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INVITED ARTICLE

Forward–backward solution of quantum-classical Liouville equation in the
adiabatic mapping basis

Chang-Yu Hsieh, Jeremy Schofield and Raymond Kapral∗

Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada

(Received 1 July 2013; accepted 16 August 2013)

A forward–backward solution of quantum-classical Liouville equation in the adiabatic mapping basis is constructed. The
trajectory dynamics of this solution admits an interpretation that is different from that in the quantum subsystem basis
and allows one to establish a connection between mean-field and surface-hopping algorithms within the quantum-classical
Liouville equation framework. This adiabatic formulation also suggests hybrid simulation schemes that combine aspects of
mean-field and surface-hoping dynamics.

Keywords: Liouville equation; non-adiabatic dynamics; mixed quantum-classical dynamics

1. Introduction

Non-adiabatic dynamics, stemming from the breakdown
of the Born–Oppenheimer approximation, play important
roles in the description of many chemical and biological
processes such as proton and electron transfer reactions,
vibrational relaxation, photochemical dynamics, and co-
herent energy transfer phenomena in biological systems
[1]. In all these processes, the non-adiabatic transitions ex-
perienced by the quantum system are induced by interac-
tions with the environment in which it resides. To avoid the
exponential scaling in computational costs of exact quan-
tum simulations for the composite system, several mixed
quantum-classical [2,3] and semi-classical [4,5] schemes
have been developed.

In recent work [6,7], we constructed a forward–
backward trajectory solution (FBTS) to simulate non-
adiabatic dynamics within the quantum-classical Liouville
equation (QCLE) formalism. This solution was derived by
starting from the formal solution of QCLE in forward–
backward form in the subsystem-based mapping approach,
which represents the discrete quantum states in terms of
positions and momenta of fictitious harmonic oscillators.
With this starting point and the introduction of a coher-
ent state basis [8,9] in the mapping space, an approximate
solution of the QCLE that involves forward–backward tra-
jectories of the coherent state variables, coupled to the evo-
lution of the bath phase space variables, was derived. The
dynamical evolution of the entire system, quantum subsys-
tem plus bath, that is prescribed by the FBTS is described
by Newtonian dynamics in the extended phase space com-
prising coherent state and bath phase space coordinates,

∗Corresponding author. Email: rkapral@chem.utoronto.ca

providing a simple but approximate simulation algorithm.
The earlier surface-hopping-like schemes [10,11] for the
solution of the QCLE involve Monte Carlo (MC) sampling
of non-adiabatic events, which can lead to instabilities due
to accumulations of MC weights unless filtering is applied.
The FBTS does not involve such events and is more appeal-
ing alternatives in situations where long-time dynamics is
of interest.

Comparisons of the FBTS with exact quantum dynam-
ics on a variety of model systems indicate that quantitatively
accurate results can be obtained often with small computa-
tional cost [7]. In situations where this approximate solu-
tion is not quantitatively accurate, its generalisation, termed
the jump forward–backward trajectory solution (JFBTS),
has been shown to correct deficiencies in the solution. The
JFBTS provides a systematic method to numerically re-
cover the exact QCLE results by introducing jumps in the
continuous Newtonian trajectories. In the current formula-
tion of the JFBTS, there is no special criterion to determine
at which times jumps are inserted; consequently, they are
introduced through uniform stochastic sampling. Since the
inclusion of jumps in the trajectories adds to the computa-
tional cost, it is important to develop better jump sampling
strategies for situations where the simple FBTS does not
provide sufficient accuracy.

Here, we consider the formulation of the forward–
backward solution of the QCLE in the adiabatic mapping
representation. In different contexts, the adiabatic map-
ping representation has been considered in Refs. [12–14].
Several factors suggest this is a worthwhile task. For cer-
tain problems, such as proton transfer reactions where the

C© 2013 Taylor & Francis
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time scales of the bath and subsystem are well-separated
even during non-adiabatic transitions, adiabatic dynamics
can provide qualitatively acceptable results. Therefore, a
forward–backward solution of the QCLE in the adiabatic
basis will be appropriate for problems of this type. Further-
more, solutions based on the adiabatic basis naturally lead
to surface-hopping algorithms [10,11,15]. Consequently, it
is interesting to understand how to extract such a surface-
hopping dynamics from the FBTS (a mean-field algorithm
in the subsystem-based mapping basis), and obtain an al-
ternative approach to inserting jumps to disrupt continuous
propagation of trajectories in the mapping space.

