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Review

1.1 Classical Mechanics

• 1-Dimensional system with 1 particle of mass m

– Newton’s equations of motion for position x(t) and momentum p(t):

ẋ(t) ≡ dx

dt
p = mẋ

F (t) = ma(t) a(t) = ẍ(t)

F (t) = −dV

dx

ṗ(t) = mẍ(t) = F (t) = −dV

dx

– Define an energy function called the Hamiltonian H(x, p) = p2

2m
+ V (x).

– Introduce terminology

p2

2m
= kinetic energy V (x) = potential energy

– Newton’s laws can then be expressed as:

ẋ =
p

m
=

∂H

∂p
ṗ = −dV

dx
= −∂H

∂x
.

– These are coupled ordinary differential equations whose solution is uniquely spec-
ified by specifying two conditions, such as x0 = x(0) and p0 = p(0) at some
reference time t0 = 0.
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• 3-dimensional system of 1 particle

– Notation: r = (x, y, z) and p = (px, py, pz). Also, p · p = p2
x + p2

y + p2
z.

– The Hamiltonian is: p·p
2m

+ V (r).

– The equations of motion are:

ṙ =
∂H

∂p
=

p

m
shorthand for−−−−−−−−−−→

 ṙx

ṙy

ṙz

 =
1

m

 px

py

pz


ṗ = −∂H

∂r
= −∂V

∂r

• 2 particles in 3-dimensions

– Hamiltonian: H = p1·p1

2m1
+ p2·p2

2m2
+ V (r1, r2)

– Equations of motion are:

ṙ1 =
∂H

∂p1

=
p1

m1

ṙ2 =
∂H

∂p2

=
p2

m2

ṗ1 = −∂H

∂r1

ṗ2 = −∂H

∂r2

– Introduce generalized notation: r(2) = (r1, r2) and p(2) = (p1,p2).

p(2) · p(2) = p1 · p1 + p2 · p2

– Equations of motion in this notation:

ṙ(2) =
∂H

∂p(2)
ṗ(2) = − ∂H

∂r(2)
.

• N particle system in 3-D

– Equation of motion in generalized notation:

ṙ(N) =
∂H

∂p(N)
ṗ(N) = − ∂H

∂r(N)
.

– A total of 6N equations!

– At each point in time, the system is specified by 6N coordinates (r(N)(t),p(N)(t)) ≡
x(N)(t) called the phase point.

– The set of all phase points is called phase space.

– Classical dynamics describes a path through the 6N -Dimensional phase space.



1.1. CLASSICAL MECHANICS 9

– Special properties of path through phase space:

1. Certain quantities remain unchanged during the evolution of system.

∗ Examples: energy, momentum and angular momentum may be conserved
(constant) along the path or trajectory of the system.

∗ Path remains on a hyper-surface of constant energy in phase space.

2. Paths never cross in phase space. Each disjoint path, labelled by initial
conditions, passes arbitrarily close to any point on the constant energy hy-
persurface.

∗ Amount of time for the trajectory of the system from a given initial point
in phase space to pass arbitrarily close to the initial point is called the
recurrence time: Absolutely enormous for large, interacting systems.

• Consider an arbitrary function G of the phase space coordinate x(N),

G(r(N),p(N), t) = G(x(N), t).

Taking the time derivative,

dG(x(N), t)

dt
=

∂G(x(N), t)

∂t
+

∂G(x(N), t)

∂r(N)
· ṙ(N) +

∂G(x(N), t)

∂p(N)
· ṗ(N)

=
∂G(x(N), t)

∂t
+

∂G(x(N), t)

∂r(N)
· ∂H

∂p(N)
− ∂G(x(N), t)

∂p(N)
· ∂H

∂r(N)
.

