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ABSTRACT

The dynamics of a quantum system coupled to a classical environment and subject to constraints that drive it out of equilibrium are described.
The evolution of the system is governed by the quantum-classical Liouville equation. Rather than evaluating the evolution of the mixed
quantum-—classical density operator, we derive exact equations of motion for the nonequilibrium average values of a set of operators or
variables, along with correlation function expressions for the dissipative coefficients that enter these equations. These equations are obtained
by requiring that the exact nonequilibrium averages are equal to local nonequilibrium averages that depend on auxiliary fields whose values
satisfy evolution equations obtained using projection operator methods. The results are illustrated by deriving reaction-diffusion equations
coupled to fluid hydrodynamic equations for a solution of quantum particles that can exist in two metastable states. Nonequilibrium steady
states are discussed along with the reaction rate and diffusion correlation functions that characterize such states.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0250872

. INTRODUCTION

Quantum rate processes in condensed phases are significantly
influenced by their environment and the nature of their interac-
tions with it. Reactions such as electron and proton transfer illustrate
the importance of coupling with solvent polarization dynamics as
a critical aspect of the reaction mechanism.' ° More broadly, envi-
ronmental effects are crucial in shaping the kinetics of reactions
in condensed phases. The microscopic foundation of chemical rate
laws and their associated rate coefficients is well understood for sys-
tems near equilibrium, with linear response theory and projection
operator methods being frequently employed for this purpose.”
A primary focus of such studies is the calculation of reactive flux
correlation functions for quantum rate coefficients. This process
requires statistical averaging over quantum equilibrium distribu-
tions and the quantum evolution of flux operators, both of which
pose challenges in simulations, particularly for large many-body
systems.

Some of this difficulty may be alleviated for systems where the
environment can be treated classically to a good approximation.
It should be noted, however, that quantum-classical approaches
are not free from difficulties.” Depending on how the theory

is formulated, one must still statistically sample full quantum or
quantum-—classical equilibrium distributions and implement some
form of quantum-classical evolution of the coupled quantum and
classical subsystems.'”'” The environmental degrees of freedom
coupled to the quantum subsystem may be treated in various
ways. Often, the coupling of slowly varying solvent collective vari-
ables to the slowly varying metastable reactive species variables is
most important. In this context, hydrodynamic theories for the
dynamics of quantum and quantum-classical systems have been
developed.'*"”

Physical systems are often not in equilibrium and are main-
tained in nonequilibrium steady or dynamic states as a result of
the application of external fields or coupling to reservoirs that
drive them out of equilibrium.'*"” Examples include condensed-
phase quantum systems where molecular quantum states interact
with radiation fields’’ or quantum molecular junctions coupled
to reservoirs that control electron chemical potentials’’ or tem-
perature gradients across the junction, relevant for electron* or
heat transport.”’ In such cases, one has the additional difficulty
of carrying out nonequilibrium quantum or quantum-classical
statistical mechanical treatments for both the sampling and
dynamics.
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In this work, we consider systems whose evolution can
be described by quantum-classical dynamics through the
quantum-—classical Liouville equation’® and that are main-
tained under nonequilibrium conditions by constraints. For this
study of reactive quantum-classical systems, we adopt an earlier
formulation for nonequilibrium quantum or classical dynamics”
that has been used in more recent studies of granular materials,’””’

33 35

classical Brownian motion,””” and active particle dynamics,‘”“‘
as well as quantum hydrodynamics.”® Rather than solving for the
full dynamics of the quantum density operator, this formulation
deals with the computation of exact average values of a set of
operators using an auxiliary local distribution that depends on
constraint fields. The nonlocal and time-dependent constraint fields
are obtained by solving coupled dynamical equations.

Section II gives a general derivation of the time evolution equa-
tions for the exact nonequilibrium average values of a set of local
operators or phase space variables whose evolution is given by the
quantum-—classical Liouville equation. These equations express the
time derivatives of the average values in terms of the constraint
fields or as closed equations for the constraint fields themselves.
The formulation also provides nonequilibrium correlation function
expressions for transport coefficients that involve statistical averages
over the auxiliary local distributions. In Sec. 111, this general formu-
lation is applied to a system containing a solution of s-state quantum
molecules that can exist in two metastable states, corresponding to
distinct reactive chemical species, in a solvent of classical molecules.
The densities of the quantum metastable species are maintained
out of equilibrium by reservoirs with given chemical potentials and
a fixed temperature. The densities of reactive species are coupled
to collective solvent hydrodynamic modes, and a set of coupled
reaction—-diffusion and hydrodynamic equations are derived, along
with the corresponding microscopic expressions for the dissipative
transport coefficients. Section IV discusses various possible choices
of reaction coordinates and considers the case of a classical solvent
coordinate as an illustration of the method. Reactive flux corre-
lation functions are studied in more detail for a dilute solution
of quantum molecules using an adiabatic basis, and nonequilib-
rium steady states are described. The conclusions of this study are
given in Sec. V.

Il. QUANTUM-CLASSICAL NONEQUILIBRIUM
AVERAGE VALUES

We consider bipartite systems where a quantum subsystem
interacts with an environment that is classical in the absence of cou-
pling to the quantum degrees of freedom. The entire system is in
contact with reservoirs that maintain it in a nonequilibrium state.
We suppose that the time evolution of the nonequilibrium density
operator for this system, p(X, t), is given by the quantum-classical
Liouville equation,l $37-40

0p(X.) = = HX0, p(X.1)]
(LA} - (A(X),p(0)})

= —ilp(X,t), (1)

where X = (R, P) are the phase space coordinates of all of the
classical degrees of freedom and iL is the quantum-classical
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Liouville operator.*! The Hamiltonian operator depends on the
classical phase space coordinates and is given by the sum of
quantum subsystem, coupling operators, and classical environment
contributions,

H(X) = Hg + Vi(R) + H(X). @)

Rather than seeking a solution of the quantum-classical Liou-
ville equation for the density matrix, we focus instead on the com-
putation of the nonequilibrium average values of a set of operators
or variables A(r) that may depend on the field point location r in
the system: a(r,t) = Tr[p(X,t)A(r)], where Tr is a trace over the
quantum degrees of freedom and the integral is over the classical
phase space coordinates. The specific forms of the density operator
and Tr depend on the physical context and the reservoirs in con-
tact with the system. We denote nonequilibrium average values by
lowercase symbols.

The variables of interest depend on the system under study
but should vary on time scales that are slow compared to those of
microscopic degrees of freedom. The relaxation of a system that is
initially displaced from equilibrium may be expressed as a linear
combination of the eigenmodes of the Liouville operator. Typically,
after an initial short microscopic time, the surviving components
of the decomposition of the disturbance consist of a small (but
continuous) set of slow modes with small eigenvalues, and the long-
time behavior of any dynamical property of the system can then be
written as a linear combination of these modes. From these con-
siderations, we see that the set of slow modes A(r) must include
the local coarse-grained densities of all conserved variables, such as
mass, momentum, and energy, but can also include other slow but
non-conserved modes.”””" %

A. Local density operators

The concept of local equilibrium is often used to describe inho-
mogeneous nonequilibrium systems. In local equilibrium, the state
of each small volume of the system is given by thermodynamic rela-
tions where variables such as entropy, internal energy, temperature
take values that depend on space and time."** The validity of such a
description stems from the observation that the system’s relaxation
to equilibrium on long-time scales occurs through slowly varying
conserved fields, as discussed above.