The outline of the paper is as follows. In Section 2,
we summarise the principal elements of the FBTS. In Sec-
tion 3, we construct the adiabatic mapping version of the
FBTS, present the set of evolution equations that govern the
dynamics, and provide an interpretation of the trajectory dy-
namics in the original FBTS in terms of the adiabatic repre-
sentation. In this section, we also give a different form of the
forward–backward solution that leads to a surface-hopping
interpretation of the dynamics. Finally, in Section 4,
we comment on the connection between mean-field and
surface-hopping algorithms within the QCLE framework
and suggest how the formalism might be used to construct
hybrid schemes that combine advantageous features of
both mean-field and surface-hopping dynamics.

2. Forward–backward solution of the
quantum-classical Liouville equation

We consider a quantum subsystem coupled to a bath whose
joint dynamics is described by the QCLE. The Hamiltonian
has the form,

ĤW (X) = Hb(X) + ĥs + V̂c(R) ≡ Hb(X) + ĥ(R), (1)

where the subscript W refers to a partial Wigner transform
over the bath degrees of freedom (DOF). Here, Hb(X) =
P2/2M + Vb(R) is the bath Hamiltonian with Vb(R) the
bath potential energy, ĥs = p̂2/2m + V̂s is the subsystem
Hamiltonian with p̂ and V̂s the subsystem momentum and
potential energy operators, and V̂c(R) is the coupling po-
tential energy operator. The masses of the subsystem and
bath particles are m and M, respectively.

For a partially Wigner transformed operator B̂W (X),
which is a function of the phase space variables X =
(R,P ) = (R1, R2, . . . , RNb

, P1, P2, . . . , PNb
) of the bath,

the time evolution is governed by the QCLE,

∂B̂W (X, t)

∂t
= i

�
[ĤW , B̂W ]

− 1

2
({ĤW , B̂W } − {B̂W , ĤW }),

= iL̂B̂W = i

�
(
→
H� B̂W − B̂W

←
H�). (2)

For a review with references, see Ref. [3]. In this equation,
the square and curly brackets denote the quantum commu-
tator and classical Poisson bracket, respectively. The two
kinds of Lie bracket act together as the generator of the
mixed quantum-classical dynamics. Due to the fact that
ĤW (X) and B̂W (X, t) are quantum operators with respect to
the subsystem DOF, two differently ordered Poisson brack-
ets are needed to properly account for the mixed dynamics.
The last line of the above equation defines the QCL oper-
ator iL. The second equality on this line of the equation
introduces another equivalent representation of QCL oper-
ator in terms of the forward and backward mixed quantum-
classical Hamiltonians [16],

→
H� = ĤW

(
1 + ��

2i

)
,

←
H� =

(
1 + ��

2i

)
ĤW , (3)

where � =←
∇P

→
∇R − ←

∇R

→
∇P . The arrow on top of a dif-

ferential operator indicates the direction in which it acts.
The last representation of the QCL operator resembles (for-
mally) the quantum evolution operator, and forms the start-
ing point of the FBTS.

The formally exact solution of the QCLE is given by
[15,16]

B̂W (X, t) = eiL̂t B̂W (X),

= S(
ei

→
H�t/�B̂W (X)e−i

←
H�t/�

)
. (4)

The S operator [6,16] specifies the order in which the for-
ward and backward evolution operators act on B̂W (X). The
ordering of evolution operators is critical because the lack
of an underlying Lie algebraic structure of the QCLE.

2.1. Forward–backward trajectory solution

We suppose that the time evolution of the quantum subsys-
tem (coupled to the bath) can be accurately described within
a Hilbert space of dimension N. Furthermore, the subsys-
tem basis {|λ〉} is chosen for the matrix representations of
quantum operators.

In the mapping representation, the state |λ〉 is replaced
by |mλ〉, an eigenfunction of the Hamiltonian for N ficti-
tious harmonic oscillators [5,17], having occupation num-
bers which are limited to 0 or 1: |λ〉 → |mλ〉 = |01, . . . , 1λ,
. . . 0N〉. Creation and annihilation operators on these states,
â
†
λ and âλ, satisfy the commutation relation [âλ, â

†
λ′ ] = δλ,λ′ .