– We can define the Liouville operator L to be:

L =
∂H

∂p(N)
· ∂

∂r(N)
− ∂H

∂r(N)
· ∂

∂p(N)

so that in terms of a general function B

LB =
∂B

∂r(N)
· ∂H

∂p(N)
− ∂B

∂p(N)
· ∂H

∂r(N)
.

– In terms of the Liouville operator,

dG(x(N), t)

dt
=

∂G(x(N), t)

∂t
+ LG(x(N), t).

– Functions of the phase space coordinate G that are not explicit functions of time
t are conserved by the dynamics if LG = 0.

– Formal solution of evolution is then

G(x(N), t) = eLtG(x(N), 0).
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– In particular,

x(N)(t) = eLtx(N)(0).

– Note that LH = 0.

– Can also define the Poisson bracket operator via

{A, B} ≡ ∂A

∂r(N)
· ∂B

∂p(N)
− ∂A

∂p(N)
· ∂B

∂r(N)
.

– The relationship between the Poisson bracket and Liouville operators is

LB = {B, H} so
dG(x(N), t)

dt
=

∂G(x(N), t)

∂t
+ {G(x(N), t), H(x(N))}.

• Important property:

eLt
(
A(x(N))B(x(N))

)
=

(
eLtA(x(N))

) (
eLtB(x(N))

)
= A(x(N)(t))B(x(N)(t)).

1.2 Ensembles and Observables

• Consider some arbitrary dynamical variable G(r(N),p(N)) = G(x(N)) (function of phase
space coordinates and hence possibly evolving in time).

• An experimental measurement of quantity corresponds to a time average of some (pos-
sibly short) sampling interval τ .

Gobs(t) = G(t) ≡ 1

τ

∫ τ

0

dσ G
(
r(N)(t + σ),p(N)(t + σ)

)
.

– τ � τm. where τm is a microscopic time scale. Hence fluctuations on microscopic
time scale a smoothed out.

– For most systems, evolution of G(t) cannot be solved analytically and so must
resort to

1. Numerically solving evolution (computer simulation)

2. Developing a new theoretical framework relating time averages to something
that can be calculated.

• Ensemble Average: Infinite/long time average of dynamical variable corresponds to
an average over a properly weighted set of points of phase space (called an ensemble).
The statistical average is called an ensemble average.

– Each point in phase space corresponds to a different configuration of the system.
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– Ensemble average therefore corresponds to a weighted average over different con-
figurations of the system.

• Define a probability density for phase space (often loosely called the “distribution
function’)’:

f(r(N),p(N), t) = distribution function

and hence

f(r(N),p(N), t)dr(N)dp(N) =
prob. of finding a system in ensemble with
coordinates between (r(N), r(N)+dr(N)) and
(p(N),p(N) + dp(N)) at time t.

– Note that the distribution function is normalized:∫
dr(N)dp(N) f(r(N),p(N), t) = 1

• The ensemble average is defined as:

〈G(t)〉 ≡
∫

dr(N)dp(N) G(r(N),p(N)) f(r(N),p(N), t).

• microcanonical ensemble: All systems in ensemble have the same total energy.

– All dynamical trajectories with same energy compose a set of states in micro-
canonical ensemble.

– Technically, all conserved quantities should also be the same.

What is the connection between the ensemble average and the experimental observation
(time average)?

• Quasi-ergodic hypothesis: As t → ∞, a dynamical trajectory will pass arbitrarily
close to each point in the constant-energy (if only conserved quantity) hypersurface of
phase space (metrically transitive).

– Another statement: For all initial states except for a set of zero measure, the
phase space is connected through the dynamics.

– Hypersurfaces of phase space covered by trajectory.
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• So in some sense, as τ →∞ :, we expect

Gobs(t) =
1

τ

∫ τ

0

dσ G
(
r(N)(t + σ),p(N)(t + σ)

)
=

1

Ω

∫ ′
dr(N)dp(N) G(r(N),p(N))

where

Ω =

∫ ′
dr(N)dp(N) =

∫
E<H(x(N))<E+δE

dr(N)dp(N)

hence

Gobs(t) = G(t) =

∫
G(r(N),p(N))f(r(N),p(N), t) dr(N)dp(N) if f(r(N),p(N), t) = 1/Ω.