An exact formulation for the average values of any set of slowly
varying A(r) variables or operators can be given using a local den-
sity operator for an open system with N, classical particles of type A
defined by

pu(r) = TT (Nutn?™) et 02900 2y, 3)
A

where Z(t) = Tr [H/\« (N B3N )7161& (r)*‘p("t)], and the trace oper-
ation is

Tr[n-]:nitr[dx,-u @)

1 Ni=0

where tr is a trace over the quantum degrees of freedom and [ dX
is an integral over the classical phase space. We have chosen to
write the local density operator in a generalized form of the grand
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canonical ensemble since this form will be used in the applica-
tion we consider. Here and below, we use the notation B(r) = C(r)
= [dr B(r)C(r) for any local quantities, B(r) and C(r). The explicit
dependence of quantities on the phase space or field point coordi-
nates r will sometimes be omitted to simplify the notation. The local
density operator is specified by choosing the conjugate ¢ fields so
that the exact nonequilibrium averages of the A(r) operators under
quantum-—classical dynamics are equal to their local nonequilibrium
averages,”” "’

a(r,t) =Tr (A(r)[)(t)) =Tr (A(r)f)L(t))
= (A(n))s, ®)

where (---); denotes the average over the local density operator
pr(t).

The local density operator can be derived using a general-
ization of the standard Gibbs approach to obtain the equilibrium
density.”** In particular, the form of the local density operator in
Eq. (3) can be obtained by maximizing an entropy functional S(t),

S(t) = kg Tr [pL(t) In (H (N 1N pL(t))], (6)
%

with respect to the functional form of p, (¢) subject to a set of the
locally imposed constraints” defined in Eq. (5).

The ¢(r,t) fields conjugate to the set of dynamical variables
A(r) correspond to spatial and time-dependent Lagrange multi-
pliers that enforce the constraint conditions. As in equilibrium,
the Lagrange multipliers and the local nonequilibrium averages of
the dynamical variables are related through functional derivatives
of the local equilibrium partition function Z(t) and the entropy
functional via

_dIn Z2(t)
a(r,t) = o) (7)
_ 1 388(t)
o) = = Salr ) ®

It can be shown’”*>" that the entropy production is positive and

vanishes in equilibrium where the ¢ fields are equal to a uniform
value.

By way of illustration, consider a single component fluid of
classical particles of mass m in contact with reservoirs at the
boundaries of the system.”’“ As mentioned above, the mini-
mal set of slow modes of the system A(r) must include the
local number N(r), energy H(r), and momentum g,(r) den-
sities. For this set of slow modes, in analogy with equilibrium
systems, the conjugate thermodynamic fields are identified to
be ¢n(r,t) = B(r, t)(,u(r, t) — mv*(r, t)/2), ¢p(r,t) = =B(r,t), and
¢,(r.t) = B(r,t)v(r,t), where B(r,t) is the local inverse tempera-
ture field, p(r,t) is the local chemical potential, and v(r,t) is the
local fluid velocity.

At long times, the time-dependence of the fluid system is gov-
erned by the hydrodynamic equations that describe the evolution of
the average densities a(r, t) under the influence of the environment
as specified by boundary conditions imposed on the a(r, t) fields or
the conjugate thermodynamic fields ¢(r,t). For example, thermal
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gradients can be imposed on the system by specifying nonuniform
values of B(r,t) at the boundary, and the response of the system
and transport of the local energy, density, and fluid flow can be
determined. Similarly, the flux of particles through a system can be
determined as a function of the value of the chemical potential at the
boundaries.

Using this formalism, the steady-state values of the local den-
sities and their fluxes can be obtained, and the time evolution of
fluctuations from the steady-state values can be determined. For
example, the light-scattering spectrum and long-ranged static cor-
relations in systems maintained in a steady state with linear temper-
ature or velocity profiles have been studied.*” Section IV provides
another example of the computation of steady-state densities for a
reaction-diffusion system.

Although more general forms of the local equilibrium density
operator can be formulated to include constraints placed on the
nonequilibrium averages of multilinear densities as well,”’ we will
not consider these complications here since they only account for
smaller mode-coupling corrections to the transport coefficients that
appear in the dynamics of averages of linear densities.

Next, we derive the equations of motion for the average a(r, t)
fields and their conjugate ¢(r, t) fields whose solutions will yield the
desired values of these quantities. While the constraint condition
in Eq. (5) imposes equality between the full and local equilibrium
averages of the chosen A(r) variables, the equality does not hold for
the averages of other fields. Consequently, to derive the equations
of motion for the a(r,t) and ¢(r,t) fields, we need to express the
full quantum-classical density operator in terms of the local den-
sity operator. This expression is derived below in Sec. II B, while
equations of motion are given in Sec. II C.

B. Relation between exact and local density operators

To obtain the relation between exact and local density opera-
tors, we introduce a projection operator ' (¢) and its complement
Of (1) = 1 - P'(t) that projects the density operator onto the local
equilibrium density operator and satisfies

p(t) = PT(Op(t) + QT (1)p(t) = pu(t) + QT (D)p(1).  (9)

A projection operator Pt (t) with these properties can be con-
structed using the following considerations: We note that the local
equilibrium density operator depends explicitly on time since it is a
functional of the time-dependent thermodynamic fields. It follows
that the time evolution of this density is governed by

pL(1)
S¢(r,t)

To evaluate the functional derivative of pr(t), we make use of the
operator identity,

atﬁL(t) = *8t¢(1‘, t). (10)

o . x han s g
ex(B+C) _oP / dx’ & (B+C)Ce(x V)8 11
0
Letting B = A« ¢ and C = A « 8¢, we have, to linear order,

N . 1 i A Aw A
A ($709)  Axd / dx’ &P he™ A 8¢ 9, (12)
0
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that yields

5pi(t)
d¢(r.1)

which involves A(r) and its Hermitian conjugate A (r).

The overline is used to denote the nonequilibrium analog of
a Kubo-transformed variable’’ that, for any Hermitian operator
O(r) = O (r), is given by

= A(r)pu(t) = pr()A' (), (13)

_ 1 o .
O(r):/0 dx e4**0(r)e ™, (14)

along with a corresponding expression for O (r). Here and below,
we use the notation O(r) = O(r) — (O(r))s.

Similarly, from the constraint condition in Eq. (5), we see that
the average value a(r,t) is also a functional of the ¢ fields with the
functional derivative,

a(r, ) =(4 r1)A(r2)): = Al [§) A r1))e
so(ret) = ACDA()) = (A (AR (15)

The equivalent forms on the right of this equation are a con-
sequence of properties of the correlation functions of Hermitian
operators: (Oq(r1)O0p(r2)): = (Ol(rl)Oﬁ(rz))t = (O0p(r2) Oa(r1))s.
The inverse of this relation is

S¢(ra,t) Y ) = (T (e
86!(1‘3,1‘) = <AA>t ( 2> 3) (A A)t ( 3, 2). (16)

Inserting Eq. (13) into Eq. (10) yields the following results:

Oipr(t) = (A(r) x0ug(r, 1) )pr(t)
= pu(t) (A (r) <09 (r 1) ). 17)

Note that the local equilibrium density is expected to evolve slowly
since the thermodynamic fields depend on time through their
functional dependence on the slow densities a(r, t).