The actions of these operators on the single-excitation
mapping states are â

†
λ |0〉 = |mλ〉 and âλ |mλ〉 = |0〉, where

|0〉 = |01 . . . 0N〉 is the ground state of the mapping basis.
We may then define the mapping version of opera-

tors, B̂m(X), given by B̂m(X) = Bλλ′
W (X)â†

λâλ′ , such that
matrix elements of B̂W in the subsystem basis are equal
to the matrix elements of the corresponding mapping
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3548 C.-Y. Hsieh et al.

operator: Bλλ′
W (X) = 〈λ|B̂W (X)|λ′〉 = 〈mλ|B̂m(X)|mλ′ 〉.

(The Einstein summation convention will be used through-
out although sometimes sums will be explicitly written
if there is the possibility of confusion.) In particular, the
mapped Hamiltonian is

Ĥm = Hb(X) + hλλ′
(R)â†

λâλ′ ≡ Hb(X) + ĥm, (5)

where we applied the mapping transformation only on the
part of the Hamiltonian that involves the subsystem DOF
in Equation (5). The mapping Hamiltonian, ĥm, is always
a quadratic Hamiltonian with respect to the quantum DOF.
The pure bath term, Ĥb(X), acts as an identity operator
in the subsystem basis and is mapped onto the identity
operator of the mapping space directly. The mapped formal
solution in Equation (4) reads

B̂m(X, t) = S(
ei

→
Hm

�t/�B̂m(X)e−i
←
Hm

�t/�
)
, (6)

where
→
Hm

� is given by
→
Hm

� = Ĥm(1 + ��/2i), with an anal-

ogous definition for
←
Hm

�.
We now define the coherent states |z〉 in the mapping

space, âλ |z〉 = zλ |z〉 and 〈z| â†
λ = z∗

λ 〈z|, where |z〉 = |z1,
. . ., zN〉 and the eigenvalue is zλ = (qλ + ipλ)/

√
�. The

variables q = (q1, . . ., qN) and p = (p1, . . ., pN) are mean
coordinates and momenta of the harmonic oscillators in
the state |z〉, respectively; i.e., we have 〈z| q̂λ |z〉 = qλ

and 〈z| p̂λ |z〉 = pλ. We note that our coherent state
definition differs from those introduced in Refs. [8,9]
by a constant factor of

√
2. The coherent states form an

overcomplete basis with the inner product between any
two such states, 〈z| z′〉 = e−(|z−z′ |2)−i(z·z′∗−z∗·z′). Finally, we
remark that the coherent states provide the resolution of
identity,

1 =
∫

d2z

πN
|z〉 〈z| , (7)

where d2z = d(� (z))d((z)) = dqdp/(2�)N.
Similar to the path integral approach of solving for the

quantum dynamics, we decompose the forward and back-
ward evolution operators in Equation (6) into a concatena-
tion of M short-time evolutions with �ti = �t and M�t =
t. In each short-time interval �ti, we introduce two sets of
coherent states, |zi〉 and

∣∣z′
i

〉
, via Equation (7) to expand the

forward and backward time evolution operators, respec-
tively. The time evolution (generated by a quadratic Hamil-
tonian) of coherent states can be represented by trajectory
evolution in the phase space of (q, p). After some algebra,
the matrix elements of Equation (6) can be approximated

by [6]

Bλλ′
W (X, t) =

∑
μμ′

∫
dxdx ′φ(x)φ(x ′)

× 1

�
(qλ + ipλ)(q ′

λ′ − ip′
λ′)B

μμ′
W (Xt )

× 1

�
(qμ(t) − ipμ(t))(q ′

μ′(t) + ip′
μ′(t)), (8)

where x = (q, p) are the real and imaginary parts of z,
respectively, dx = dqdp, and φ(x) = (�)−N e− ∑

ν (q2
ν +p2

ν )/�

is the normalised Gaussian distribution function. In de-
riving Equation (8), we invoked an ‘orthogonality’ ap-
proximation on the inner product between subsequent
coherent state variables, 〈zi |e i

