Deactivation Pathways of an Isolated Green Fluorescent Protein Model Chromophore Studied by Electronic Action Spectroscopy
Publication Type:
Journal ArticleSource:
Journal of the American Chemical Society, Volume 131, Issue 47, p.17038 - 17039 (2009)ISBN:
0002-7863URL:
http://dx.doi.org/10.1021/ja9066404Abstract:
<p>The mechanism of fluorescence and fluorescence quenching of the green fluorescent protein (GFP) is not well-understood. To gain insight into the effect of the surrounding protein on the chromophore buried at its center, the intrinsic electronic absorption and deactivation pathways of a gaseous model chromophore, p-hydroxybenzylidene-2,3-dimethylimidazolone (HBDI) were investigated. No fluorescence from photoactivated gaseous HBDI− was detected in the range 480−1100 nm, in line with the ultrafast rate of internal conversion of HBDI− in solution. Two different gas-phase deactivation pathways were found: photofragmentation and electron photodetachment. Electronic action spectra for each deactivation pathway were constructed by monitoring the disappearance of HBDI− and appearance of product ions as a function of excitation wavelength. The action spectra measured for each pathway are distinct, with electron photodetachment being strongly favored at higher photon energies. The combined (total) gas-phase action spectrum has a band origin at 482.5 nm (23340 cm−1) and covers a broad spectral range, 390−510 nm. This extended gas-phase action spectrum exhibits vibronic activity that matches well with the results of previous cold condensed-phase experiments and high-level in vacuo computations, with features evident at +550, +1500, and +2800 cm−1 with respect to the band origin.</p>