– All points on hypersurface have the same weight (equally probable).

– Ensemble analogy: each point in restricted phase space corresponds to a configu-
ration of the system with the same macroscopic properties.

• Can utilize an axiomatic approach to find equilibrium distributions: Maximize statis-
tical entropy subject to constraints.

• Alternate method: Asymptotic solution of the Boltzmann equation for distribution
functions - describes collisions of pairs from Newton’s equations and adds an assump-
tion of statistical behavior (molecular chaos).

– System naturally evolves from an initial state to states with static macroscopic
properties corresponding to “equilibrium” properties - Can model this with simple
spin systems like the Kac ring model.

– Measure of disorder, the statistical entropy, increases as the system evolves: max-
imized in equilibrium (H theorem).

Canonical Ensemble

• Remove restriction of defining probability only on constant energy hypersurface.

• Allow total energy of systems in ensemble to vary (hopefully) narrowly around a fixed
average value.

f(x(N)) =
1

N !h3N
exp{β(A−H(x(N)))}

• A is the Helmholtz free energy.
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• We define the partition function QN(T, V ) by

QN(T, V ) =
1

N !h3N

∫
dx(N) exp{−βH(x(N))} = exp{−βA}

so by normalization

f(x(N)) =
1

N !h3N
exp{β(A−H(x(N)))} =

1

N !H3N

exp{−βH(x(N))}
QN(T, V )

.

• Relation A = −kT ln QN(T, V ) gives thermodynamic connection: For example

1. The pressure is:

P = −
(

∂A

∂V

)
T

= kT

(
∂ ln QN

∂V

)
T

.

2. The chemical potential is:

µ =

(
∂A

∂N

)
T,V

3. The energy is:

E =
exp{βA}
N !h3N

∫
dx(N) H(x(N)) exp{−βH(x(N))}

=
exp{βA}
N !h3N

− ∂

∂β

∫
dx(N) exp{−βH(x(N))}

= − 1

QN

∂QN

∂β
= −∂ ln QN

∂β
.

• We can write the canonical partition function as:

QN(T, V ) =
1

N !h3N

∫
dx(N) exp{−βH(x(N))}

=

∫ ∞

0

dE
1

N !h3N

∫
dx(N) exp{−βH(x(N))}δ(E −H(x(N)))

=

∫ ∞

0

dE exp{−βE}
(

1

N !h3N

∫
dx(N) δ(E −H(x(N)))

)
QN(T, V ) =

∫ ∞

0

dE exp{−βE}N(E)

where

N(E) ≡ 1

N !h3N

∫
dx(N) δ(E −H(x(N)))

= density of unique states at energy E (microcanonical partition function).
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Relationship between ensemble averages

• How likely are we to observe a system in the canonical ensemble with an energy very
different from the average energy E = 〈H(x(N))〉? From the Tchebycheff inequality,
we find that

Pr
(∣∣H(x(N))− E

∣∣ ≥ λE
)
≤ σ2

E

λ2E
2

• Now the variance in the energy is:

σ2
E =

〈
H(x(N))2

〉
− 〈H(x(N))〉2 =

∂2 ln QN

∂β2
= −∂E

∂β
= kT 2Cv

and hence

Pr
(∣∣H(x(N))− E

∣∣ ≥ λE
)
≤ kT 2Cv

λ2E
2

• For an ideal gas system, E = 3/2NkT and hence Cv = 3/2Nk.

• Typically, E ∼ N and Cv ∼ N .