�
ĥmt |zi+1〉 = 〈zi(t)|zi+1〉 ≈

πNδ(zi+1 − zi(ti)) with i the time step index. This approxi-
mation is necessary to obtain a continuous trajectory of z(t).
In order to evaluate the integral in Equation (8) via MC, one
has to propagate trajectories of (X(t), z(t), z′(t)) in the ex-
tended phase space of partially Wigner transformed bath
DOF and coherent states of the mapped subsystem DOF.
In this FBTS solution, the trajectory of the entire system
follows Hamiltonian dynamics,

dXμ

dt
= ∂He(X ,
)

∂
μ

,
d
μ

dt
= −∂He(X ,
)

∂Xμ

, (9)

where He(χ, π ) = P 2/2M + V0(R) + 1
2�

hλλ′
(R)(qλqλ′ +

pλpλ′ + q ′
λq

′
λ′ + p′

λp
′
λ′) with V0(R) = Vb(R) − Trĥ(R),

X = (R, q, q ′), and 
 = (P, p, p′).

2.2. Jump forward–backward trajectory solution

The main approximation introduced in the derivation of the
FBTS, Equation (8), is the orthogonality approximation.
The simplest improvement to the algorithm is to refrain
from applying this approximation at every time step. In Ref.
[7], we outlined a practical approach to evaluate the set of
selected integrals of zi and z′

i (which could be evaluated an-
alytically if the orthogonality approximation were applied).
We termed this extension of FBTS as the jump FBTS (JF-
BTS). Since the computational cost grows quickly with
respect to the number of jumps inserted, one needs to make
a trade-off between numerical efficiency and accuracy.

In the simplest approach, one selects every (M/K) time
steps from a total of M steps to fully evaluate the coherent
state integrals:

Bλλ′
W (X, t) =

∑
μμ′

∑
s0s

′
0 . . .

sK−1s
′
K−1

∫ K∏
v=0

dxdx ′φ(xv)φ(x ′
v)

× 1

�
(q0λ + ip0λ)(q ′

0λ′ − ip′
0λ′)B

μμ′
W (Xt )

× 1

�

{
K∏

v=1

(
q(v−1)sv−1 (τv) − ip(v−1)sv−1 (τv)

) (
qvsv

+ ipvsv

)}
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× 1

�

{
K∏

v=1

(
q ′

(v−1)sv−1
(τv) + ip′

(v−1)sv−1
(τv)

) (
q ′

vsv
− ip′

vsv

)}

× 1

�
(qKμ(τK+1) − ipKμ(τK+1))(q ′

Kμ′(τK+1)

+ ip′
Kμ′ (τK+1)), (10)

where the subscripts, v and s, refer to the vth time step
and the sth component of the q and p vectors, respectively,
and τv = tiv − tiv−1 with ti0 = 0 and tiK+1 = t . According
to this prescription, the continuous FB trajectories expe-
rience K discontinuous jumps in the (x, x′) phase space.
Between subsequent jumps, the evolution of FB trajectory
is governed by Equation (9). Simulations show that with a
sufficient number of jumps numerically exact solutions of
the QCLE can be obtained [7].

3. Adiabatic forward–backward solution

We now consider an adiabatic version of the FBTS of the
QCLE. To this end, we first introduce the adiabatic basis
{|α; R〉} that satisfies

ĥ(R) |α; R〉 = Eα(R) |α; R〉 , (11)

where ĥ(R) is defined in Equation (1). We choose strictly
real-valued adiabatic states for this study, but this restriction
is not necessary.

The QCLE, Equation (2), cast in the adiabatic basis,
reads [15],

∂Bαα′
W (X, t)

∂t
= iωαα′ (R) + P

M
· ∂Bαα′

W

∂R

+ P

M
·
(
dαα′′Bα

′′
α′

W − Bαα
′′

W dα
′′
α′

)

+ 1

2

(
Fαα

′′

W · ∂Bα
′′
α′

W

∂P
+ ∂Bαα

′′

W

∂P
· Fα

′′
α

′

W

)
,

(12)

where dαα′ = 〈α; R| ∇R

∣∣α′; R
〉
, ωαα′ (R) = (Eα(R) −

Eα′ (R))/� and Fαα′
W = −〈α; R| ∂(Vb(R)+V̂c(R))

∂R

∣∣α′; R
〉
.