These considerations suggest defining the projector operator
PP (t) that acts on an arbitrary density operator f(t) and yields
an operator proportional to the local density. Hence, we define the
projection operator,’“"”

PHOF () = Tr (F(6) )pu(t) + Tr (F()A(r1) )  (AA) (r1,72)
1/— _
«5 (A + (A (), ()
written in a symmetric form that emphasizes the Hermitian proper-

ties of the projector. The form of the projector in Eq. (18) can also
be obtained from the alternate expression,

opr(t)
da(r,t)

PO () = Tr (£(2) )pu(t) + « Tr(A(nf(1). (19)

If this projector acts on the exact density p(t), we have
PT()p(t) = pr(t) since Tr ([)(t)Z(rl)) =0 by construction. Fur-
thermore, by including additional terms in the projection operator
involving the variational derivative of pr (¢) with respect to the den-
sities, we obtain the result that PT(t)8;pr(t) = prL(t) as can be
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verified by applying the projection operator definition in Eq. (18)
to the time derivative of pr(t) given in Eq. (10). Since the con-
straint condition implies that Tr [at[)(t)fi(r)] =Tr [&[)L(t)fi(r)],
we obtain PT(£)dp(t) = dipr(t) = 8 PT()p(t).

To complete the decomposition of p(t) in terms of pr(t), we
require the solution of the evolution of Q(t)p(t) whose equation
of motion is

0 QN (1)p(t) = aup(t) = PH(D)ap(1) = QT (H)aup()
=0T (D)ilpL(t) - QT ()L QT ()p(r).  (20)

The formal solution of this equation is
O (0p(1) = U(1.0) Q' ()p(0) - [ dn Ul(tr)
« QN (0)ilpu(t), 1)
where Ug(t, f1) is the time-ordered exponential,
Oh(tn) =T, exp(—ftltdt’ Q*(t’)iﬁ), (22)
with smaller time arguments appearing to the right of larger time

arguments. The desired relation between the two density operators
is, therefore,

p(t) = pu(t) + UG(£0) QT(0)p(0)
—fotdn 0L (6,0) O (11)i £pu(1r). (23)

In theA following, it will be Auseful to consider the Hermitian
conjugate P(t) of the projector P'(¢) defined through the relation

Tr[Ou( P (0f(0)] = Tr [£(6) (P(1)0n) ] (24)
and given by
ﬁ(t)aa = <6a2(r1)>t*<zz>;1(ﬁ,rz)*Z(Tz). (25)
It follows that the complement of this projector, O(t) = 1 - P(t),
removes the correlation of an operator O with the set of slow
densities A () since ((Q(t)O0)A(r)); = 0.

C. Evolution equations for a(r,t) and ¢(r, t)

The evolution equation for a(r,t) follows from the time
derivative of the definition a(r, t) in Eq. (5),

Oa(r,t) =Tr (f)(t)jA(r)), (26)
with Ju (r) = i LA(r) giving
Ta(r) = %[H,A(r)] N %({A(r),H} (BAM)). @)

Then, substituting Eq. (23) into Eq. (26), we obtain the evolution
equation,
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dua(r,) = (Ta(r)) + Tr (Ta(r) Uy(1,0) Q' (0)p(0) )
7/0tdt1 Te(Za(r)Uh(61) O (1)idpu(1)). 28)

In Eq. (28), we can move the evolution operator onto the first
flux by making use of the relation

Tr (3 Uh(t, tl)C(tl)) =Tr ((Uo(t,1)B) C(1)),  (29)

where
Ug(tt)) = T- exp(fttdt' iﬁQ(t’)), (30)

and the time ordering operator 7 _ signifies that larger time argu-
ments appear to the right of smaller time arguments. This allows us
to write

Tr(yA(r) Uh(tn) Q*(tl)i[:pL(tl))
= Tr (Taa(rot1,0) QT ()i Lpu(1)), (31)
where :’7A,t(r, t1,t) = Ug(t, t).A7A,t(r) with the projected flux oper-
ator defined by Ju,(r) = Q(t)FJa(r) indicated by the subscript
t.

To express the memory term as an average over the
local density operator, we need an expression for iLpr(t). The
quantum-—classical Liouville operator acting on the local density
operator consists of two parts; the first consists of the commutator
of the local density operator with the Hamiltonian operator, and the

second involves the anti-symmetrized Poisson bracket of the local
density with the Hamiltonian operator,

1 sNy-1 By Axgy, Lip dxg p
== 153N s Z
i2pu() = ZIT (™) (h[H,e 1o 5 (1t m
A *¢})). (32)
The commutator in this expression can be evaluated to give
A [ (0000
’ 0 dx
1 A A A1 —xA % i %
=[x (AL ) g et
0
= [H,A]«¢ . (33)

The terms involving the Poisson brackets can be rewritten using the
identity

N 1 . R A . . "
Oxe™*? = / dx (eXA ¢ (OxA)e ™ ¢) xg et
0
- (oxA) =9 &, (34)
and hence, the phase space derivative of the local density is

Oxpu(t) = ((DxA)«¢)pu(t) = pu(D)((OxA) "+ ¢). (39)
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Combining these results, we obtain

iLpu(t) = 5 (TP + pLOTE () < 9(r0) (36

where the transformed flux J4 (r)is

- | N = P 3
Ju(r) = %[H,A(r)] - OrH-0pA(r) + . - ORA(r)  (37)
and J1 (r) is defined analogously.
We need one further simplification of the projected time

derivative of the local density, QT ()i Lp1(t). Using the definitions
of the projection operators, we have

Q' (MIa(Mpr(t) = (Q(OIa)pr(t) = Tupr(t),  (38)

Q' (p(0IL) = ((QOTL) = (D Tk (39

where we have introduced the new projectors Q(t) = 1 - P(t) and
Q' (t) = 1 - P'(¢) with

P()]a = (Ja)e + A (AA), 5 (AT a)s, (40)

PO, = L)+ (T1 &)« (ATA) '+ AT, (41)

The evolution equation (28) can now be written as

8“1(1’, t) = (-Aj'A(r))r +I(r, t) - ‘/Otdtl l"(r,rl,t, tl)*¢(r1,t1),

where the dissipative matrix I' is defined to be “
L(rruttn) = (Tae(r 0, ) Tan (1)),
= % ((jA,t(r, t1, ) Tan, (rl))t,
+ <7,Ll (r1) Tase(r: 11, t)>zl ) (43)

In Eq. (42), the term depending on the initial density operator is
I(r,t) =Tr ((UQ(t,O)fTA(r)) QT(O)[J(O)), and the random force
operators evolve with the projected evolution operator Uq.