Pr
(∣∣H(x(N))− E

∣∣ ≥ λE
)
≤ kT 2Cv

λ2E
2 ∼ 1

Nλ2

– As N increases, it becomes less and less likely to observe a system with energy
very different from E,

〈B(x(N))〉canon =

∫
dE P (E)〈B(x(N))〉micro at E ≈ 〈B(x(N))〉

micro at E
(1 + O(1/N)) .

• P (E) is sharply-peaked around E = E: Can show

P (E) ≈ P (E)

(
1

2πσ2
E

)1/2

exp

{
−(E − E)2

2kT 2Cv

}
• Relative spread of energy σE/E ∼ N−1/2.
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1.3 Liouville Equation for Hamiltonian Systems

Define small volume element V0 in phase space.

• How does probability of finding the system in this region change in time?

P (V0) =

∫
V0

dXN
0 f(XN

0 , 0)

• Allow system to evolve according to dynamics:

XN
0

·
V0

∆t−−−−−−−−→

XN
∆t

·
V∆t

– Volume changes shape in mapping:

XN
0 → XN

∆t ' XN
0 + ẊN

0 ∆t

≡ XN
0 + δXN

– Maybe changes volume as well.

– Number of states is V0 and V∆t is same since we follow all points in original volume.

∗ Can only change if some points in V0 aren’t in V∆t (flow out of volume).

• So P (V0, 0) = P (V∆t, ∆t): Conservation of probability (like fluid where particles aren’t
created or destroyed.)

• Changing variables from XN
0 to XN

∆t,

P (V0) =

∫
V0

dXN
0 f(XN

0 , 0) =

∫
V∆t

dXN
∆t J(XN ; XN

∆t)f(XN
∆t − δXN , ∆t−∆t)

= P∆t(V∆t) since P (V0, 0) = P (V∆t, ∆t).

• Recall that XN
∆t −XN

0 ≡ δXN
0 .
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• Evaluation of the Jacobian is a bit complicated, but gives

J(XN
0 ; XN

∆t) = Jacobian for transform XN
0 = XN

∆t − δXN

=

∣∣∣∣ ∂XN
0

∂XN
∆t

∣∣∣∣ = 1−∇XN · δXN

So

P∆t(V∆t) = P (V0) =

∫
V∆t

dXN
∆t (1−∇XN · δXN) f

(
XN

∆t − δXN , ∆t−∆t
)

for small δXN .

• What is δXN?

– For Hamiltonian systems XN
∆t ' XN

0 + ẊN
0 ∆t, or δXN = ẊN

0 ∆t.

– Expanding for small displacements δXN
0 and small time intervals ∆t:

f
(
XN

∆t − δXN , ∆t−∆t
)
' f

(
XN

∆t, ∆t
)

−∂f

∂t
∆t− (∇XN f) · δXN +

1

2

(
∇2

XN f
)
(δXN)2 + . . .

– Inserting this in previous equation for P∆t(V∆t) = P (V0), we get

P∆t(V∆t) = P∆t(V∆t) +

∫
V∆t

dXN
∆t(

−∂f

∂t
∆t−∇XN · (δXNf) +

1

2
∇2

XN f(δXN)2

)
or ∫

V∆t

dXN
∆t

(
−∂f

∂t
∆t−∇XN · (δXNf) +

1

2
∇2

XN f(δXN)2

)
= 0

– Since this holds arbitrary volume V∆t, the integrand must vanish.

∂f

∂t
∆t = −∇XN · (δXNf) +

1

2
∇2

XN f(δXN)2 + · · ·

– Now, let us evaluate this for δXN = ẊN
0 ∆t

∗ To linear order in ∆t

∇XN ·
(
ẊN

0 f
)

∆t =
(
ẊN · ∇XN f +∇XN · ẊNf

)
∆t

but

∇XN · ẊN =
∂ṘN

∂RN
+

∂ṖN

∂PN
=

∂H

∂RN∂PN
− ∂H

∂PN∂RN
= 0!
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∗ Note that this implies the volume element does not change with normal
Hamiltonian propagation:

dXN
0 = dXN

∆t J(XN ; XN
∆t) = dXN

∆t

(
1−∇XN · ẊN∆t

)
= dXN

∆t.