In order to formulate an adiabatic forward–backward
representation of QCLE, we explicitly define adiabatic ver-
sions of the forward and backward mixed quantum-classical

Hamiltonians,
→
Ha

�= |α; R〉
→
Ha

αα′
〈
α′; R

∣∣, with

→
Ha

αα′ ≡
(

P 2

2M
+ V0(R) + Eα(R)

)
δαα′

+ �

2i

[
P

M
·

→
∂

∂R
δαα′ + 2

P

M
· dαα′ + Fαα′

W ·
→
∂

∂P

]
,

(13)

and
←
Ha

�= |α; R〉
←
Ha

αα′
〈
α′; R

∣∣, with

←
Ha

αα′≡
(

P 2

2M
+ V0(R) + Eα(R)

)
δαα′

− �

2i

[
P

M
·

←
∂

∂R
δαα′ + 2

P

M
· dα′α + Fαα′

W ·
←
∂

∂P

]
.

(14)

We remark that the adiabatic Hamiltonians defined here are
different from the basis-independent ones defined in Equa-
tion (3). To avoid potential confusion, we add a superscript
a to the adiabatic version. The adiabatic evolution operators
are also constructed such that the adiabatic matrix elements
of the operator equation,

∂B̂W (X, t)

∂t
= i

�

( →
Ha

� B̂W (X, t) − B̂W (X, t)
←
Ha

�

)
, (15)

yields the adiabatic representation of the QCLE in the de-
sired form,

∂Bαα′
W (X, t)

∂t
= i

�

( →
Ha

αα
′′ Bα

′′
α′

W (X, t)

− Bαα
′′

W (X, t)
←

Ha
α

′′
α′

)
, (16)

which can be shown to be identical to Equation (12).

3.1. Forward–backward trajectory solution in the
adiabatic representation

The first step in the construction of the forward–backward
solution in the adiabatic basis is the introduction of the
following mapping transformation:

|α; R〉
→

Ha
αα

′ 〈α; R| →
→
Ha

m ≡
→

Ha
αα

′ b̂†αb̂α′ , (17)

|α; R〉Bαα′
W 〈α′; R| → B̂m(X) ≡ Bαα′

W b̂†αb̂α′ ,

where the adiabatic annihilation and creation operators, b̂α

and b̂†α , respectively, act on the single excitation mapping
states, now corresponding the occupancy of the adiabatic
states, to give |0〉 = b̂α |mα〉 and |mα〉 = b̂†α |0〉. The map-

ping transformation of
←
Ha

� is defined in a similar manner.
Given these definitions, it is now clear that the mapping ma-
trix elements of the adiabatic mapping operators are iden-
tical to the matrix elements of operators in the adiabatic
basis. In particular,

〈α; R|
→
Ha

� |α′; R〉 =
→

Ha
αα′= 〈mα|

→
Ha

m |mα′ 〉. (18)

In this adiabatic mapping representation, the time evolution
of B̂m(X) can be decomposed into a concatenation of M
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3550 C.-Y. Hsieh et al.

short-time segments such that �tj = tj − tj − 1 = �t for all
j with t0 = 0 and tM = t,

B̂m(X, t) = S
[
e

i
�

→
Ha

mt B̂m(X)e− i
�

←
Ha

mt
]
,

= S
[
e

i
�

→
Ha

m�t1S
[
e

i
�

→
Ha

m�t2 · · ·

×S
[
e

i
�

→
Ha

m�tM B̂m(X)e− i
�

←
Ha

m�tM
]

× · · · e− i
�

←
Ha

m�t2
]
e− i

�

←
Ha

m�t1
]
. (19)

In order to evaluate the short-time propagators, we in-
troduce the coherent states |y〉 defined such that b̂α |y〉 =
yα |y〉, where yα = 1√

�
(q̃α + ip̃α) and x̃ = (q̃, p̃). Then,

each short-time evolution operator can be factorised via a
Trotter decomposition and represented in the coherent state
basis labelled by y:

e
i�t
�

→
Ha

m = e
i�t
�

→
Ha

αα′ b̂†α b̂α e
it
�

( P 2

2M
+V0(R))

≈ e
�t
2 [i

→
L0+(δαα′ Fα

W ·
→
∂

∂P
+�Eαα′ dαα′ ·

→
∂

∂P
)b̂†α b̂α′ ]

× e
i�t
�

(Eαδαα′ + �

i
P
M

·dαα′ )b̂†α b̂α′ e
it
�

( P 2

2M
+V0(R)),

≈
∫

d2y

πN
|y〉 e

�t
2 i

→
Lcl (X,y) 〈y(�t)| e i�t

�
( P 2

2M
+V0(R)).