An equation of motion for ¢(r,t) can be obtained by first
making use of Eq. (10) to get

Sra(ry,t) = (A(r)A(r)):  Bip(r, 1) (44)

and then using it in Eq. (42). Letting K;(r1,7) = (A(r1)A(r)):, we
find

t
a0(t) = K; ' ((Ta)e +1(1)) - fo dty K« Tt 0) = $(11),

(45)
where the spatial dependence has been suppressed for simplicity.
The set of integro-differential equation (45), although complicated,
is exact and can be solved self-consistently to give the values of the
¢ fields needed to compute the exact nonequilibrium average values
of A(r) given in Eq. (5).
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Equations (42) and (45) are the exact general evolution equa-
tions that will form the basis of the subsequent calculations in
this paper. While the set of densities of operators A(r) was cho-
sen to comprise slowly varying fields and it is for such variables
that the method has most utility, the formal derivations that lead
to Eqgs. (42) and (45) also apply to variables that are not slowly
varying. In this case, the full nonlinear and nonlocal equations
must be solved to obtain the average fields, a difficult task given
the complexity of the equations. For other choices of variables
than the slowly varying densities, there is no compelling reason
for generalized thermodynamic relations among conjugate ¢ fields
to be spatially and temporally local, a fundamental assumption of
nonequilibrium thermodynamics. On the other hand, as we shall
show in Sec. III, approximations can be made for slowly vary-
ing fields that lead to tractable hydrodynamic equations for the
average fields.

I1l. REACTION-DIFFUSION AND HYDRODYNAMIC
EQUATIONS

In this section, we derive quantum-classical reaction-diffusion
equations for multi-state quantum systems possessing long-lived
metastable states, coupled to fluid hydrodynamic equations. For this
application, we consider a system of N particles where N; quan-
tum solute molecules are present in a classical fluid of N}, solvent
(bath) molecules S. We suppose that quantum particles exist in two
long-lived metastable states, denoted by A and B, and their cor-
responding local density operators are given by N,(r), y = A,B.
The translational degrees of freedom associated with the centers-
of-mass coordinates of the N; quantum solute molecules will be
taken to be classical.”" For simplicity, we assume that the inter-
nal degrees of freedom of the N, solvent molecules, if present,
may be neglected and only their centers of mass play a role in the
dynamics, and all particles are assumed to have a common mass
M. We then denote the set of classical phase space coordinates
X =(Ry,...,RN,P1,...,Pn) = (R P) to be those of the center-of-
mass positions and momenta of the solute and solvent molecules.
The Hamiltonian of the system is similar to that in Eq. (2), except
that the classical Hamiltonian H, includes the center-of-mass trans-
lational energy of the quantum particles, and the interaction poten-
tial accounts for interactions between the internal quantum states
and the solvent molecules as well as for direct interactions among
the quantum states of different quantum particles, Vi(R) = V1, (R)
+ Vig(R), with

N

) 1 b abad)v ,
Vitk) = 3 3 (00} + ©107)Vyp (k) + ©10Vin(Ry) .
i)
1Y N
) > Va(Ry) =) O]Vi(Ra), (46)
(i%f) i=1

where the double sums range over all pairs (i,j) of i and j with i # j,
Rij = |Rj — Ri| = |Ryj| is the relative distance between molecules i and
j»and Ry = {Ryj|j =1,...,N,i # j}. The indicator functions @’ are
unity if x satisfies property y and zero otherwise.

The slowly varying coarse-grained fields we consider are as
follows: the local operators for the metastable chemical species are
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N
Ny(r) =3 ©18!(Ry)A(R; - 1), (47)
i=1

where SV(Ry;) is an operator that specifies when the quan-
tum molecule i is species y and Ry = {Rj|j€b}. Since this
operator satisfies the condition ¥, S!(Ry) =1, we have
>, Ny(r) = SN, @IA(R; - r) = Ny(r), the local density of quantum
particles.

The coarse-graining function A vanishes for distances
£p > Llint, where i is the short length scale on which interactions
vary rapidly and is introduced to smooth rapid variations that occur
in the microscopic density, Ny (r) = YN ©78! (Ry)d(R; 1), on
Cint length scales.””” Tt satisfies the condition [ dr’ A(r ") = 1.

The remaining local fluid fields include the number density of
the bath molecules,

Ny(r) = > OlA(R - 1), (18)

i=1

and N(r) = N4(r) + Ny (r), the total local number density. The total
momentum density of the centers of mass of the solvent and solute
molecules is

gy(r) = i P,A(R; - 1). (49)

i=1

The Hamiltonian density can be decomposed as H(r) = Hc(r)
+ H.(r), where

N
Hee(r) =Y ©Hui(R)A(R; — 1) (50)

i=1

and I:chi =H g + Vli(Ra) for molecule i includes both the quantum
Hamiltonian for the particle Hqi and its interaction V[,‘(Rci) with
the classical bath particles and other quantum particles, while the
classical Hamiltonian density is

H(r) = ; (2]\’/1 + UC,-)A(R,- -r) (51)

and includes interactions among the centers of mass of all particles,
1N N

Uc == Z Uc(Rl]) = Z Uci> (52)
2 /= =
(i) i=1

where
Ue(Ry) = ©70] Vi (Ry) + OOV, (Ry)
b b c
+ (@16} + 0!07) Vi, (Ry). (53)

Here, V,;q and V;b denote the (classical) interaction energy between
the solute molecular centers of mass and the classical bath
particles.

With this choice of variables, the set of local densities is A(r)

13

1S

A(r) = (Na(r), No(r), N(r), gy (r), H(r)). (54)
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The corresponding ¢ fields are written as

$(rt) = ((Bia) (1), (Bin) (1.1,
(B(us = 3m0")) (), (Bo) (1)), -B(r 1)), (63)

where [, (r,t) = py(r,t) — ps(r,t) is the chemical potential of the
y species density relative to that of the solvent, as noted earlier,
v(r,t) is the local fluid velocity field, and f(r,t) is related to the
inverse local temperature. We have used the notation (Sg)a(r,t)
= f(r,t)fia(r,t), with similar expressions for the other fields, to
simplify writing the products of fields.

With these expressions for the ¢ fields, we have

A= 58y (8) # N (B(us = 3m0) ) + g (Bo) - o

(56)
Since the numbers of quantum and bath particles can fluctuate
due to coupling to the reservoirs, we use the grand canonical local
equilibrium operator in Eq. (3) with A,A” € {g, b}.
The fluxes of A(r) take the general form

:7A(r) =iLA(r) = jl(qo)(r) -0 -ijl)(r). (57)

For the solute metastable state densities, the flux operators are

A

Ty =10 =8, 5", with

N
KO (1) = jiy(r) = 3 O (iL8]) AR~ ), (58)
i=1
My i - ey Pi
K@) =4y(r) = . OIS/ AR 7). (59)
i=1

We define jry(r) = v,jr(r) since 5! + 5P = 1, with v, being the sto-
ichiometric coefficient having values v4 = —1 and vg = 1. The fluxes
of the local total number, momentum, and energy density are

Tn = =04 (1) = =0 - gy (1) /M, (60)
Ty =090 (r) = =0, - #(r), (61)
Te==0r-50(r) = =0, Je(r), (62)

where the local stress tensor and heat flux have classical
and quantum contributions, T = 7. + %, and j, = j, + Je, respec-
tively. Full expressions for these flux contributions are given in
Appendix A.

