentration gradi-
ents self-generated by the reaction, and the possible presence
of an external force and an external torque were determined.
From these general equations, coupled overdamped Langevin
equations were deduced for the translation, rotation, and reac-
tion of the Janus particle. The stochastic equation for reaction
includes a contribution due to mechanochemical coupling that
is required in order to satisfy the Onsager-Casimir recipro-
cal relations to be consistent with microreversibility. This
contribution is essential to establish the previously derived
mechanochemical fluctuation theorem.23 The Fokker-Planck
equation associated with the coupled stochastic equations was
analyzed in several limiting situations. Moreover, the impli-
cations of the mechanochemical coupling were studied, in
particular, for the efficiencies of energy transduction in the
regimes of diffusiophoretic self-propulsion and reciprocal fuel
synthesis.

The results obtained in this paper provide fresh perspec-
tives on the understanding of self-propulsion mechanisms of
active particles. The calculations can be extended easily to
treat other self-phoretic mechanisms including electrophore-
sis and thermophoresis. For thermophoresis, the coupling of
boundary conditions describing thermal slip is known21,22

and the methods we have developed can be applied mutatis
mutandis to this other phoretic mechanism. For electrophore-
sis, the description should include the electric field generated
by the electric charges of the particle and the electrolytic
solution.

One can also consider reactions that are more complex
than the simple A
 B reaction that was used to illustrate our
results. Indeed, the experimental systems that have been stud-
ied typically involve nonlinear reaction networks with possible
adsorbates at the surface of the active particle. Accordingly, the
surface densities of these adsorbates should be included in the
description. The motion of active particles with nonspherical
shapes can also be studied. For such active particles, nontriv-
ial coupling between translational and rotational motions is
expected in Eqs. (85) and (91).
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Furthermore, one can envisage situations where the
medium surrounding the active particle is a rarefied or dilute
gas, instead of a liquid solution. Such systems may be
described by the Boltzmann equation, instead of the Navier-
Stokes and diffusion equations. In rarefied gases, the mean free
path is larger than the particle radius so that the reactants are
essentially in free flight before colliding and reacting at the
particle surface. In this case, the transport can be supposed to
be ballistic in the gas, as for surface reactions studied in ultra-
high vacuum conditions. In dilute gases, the mean free path is
smaller than the particle radius so that a local equilibrium will
establish itself on the mean free path length scale and intercol-
lisional time scale, whereupon transport is no longer ballistic.
The effects of long-time tails on diffusiophoresis could be
investigated in such situations.46
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APPENDIX: SOLUTION OF REACTION-DIFFUSION
EQUATION

Although a set of linear equations must be solved numer-
ically to obtain the concentration fields, insight into the
nature of these fields can be obtained by considering the
reaction-limited and diffusion-limited regimes.

Since the matrix M in Sec. IV B is the sum of a diag-
onal matrix and a square matrix multiplied by Da, in the
reaction-limited regime it may be approximated by an expan-
sion in powers of Da. The coefficient a1 takes the value
a1 = 3/8 = 0.375 for Da = 0. In this limit, we also have
γJ = 0.708 115.

In the diffusion-limited regime, there is a thin and strong
depletion zone close to the catalytic surface. Accordingly, the
problem can be approximately solved by considering a nearly
flat catalytic surface. Close to the catalytic surface, the solution
is given by

f (r, θ) '
1

Da + 1
R
r

, (A1)

while f ' 0 close to the noncatalytic surface. The solution
switches from one form to the other at the contact line between
the catalytic and noncatalytic hemispheres, but the contri-
bution of this line is negligible because Da � 1. Thus, we
have

f (R, θ) =

{
(Da + 1)−1, on catalytic surface,
0 , on noncatalytic surface.

(A2)

Over the same range of Da values, we have that a1 ' 0.75 Da�1

and γJ ' Da�1 for Da→∞. Combining the behavior in both
regimes, the coefficient a1 can be fit by a1 ' 0.75(Da + 2)�1.
Similarly, we find that γJ can be approximated by

FIG. 2. The coefficientγJ versus the parameter Da computed with the expan-
sion (72) truncated at l ≤ 30 (dots) and compared with the fit (line) given by
Eq. (A3).

γJ ' (Da + 1.412 199 2)−1, (A3)

at the crossover between the reaction- and diffusion-limited
regimes, as shown in Fig. 2.
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