(20)

Here, i
→
L0= P/M· →

∇R −∇RV0(R)· →
∇P with

i
→
Lcl (X, y) = i

→
L0 +Fαα′

W ·
→
∂

∂P
y∗

αyα′ , (21)

Fαα′
W (R) = Fα

W (R) + �Eαα′dαα′ (R), Fα
W (R) = −∇REα(R)

and �Eαα′ = Eα(R) − Eα′(R). The time-evolved coherent
state is given by

〈y(�t)| = 〈y| e i�t
�

(Eαδαα′ + �

i
P
M

·dαα′ )y∗
αyα′ . (22)

A similar expression can be derived for e
i�t
�

←
Ha

m in which
the coherent states are labelled with a prime, |y′〉, to denote
backward evolution. In Appendix A, we summarise the
steps to properly insert the complete set of coherent states
into Equation (20).

If one substitutes Equation (20) into Equation (19) and
applies the following relation:

S[
ei

→
Lcl (X,y) �t

2 Â(X)ei
←
Lcl (X,y ′) �t

2
] = eiLe(X,y,y ′)�t Â(X),

= Â(X�t ), (23)

where iLe(X, y, y ′) = 1
2 (i

→
Lcl (X, y) + i

→
Lcl (X, y ′)), then

one obtains the following expression:

Bαα′
W (X, t) =

∑
ββ ′

∫ M∏
i=1

d2yi

πN

d2y ′
i

πN
〈mα|y1〉〈y ′

1|mα′ 〉

eiLe(X,y1,y
′
1)�t1

(〈y1(t1)|y2〉eiLe(X,y2,y
′
2)�t2(〈y2| · · · Bββ ′

W (X) · · · |y ′
2〉

)〈y ′
2|y ′

1(t1)〉)
=

∑
ββ ′

∫ M∏
i=1

d2yi

πN

d2y ′
i

πN
〈mα|y1〉〈y ′

1|mα′ 〉
(〈y1(t1)|y2〉eiLe(Xt1 ,y2,y

′
2)�t2(〈y2| · · · Bββ ′

W (Xt1 ) · · · |y ′
2〉

)〈y ′
2|y ′

1(t1)〉).
(24)

By applying the orthogonality approximation to each of
the coherent state inner products, 〈yi(t)|yi + 1〉 ≈ πNδ(yi + 1

− yi(t)), all the intermediate integrals can be eliminated.
The expression for Bαα′

W (X, t) then takes the simpler
form,

Bαα′
W (X, t) =

∑
ββ ′

∫
dx̃dx̃ ′φ(x̃)φ(x̃ ′)

× 1

�
(q̃α + ip̃α)(q̃α′ − p̃α′ )Bββ ′

W (Xt )

× 1

�
(q̃β(t) − ip̃β(t))(q̃β ′(t) + ip̃β ′(t)). (25)

The trajectory dynamics in the adiabatic representation is
governed by the set of equations of motion,

dP

dt
= −∂V0

∂R
+ Fαα′

W

1

2

(
yαy∗

α′ + y ′
αy ′∗

α′
)
,

dR

dt
= P

M
,

dyα

dt
= −i

Eα

�
yα −

(
dαα′ (R) · P

M

)
yα′ ,

dy ′
α

dt
= −i

Eα

�
y ′

α −
(

dαα′ (R) · P

M

)
y ′

α′ . (26)

In contrast to Equations (9), the evolution Equations (26)
are not of Hamiltonian form. In this adiabatic represen-
tation, the bath momenta evolve under a mean force,
−∇RV0(R) + Fαα′