A. Markovian evolution equations for average fields

The set of nonlocal equations (42) take a simpler approximate
form for the coarse-grained fields in the set A(r). Since these fields
vary on slow hydrodynamics times 7;, we can utilize the existence
of a small parameter € ~ Tmic/7),, where Tmic is a short characteristic
microscopic time, to carry out this simplification. In particular, for
an operator B, we have®
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O(n)B= OB~ [ ar S0 "D
= O(H)B+ O(e). (63)

Consequently, the projectors Q(t,) in the time-ordered evolution
operator Uq(t,t1) can be approximated by Q(t) so that Uq(t,t1)
~ ew@(t)(t—tl)_

We can also exploit the time scale separation to make a
Markovian approximation to the memory term in Eq. (42) to obtain

t ” — sym
[t (Fas (0T (1)) (1)

- [/0‘” dr (Tau(r, T)jfw(ﬁ))iym] x¢(r1,t)
= Laa(r, 11, 1) = ¢(r1, 1), (64)

with :7A¢(r, 7) = er(t)TjA,t(r). In the Markovian approximation,
Eq. (42) becomes

Ora(r,t) = (:7A(r))t +I(r,t) = Laa(r,11,t) x ¢(r1,1). (65)

When Eq. (65) is written in terms of its components, we obtain
the set of generalized equations of motion for the average val-
ues of the slowly varying A(r) fields expressed in terms of their
conjugate ¢(r,t) fields. These equations are written in full in
Appendix B.

Once the system of equations is solved for a(r,t) and their
conjugate ¢(r,t) fields, the evolution of the nonequilibrium aver-
age b(r,t) of an arbitrary linear density operator B(r) at long times
can be expressed in terms of local density averages,

Aib(r,t) = (Tp(r,t))e + Ip(r,t) — Lpa(r,r1,t) x d(r1,t),  (66)

where I5(r,t) and Lga(r, 1, t) are obtained by replacing i LA(r) by
iLB(r) in I(r,t) and Ja(r,1t).

It is often useful to introduce two additional approximations
to make the evaluation of the correlation functions more tractable.
First, since the ¢ fields and their gradients are slowly varying in
space, we can expand ¢(r1,¢t) in a Taylor series about r since the
fluxes in the local equilibrium correlation function are significantly
correlated only when |r — 11| is small. This approximation allows us
to write Laa(r,71,t) x ¢(r1,t) » Laa(r,t) - ¢(r,t), where

Lua(rt) = [T de (Taalr ) Tan?™ (@)

with TTAJ = f dr, 7“(1*1). Second, local equilibrium averages may
be approximated by homogeneous ensemble averages™ where oper-
ators or variables B(r) in the correlation functions are replaced
by their volume averages so that the transport properties in the
nonequilibrium ensemble depend on space and time only through
the ¢(r, t) fields. With this approximation, we can write

Laau(r,t) = %_/ow dr (:7A,:(T)T7A,t)2’m> (68)
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where subscript H on the angular brackets denotes an average in
the homogeneous ensemble where the local density pr(t), Eq. (3),
is replaced by

pu(rt) = [T (NN L a0 ) 2,1y, (69)
A
where

Zu(t) = Tr []‘[ (NN )1 '“’("’)]. (70)
A/

In the homogeneous ensemble, Eq. (56) reads

A-g(r,t) = 30 Ny (Bay) (r:1) + gy - (Bv)(1.1)
4

+ N(ﬁ(ﬂs - %mvz))(r, t)y-B(r,)H.  (71)

As noted above, in this expression, the dynamical variables and
operators no longer depend on space, and spatial dependence
resides only in the ¢ fields. It follows from the form of pu(r,t)
that the dependence of homogeneous local equilibrium correla-
tion functions on the local conjugate fields ¢(r,t) is the same™
as the dependence of equilibrium correlation functions on the
equilibrium values of ¢. Furthermore, standard thermodynamic
relations, such as the Gibbs-Duhem equation, hold locally at the
field point r.

Finally, the initial condition term I(r,t) will decay on a micro-
scopic time scale, Tmic, and for times t > Tmic, it may be neglected.
Applying these approximations, the evolution equation is

Ora(r,t) = (Ta(r))i - Laan(rt) - §(r,1), (72)

and this is the form that will be considered in what follows. To
avoid excessive notation, subscript H will be discarded in expres-
sions for dissipative coefficients L4, and it should be assumed that
the flux correlation functions are evaluated in the homogeneous
ensemble.

Any of the approximations above can be relaxed if the condi-
tions for their validity are violated when applying this formalism to
a physical system, albeit at the cost of dealing with more complicated
equations.

IV. REACTION COORDINATES AND QUANTUM
REPRESENTATION

The results obtained in Secs. II and III apply to any choice of
species variables to specify the quantum operators or functions that
define the metastable A and B species. In addition, any convenient
basis can be used to represent the quantum operators. Here, we con-
sider some choices for species variables and basis sets to illustrate the
use of the general formalism.

The choice of chemical species variables depends on the reac-
tion under consideration. In some circumstances, it may be conve-
nient to consider a representation based on the eigenfunctions of
the quantum Hamiltonian Hy = Y%, ©7Hyi: Hyilki) = egi|ki), where
ki e {ki,kz,...,ks} for an s-state quantum molecule. The interac-
tions may be such that these quantum states can be partitioned into
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two weakly coupled submanifolds {s,} corresponding to A and B,
specified by the operators &) = Lies,y i) {kil.

In other applications, the species variables may be chosen to
depend only on the environmental coordinates. This is the case for
proton or electron transfer reactions controlled by the solvent polar-
ization reaction coordinate, as mentioned in the Introduction. In
such circumstances, the species variables are classical and depend
on the coordinates of the bath: S!(Ry;). In other physical situations,
chemical species may be characterized by quantum operators that
are functions of the environmental coordinates, as is the case for a
species specification in terms of adiabatic states.

Here, we suppose that the reaction is governed by a general
scalar reaction coordinate &;(Ry;), which is a function of the bath
coordinates relative to the position of the quantum particle i, which
can be used to define a hypersurface &* that partitions the configu-
ration space into two metastable regions. The corresponding species
variable may be chosen to be S! (Ry;) = 0(vy(&(Ry;) — &), where
0(x) is the Heaviside function.

To investigate various aspects of the general formulation in
a simple context, we assume that the thermal conductivity is suf-
ficiently large so that the temperature is uniform and constant,
B(r,t) = f. For strongly exothermic or endothermic reactions, this
condition can be relaxed. Chemostats that control the chemi-
cal potentials of the solute species are present, and we take the
solvent chemical potential to be uniform. As in isotropic sys-
tems close to equilibrium, the dominant dynamical correlations
are assumed to be due to correlations between fluxes of the same
tensorial character,”” and we retain only these dissipative coeffi-
cients although the presence of constraints may lead to violations
of these symmetries. Although dissipative coefficients that cou-
ple reaction to the longitudinal component of the velocity field
remain in this approximation, this coupling is often small and
vanishes for the incompressible fluids (O - v =0) we consider
here. As observed earlier, these restrictions can be relaxed by
using the full set of generalized hydrodynamic equations given in
Appendix B, but with these approximations, the equations take the
simpler form

Oy = —v - Optty + vy(jr)t = VyBLR A + Op - L,y - Orfliyy,  (73)
Op = —v - Orp, (74)
pOrv = =0y - Py + Oy - BLyy : Orv. (75)

The summation convention on repeated indices is used here and
below.