– Also, (δXN)2 ∼ O(∆t)2 since δXN ∼ ∆t, so

∂f

∂t
∆t = −ẊN · ∇XN f∆t + O(∆t)2

– In the short-time limit,

∂f

∂t
= −ẊN · ∇XN f

Recall

ẊN · ∇XN G =
(
ṘN · ∇RN + ṖN · ∇P N

)
G

=

(
∂H

∂PN
· ∇RN − ∂H

∂RN
· ∇P N

)
G ≡ LG = {G,H}

So we obtain the Liouville equation:

∂f

∂t
= −Lf = −{f, H} .

• The formal solution is:

f(x(N), t) = e−Ltf(x(N), 0).

• Also note:

∂f

∂t
+ ẊN · ∇XN f =

df(XN , t)

dt
= 0.

• Interpretation:

f(r(N)(0),p(N)(0), 0) = f(r(N)(t),p(N)(t), t)

f(r(N)(0),p(N)(0), t) = f(r(N)(−t),p(N)(−t), 0).

• If follow an initial phase point from time 0 to time t, probability density doesn’t change
(i.e. you go with the flow).

• Probability density near phase point x(N)(0) at time t is the same as the initial prob-
ability density at backward-evolved point x(N)(−t).
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1.3.1 Equilibrium (stationary) solutions of Liouville equation

• Not a function of time, meaning f(RN , PN , t) = f(RN , PN) or

∂f

∂t
= −Lf = −{f, H} = {H, f} = 0.

• Recall that we showed that energy is conserved by the dynamics so dH
dt

= 0.

• Suppose f(RN , PN , t) is an arbitrary function of H(RN , PN).

∂f

∂t
= {H, f(H)} =

∂H

∂RN
· ∂f

∂PN
− ∂H

∂PN
· ∂f

∂RN

but

∂f

∂PN
=

∂f

∂H

∂H

∂PN

∂f

∂RN
=

∂f

∂H

∂H

∂RN

∂f

∂t
=

(
∂H

∂RN
· ∂H

∂PN
− ∂H

∂PN
· ∂H

∂RN

)
∂f

∂H
= 0

Thus any funct. of H is stationary solution of Liouville equation!

• In particular, both the microcanonical and canonical distribution functions are solu-
tions of the Liouville equation.

1.3.2 Time-dependent Correlation Functions

Consider the time-dependent correlation function CAB(t) in the canonical ensemble〈
A(x(N), t)B(x(N), 0)

〉
=

∫
dx(N)A(x(N), t)B(x(N), 0)f(x(N)).

• From the form of the Liouville operator, for arbitrary functions A and B of the phase
space coordinates

A(x(N), t)B(x(N), t) =
(
eLtA(x(N), 0)

) (
eLtB(x(N), 0)

)
= eLt

(
A(x(N), 0)B(x(N), 0)

)
.

• It can be shown by integrating by parts that:〈(
LA(x(N))

)
B(x(N))

〉
= −

〈
A(x(N))

(
LB(x(N))

)〉
.
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• Consequence:〈
A(x(N), t)B(x(N), 0)

〉
=

〈
A(x(N))B(x(N),−t)

〉
.

– The autocorrelation function CAA(t) is therefore an even function of time.

• Also, ∫
dx(N)

(
eLtA(x(N), 0)

)
f(x(N), 0) =

∫
dx(N)A(x(N), 0)

(
e−Ltf(x(N), 0)

)
=

∫
dx(N)A(x(N), 0)f(x(N), t)

– For an equilbrium system where f(x(N), t) = f(x(N)),

〈A(t)〉 = 〈A(0)〉
〈A(t + τ)B(τ)〉 = 〈A(t)B(0)〉 .