Sometimes, it is useful to rewrite this set of equations in a more
standard form by evaluating the average fluxes and expressing the
dissipative L coefficients in terms of usual transport coefficients. The
full expression for the reactive flux is

N
p
jr(r) = 3 ©f 5 (OrS! (Ru))A(R; = 1), (76)
i=1
and its average in the nonequilibrium ensemble is
(r(r))e = Er(r,t) - v(r,1)

N
= (> ©1(9rSY(Ry))A(R 1)) -v(r,1), (77)
i=1

t
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which is localized on the reaction hypersurface since OgS?
= (OrE)S(& — &%), The reactive coefficient Ly is defined by

BLa(r 1) = é [ Grain (78)

where the spatially integrated fluxes that enter the homogeneous
ensemble are jr; = Q(t)jr. This is a generalization of equilib-
rium reactive flux correlation function expressions;® it is space and
time-dependent due to the nonequilibrium homogeneous ensemble
average.

The diffusion flux is

N
P,
i = 95V (R,.) =

Jye = Q(t); 0;S; (Rh')M’ (79)

and the corresponding A and B diffusion dissipative coefficients are

By = [T e (G
=D, (1, t)ny(r,1), (80)

where the last line defines the local diffusion tensor.

We let (77(r)): = Py(r,t) define the local fluid hydrostatic
pressure tensor, while the viscous dissipative coefficient is a rank-4
tensor,

BLon(r) = & [T ar momn (81)

As noted above, all these transport coefficients depend on the spatial
field point r and time ¢ because the homogeneous averages depend
on the conjugate fields ¢(r, t).

We can use the relation in Eq. (44) along with the expression
(Ny(r)N,(r1))e » ny(r,t) 8,,8(r — r1) for a dilute solution to find

Oy (1, t) = ny(r, 1) fOsuy (1, 1). (82)

Taking the initial values of the fields to be uniform, this equation
admits a solution, u,(r,t) =y + B~ In (n,(r,t)/no). If this result
is used in Eqs. (73)-(75), one has a closed set of coupled equations
to solve self-consistently for the n,(r,t) and v(r,t) fields. Alterna-
tively, one can use Eq. (82) in Eq. (42) to obtain coupled equations
for the ,uy(r, t) and v(r, t) fields.

A. Evaluation of the dissipative coefficients

The correlation function expressions for the dissipative coef-
ficients can be evaluated in any basis. Because the physical system
under investigation comprises identifiable quantum solute species
in a solvent, the interactions among the solute species must not be
so strong that these species lose their identity. In this circumstance, a
molecular-based adiabatic basis for the configuration-space reaction
coordinate considered here is especially convenient. In this basis,
the matrix elements of direct interaction potentials qu between
the quantum particles will have off-diagonal components as will
the local density operator. Here, for simplicity, we assume that the
N; quantum solute molecules are dilutely dispersed in the clas-
sical fluid so that Ny << N, and we can neglect the off-diagonal
direct interactions between quantum particles that lead to quantum
transitions.
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In this case, the Hamiltonian H, 4c can be decomposed into the
sum of single noninteracting quantum particle Hamiltonians, Hgci.
The corresponding adiabatic states for particle i are defined by

Hei(Ryi) |03; Ry;) = €0i(Ryi) |05 Ry;), (83)

with £i € {£1,0,,..., 4}, Vi, for a particle with s quantum states. The
N, quantum particles are distinguishable by their classical center-of-
mass coordinates, and the adiabatic states for the entire system can
be written as |£; R) = [T, ®7|¢i; Ry;) so that

He(R)|6R) = €2 (R)|& R), (84)

with €g(R) = Zfil @?Eei(Rb,-).
For the situations considered here, where § and lg are constant,
we can write A - ¢(r,t) in Eq. (71) as

A gro) - ﬁ(H N = Ny r>)

y
= —B(H" - Nypus = Noptq(r,1) + Ny A(r, 1)), (85)

where H™" is H with P; - Pj = P; - Mwv(R;),Ngq = N4 + Np defined
earlier, y, = (4, +4p)/2 and N, = (N4 — Np)/2. In the second line
of Eq. (85), we expressed A - ¢ in terms of the total density of quan-
tum particles Ng, controlled by u,, which can often be taken to be
constant since the reaction interconverts species A and B without
changing their total number, and the difference density N, con-
trolled by the chemical affinity A(r,t) = up(r,t) — pa(r,t) is the
chemical affinity. We then have the following matrix elements:

., N
Ny = 0! (Ryi)dpg = NySpres (86)
i=1
, N
quce = Z @?egj(Rhi)aele = Ee(R)Se'e, (87)
i1

Using these results, the matrix elements

. _ N q
with 68’[ = Hj=l ®j65’je]"

of A - ¢ are
A% = B[ HE + N AR D)8, (88)

with Hy = H + €4 — Nyps — Ngpig so that

pﬁ,e(X, rt) = (H (NA!thNA)—le—ﬁ(H2+N,A(r,t)/z)5e,e
)

= pt1(r,1)8prp» (89)

where A = b, g, r. Note that N, is independent of the configuration
space coordinates because the sum of the solute species variables is
unity, but that is not the case for N, since it depends on the difference

of these variables. Because p§ ¢ is diagonal in the adiabatic basis, the
computation of average values simplifies

(BOX))u(r,t) = Tr [B*(X)pf (X.1,1) ] (90)

where tr = )", in the definition of Tr in Eq. (4).
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As an example of the calculation of dissipative coefficients in
the adiabatic basis, we can write the correlation function for Ly in
Eq. (78) as

Lr(r,t) = ‘*l/fooodTTr[((e“Q(t)T)lljR,t)]R,rPfI(r,t)], (91)

where the matrix elements of the reactive fluxes are diagonal so
that jﬁ,’f = jri8gp (and jf,'f = jyi0pr for the diffusion correlation
function). For our choice of species, variable Jr, is classical and
commutes with the density operator so jr = jr. Although jp, is
classical, nonadiabatic effects enter Lr(r,t) since evolution gov-
erned by the quantum-classical Liouville operator is not diagonal in
this basis. Furthermore, the statistical average over the local density
operator involves a sum over all quantum states.

The methods used to compute reactive flux correlation func-
tions can be applied here as well. In particular, one can exploit
the time scale separation between the chemical and micro-
scopic relaxation times to remove the projected dynamics when a
plateau exists for times tmic << t << tchem.‘)‘12 The evolution under
quantum-—classical Liouville dynamics can be simulated using var-
ious methods, and rare event sampling can be used to evaluate the
correlation function.” The use of the auxiliary local density oper-
ator is an important feature of the present formulation that allows
one to bypass sampling from the full quantum or quantum-classical
density matrix.

Similar expressions can be written for the other dissipative coef-
ficients, and the matrix elements of the other fluxes are given in
Appendix A.

B. Nonequilibrium steady states

Next, we consider steady states for systems in mechanical equi-
librium where pd,v = 0 and further suppose that the velocity field is
sufficiently small that its effects can be neglected.”’ In this case, we
are left with the reaction-diffusion equations,

Oy = =v)BLR A+ Or - BLy, - Orlhy, (92)

where we have neglected the cross-coupling of diffusion fluxes in L,,
since the solution is dilute. Making use of Eq. (82) and the expression
for the chemical potential in terms of the local species density, we
can write a closed set of equations for the chemical potentials needed
to satisfy the constraints,

1oy = e_ﬁ(”’_“?’)[—vyLRA +0r-Lyy - Oriy ], (93)

where yg is the (uniform) chemical potential of species y in equi-
librium. In addition to the manifest nonlinearity, the dissipative
coefficients are also functions of the nonlocal chemical potentials.

In place of such a calculation, we can instead consider the some-
what simpler reaction-diffusion equations expressed in terms of the
local species densities,

Ay = —vyBLr A + 9y - Dy - Oyny. ©4)
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The reactive term can be written in mass-action form* using the
expressions for the chemical potentials derived earlier. To do this,
we first write the affinity as

BA(r,1) = Blus — ua) = Blusy — a) +In Zﬁﬁ:j 2

I ng(r, t)neAcl N (nB(r, t) B na(r, t))

na(r,t) n;q " n;q niq

(95)

since A = 0 at equilibrium. The last approximate equality follows if
the system is close to equilibrium. We may then write

L L
vyBLr A = vy(n—:;ng(r, ) - n—:;nA(r,t))
B A

= vy (kenp(r,t) — kyna(r,1)). (96)

The forward and reverse rate coefficients, k¢, = kr,[n,(r,t)], are
functionals of the local densities, given the nonequilibrium averages
in Lg. Because the reaction rate and diffusion coefficients depend on
the species densities, we have coupled nonlinear equations,

Oma = kyng — kan +0p-Da - Orna 97)
Omp = —knp + kan + Oy - Dg - Ornp.

These equations also admit nonequilibrium steady-state solutions

ny () that satisfy the differential equations,

Or - Da - Opnily + ko — kfnff =0

(98)
Oy - Dg - Oyny — kg + kpny = 0.

The inhomogeneous steady states depend on the boundary condi-
tions that fix the chemical potentials or densities of the reactive
species.

In the linear regime, the transport coefficients can be evalu-
ated using equilibrium averages to obtain the first approximations
of the steady-state densities. Then, if one considers a system with
two chemostats separated by a distance zy that fixes the concentra-
tions of the two chemical species at z.. = +z¢/2, the one-dimensional
version of Eq. (98) can be solved to yield the nonequilibrium steady
state densities. For equal diffusion coefficients, D4 = Dp = D, the
coupled equations can be solved using the variables y(z) = kfna(z)
— kyng(z) and n(z) = na(z) + ng(z) = no (since reaction conserves
the total number of quantum particles) to give

nx(2) = (keno + y(2))/ (ks + k),

np(z) = (kfno - u/(z))/(kf +k), 49)

where

cosh (xzo/2)
=2krng———"1-%
¥(@) o sinh kzg

B (kf + kr)
sinh xzo
—ng(—20/2) sinh k(z - 20/2)), (100)

sinh xz
(np(20/2) sinh x(z + z0/2)
where x = ((kf + k;)/D)'? is the inverse screening length. Chem-

ical reactions screen the diffusive decay of concentration inhomo-
geneities: Since the chemical relaxation time is Tchem = (kf + k)7
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the screening length corresponds to the average diffusive distance
in a chemical relaxation time. Consequently, the dimensionless
factor xzo is important in determining the behavior on the scale
of the separation between the two reservoirs. The rate coeffi-
cients enter the species densities as ratios that can be expressed
in terms of the equilibrium constant for the reaction: kf/ (kf + k)
=1/(1+K) and ke/(ks+ k) =1/(Keq + 1). Thus, the dimen-
sionless screening length xzo and equilibrium constant Keq = k¢ /k;
= ny'/n3} determine the forms taken by the steady-state densities.

The spatially dependent steady-state affinity can also be
expressed in terms of the steady-state densities as

ss 0 0 n%s(z)
FA%(2) = BG4l +1n (755 )

_ ng (2)
(o) o

The steady-state density n3(z) and the chemical affinity
A%(z) are plotted in Fig. 1 for two specific chemostat concen-
trations: (i) the two chemostats have the same concentrations,
(na(£20/2),n8(%20/2))/no = (0.1,0.9), and (ii) the two chemostats
have different concentrations, (14 (z0/2),ns(z0/2))/no = (0.1,0.9)
and (n4(-20/2),n8(-20/2))/no = (0.9,0.1), and several values of
kzo. Some features of the plots are common to both chemostat con-
figurations. For small xzy values, 13 (z) (and n}(z)) vary strongly
with z over the entire domain zy between the chemostats. By con-
trast, for large values of xzo, significant variations occur only in the
regions near the chemostats, while there is a large central region
where 13 (z) ~ ng! = ng/2. The steady-state affinity shows similar
trends, and in the central region between the chemostats, one has
A*(z) ~ 0 for large xzo, signaling that near equilibrium conditions
exist there.

The inverse screening length can be written as

k= (DTehem) /%, and for a fixed value of the diffusion coeffi-
cient, its value is controlled by the chemical relaxation time. Thus,
for slow reactions where Tchem is large, « is small, and small values of
kzo imply that reactions are unable to establish chemical equilibrium
on lengths 2, the distance between the chemostats. In the opposite
limit where reactions are fast and « is large, chemical equilibrium
is established on length scales much shorter than zy so that large
deviations from equilibrium are confined to distances £; = k™' near
the chemostats.

The steady-state affinity can be used compute the next approx-
imation to the dissipative reactive coefficient,

BL: (z) = é/owdr TI'[((ei[:Q(t)T)ZliR,t)]'R,tpﬁl)gs(z)], (102)

where pf . (2) is given by Eq. (89) with the chemical affinity replaced
by its steady state value, .A%(z).” Since the method is constructed
to give the exact nonequilibrium average species densities, the non-
linear effects due to a spatially dependent affinity enter through the
dissipative coefficients in the equations of motion, which can be
used to investigate the evolution of deviations from steady states.
Because A*(z) exhibits strong variations with z, especially near the
chemostats, there are significant z-dependent effects on the effec-
tive reaction rate coefficients due to the nonequilibrium nature of
the environment. In the homogeneous ensemble approximation in
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(i): Equal Chemostats (ii): Unequal Chemostats

— KZp=5
=== KZo=10
—— kKzg=15
Kzo =30

-0.4 -02 0.0 02 04 -04 -02 00 02 04
z/zg z/zo

FIG. 1. Plots of the steady-state density n§’(z) /no (upper two panels) and chem-
ical affinity B.A%(z) (lower two panels) as a function of z for several values of
xZy = 5,10, 15, 30 indicated in the figures. Results are shown for two chemostat
concentration sets (i) and (i) given in the text: (i) (left panels) and (ii) right panels.
The equilibrium constant is Keq = 1 for these plots.

Eq. (69), the dependence of the transport coefficients on the local
internal energy and the number density is the same as it is in equi-
librium,”* and this feature can be exploited to obtain approximate
solutions to investigate nonlinear effects far from equilibrium.

V. CONCLUSION

It is useful to summarize several features of the treatment of
open quantum-classical systems described in this work. The focus of
this study was on the derivation of equations of motion for a set of
operators and functions that vary slowly compared to microscopic
time scales. The choice of variables depends on the system and is
usually selected on physical grounds, but, generally, these variables
may be associated with conserved or nearly conserved quantities.
The applications studied in this paper include the conserved mass,
momentum, and energy fields, as well as nearly conserved reactive
species densities corresponding to long-lived metastable states. The
densities of conserved quantities must be included in the set of slow
variables to ensure a time-scale separation between the evolution of
these fields and other microscopic variables. Their inclusion is neces-
sary to allow a Markov approximation to be made, resulting in local
equations of motion for the averages of the chosen fields. While the
general formalism is applicable to any set of variables, if the A(r)
fields are not slowly varying, one must solve a more complex set of
equations for the ¢(r, t) fields.

The introduction of an auxiliary local density operator to
enforce the constraint that the exact nonequilibrium and local
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density averages of the chosen fields are equal has important impli-
cations for the computation of the transport properties that enter
the evolution equations. In particular, it allows one to bypass sam-
pling from the exact nonequilibrium density, which may be difficult
to carry out. The price paid for this simplification is the need to
solve equations to determine the constraint fields. Nevertheless, the
resulting equations are amenable to solution using various approx-
imations and provide an alternate route to evaluating the micro-
scopic expressions for transport properties under nonequilibrium
conditions.

Although we have illustrated the formalism by studying a sys-
tem of reactive quantum particles constrained to lie out of chemical
equilibrium by coupling to chemostats, the general formalism can
be applied to other systems. The choice of the degrees of freedom
to be treated classically depends on the physical context, as does
the manner in which the system is driven out of equilibrium. For
instance, in molecular species, electronic as well as a selection of
high-frequency nuclear modes could be treated quantum mechani-
cally, while others may be taken to be classical; if the solvent is a polar
molecular fluid, collective polarization densities can be included
in the description. The system may be driven out of equilibrium
by external fields instead of chemostats, and the transport can be
studied by coupling to different thermostats, treated classically or
quantum mechanically.

We have presented the formalism for systems whose evolution
is governed by the quantum-classical Liouville equation. However,
since this equation reduces to quantum evolution when the clas-
sical degrees of freedom are absent and to classical evolution if
there is no quantum subsystem, the formalism also embodies these
two limits.
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APPENDIX A: STRESS TENSOR AND ENERGY FLUX

In the small gradient limit where the coarse-graining length
is long compared to microscopic length scales, £ >> fin;,” the full
expressions for the classical and quantum components of the stress
tensor T = 7, + T, are

ik, Uc(Ry) |A(Ri = 7), (A1)

7.(r) = Z}

]#1

ty(r) = —*Z Z RijOr, V(Rj)A(Ri — 1), (A2)

11]#1

and the energy flux, j. = j,, + Jeq> contributions are

Joo(r) = Z Hu A(R, —r) - EZ > Rijor,Uc(Ry) - A(R, -r),
i=1 j#i
(A3)
ap P 1y X . P
JEq(") Z 0; an A(Ri-r1) - *Z Z RijaRijq(Rij) iy
2 j#i M
x A(R; — 1), (A4)

where V4(R;;) and Uc(Rjj) are defined in Egs. (46) and (53).

Keeping only V;, contributions to the interaction poten-
tial Vq for a dilute solution, their matrix elements in the adia-
batic basis are diagonal for the classical fluxes Tf’e(r) =1(r)0pp,
jfcrz(r) =jo.(r)8gp, while the quantum fluxes have off-diagonal
contributions,

(”) = Z Z @ C R’J(aRy qb.e’ o(Rij)

i=1 j=1

+Z( oo (Rej) V070 (Rij)

o
Voo (Ri)d,grg(Ry) ) )A(R — )85 (A5)

and

Jot(r) = Z®q€ez(sz iA(Rf—f)%,e

[\|1z
™M=

CHC) Ru(aR., o (Rij)

N
il
—_

1j
+ > (e (Ry)V,

7"

= Vabe'e” (Rij)dj,z”z (Rej) ) ) ’

oo (Rij)

~

P; 6
MA(Ri -8, (A6)

where dj,e’e” (ij)
= (¢ j; Ryj|Or,;|¢" jRy;) is the non-adiabatic matrix element
that couples the ' and ¢"' adiabatic states of quantum particle ;.

In the adiabatic representation, the Kubo-like transform
defined in Eq. (14) of the off-diagonal elements of the quantum

I o OVeY
= HJ:1 ®]6£’1e1 and
J#F
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fluxes j; £ where £+ £ and 7, = #; or J = Jeg» is related to the
matrix elements by

—B(ee—eyr)
<e'e l1-e Y7\ pe
=1 . A7
]q ( ﬁ(ee _ 62’) )]q ( )

The Kubo-like-transformed fluxes only differ significantly from the
untransformed fluxes if the gap between the adiabatic energies is
small relative to the local thermal energy. Nonetheless, since the
nonadiabatic coupling matrix element

—(4j; Ry;|Or,, Vil js Ry )
€0(Ryj) — € (Ryj)

is also large when the energy gap is small, the Kubo-like-transform
cannot be neglected.

d; ¢ (Ryj) = (A8)

APPENDIX B: GENERALIZED EQUATIONS OF MOTION

The average values of the fluxes can be computed by replacing
P; by P} = P, — Mv(R;) to obtain

(Ty(1))e = =0r - (myv) = vy (jr)es (B1)
(Tp(1)) = =0k - (pv), (B2)
(Te(N)e = =0, - (pvv) + (7)), (B3)
(T (1) = =0 - (ve' +v-(77))r). (B4)

Making use of the approximations discussed in the text and the
expressions for the average fluxes, the evolution equations can now
be written as

Oy = =0r - (nyv) = vy(jr)t — vyBLr * A+ vy Ly, % O (B )
+VyLro ® Oy (Bv) — vyLpe+ % 0 B
- Oy - Lyg A+0,- Lyy’ * arr (ﬁﬁyr)
+0r Lyy @ Oy (Bv) = Or - Lo+ % Oy B, (B5)

Op = =0 - (pv), (B6)

pOv =—pv Oy -V —0r Py~ O Lorx A+ 0k~ L,y *B,r(ﬁ’ﬁyf)
+0r - Loy @ﬁ(ar’v) -0 ‘L'ueJr *ar'ﬁ’ (B7)

Qe = -0, (ve") = Py: (8v) = - Logx A= 9yv : Lugx A
+ O - LL’*V' * 6r' (W}") + 0 - Le*'u ®ﬁ(8"”v)

+(0rv) : Luy = 0y (Biity)
+(0rv) 1 Loy ® B(0yv) — Oy - Lyr o+ % 0 3, (B8)

where e*(r,t) =e(r,t) - ip(r,t)v*(r,t). In these equations,
p(r,t) = Mn(r,t) is the mass density, A(r,t) = up(r,t) — pa(r,t) is
the chemical affinity, and Py, (r,t) = (77 (r)); is the hydrostatic pres-
sure tensor. In the equations above, T@ U = [ dr’ Top(r")Unp(r')
denotes the contraction of second-rank tensors and an integration
over the spatial argument r' and T:U = T.g(r)Uns(r) is the
contraction of the tensor indices alone.
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