W
1
2

(
yαy∗

α′ + y ′
αy ′∗

α′
)
, which depends on

the forward and backward coherent states |y〉 and |y′〉.
Since

Fαα′
W

(
yαy∗

α′ + y ′
αy ′∗

α′
) = −∂Eα

∂R

(|yα|2 + |y ′
α|2)

+�Eαα′dαα′ (R)
(
yαy∗

α′ + y ′
αy ′∗

α′
)
, (27)
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Figure 1. In panel (a), the five curves correspond to the force
(27) under different initial conditions. In panel (b), the blue and
pink curves are the adiabatic forces associated with the ground
(F1) and the first excited state (F2), respectively. The five green
curves correspond to the averages of Hellmann–Feynman forces,
the first part on the right side of Equation (27), under the same set
of initial conditions as in panel (a).

this off-diagonal force also accounts for non-adiabatic tran-
sitions. Thus, the evolution involves non-adiabatic dy-
namics on the entire manifold of adiabatic states. In the
course of this evolution, the forward and backward quan-
tum coherent state variables evolve by accumulating dy-
namical phases proportional to the adiabatic energies, ac-
companied by non-adiabatic effects induced by the term
P/M · dαα′ .

It is interesting to analyse the interplay of the Hellmann–
Feynman forces and the non-adiabatic force, the first and
second terms on the right side of Equation (27). For this
purpose we consider the Tully I avoided crossing model
[18], a two-level quantum system coupled to a free particle
with momentum P(t). Details of this model as well as the
set of parameters used in the present work can be found in
Ref. [19]. In particular, the initial momentum, P = 20, for
the particle is chosen such that the known asymptotic quan-
tum population (after passing the avoided crossing point) is
evenly distributed over the two quantum states. In Figure 1,
we present forces obtained from a fixed initial condition
for the particle and five different initial conditions for the
quantum coherent state variables. In panel (a) we plot the
full force (27) acting on the particle, while in panel (b) we
plot just the average of Hellmann–Feynman (green curves)
force contribution. The blue and pink curves represent the
adiabatic forces associated with the two states, and the point
where the two adiabatic forces cross is the avoided crossing
point. These five initial conditions were selected such that
the full force is initially a ground adiabatic force, as the
quantum system is initialised in the ground state. In this
example, where the quantum population should distribute
evenly over the two adiabatic states (with exactly opposite
energies), the Hellmann–Feynman force becomes relatively
negligible around and after the avoided crossing point.

Clearly, the non-adiabatic force is the dominant contribu-
tion to the trajectory dynamics around the avoided crossing
point. This example also demonstrates that the FBTS mean-
field force is very different from the Hellmann–Feynman
forces.

Finally, we note that if a change of variables is made
in Equations (9) that diagonalises the Hamiltonian with
matrix elements hλλ′

, the resulting set of equations has the
same form as Equations (26). This observation indicates
that the FBTS can be implemented in a basis-independent
fashion.

3.2. Surface-hopping description

We now show that the FBTS can be cast into the form of a
surface hopping algorithm. The starting point of the deriva-
tion is again Equation (19) but in Equation (20) we factor
the short-time evolution operator in a different manner:

(
e

i
�

→
Ha

m�t
)
αβ

≈
(

e�t P
M

·dλλ′ (1+ 1
2 Sλλ′

→
∂

∂P
)b̂†λb̂λ′

)
αβ

×
(

e
�t
2 (i

→
L0+Fλ

W ·
→
∂

∂P
b̂
†
λb̂λ)e

i
�

�tEλb̂
†
λb̂λ

)
ββ

,

× e
i�t
�

( P 2

2M
+V0(R)), (28)

where Sλλ′ = �Eλλ′dλλ′ (R)
(
dλλ′ · P

M

)−1
[15]. Earlier in

Equation (20), we factorised the evolution operator by sep-
arating terms acting on the subsystem and the bath, respec-
tively. In the present case, we factorise the terms according
to their contributions to either adiabatic evolution or non-
adiabatic transitions. The present decomposition requires

an analysis of the expression S[e
i
�

→
Ha

m�t Âe− i
�

←
Ha

m�t ]. In Ap-
pendix B, we discuss how the operator S, which orders the

short-time evolution operators e
i
�

→
Ha

m�t and e− i
�

←
Ha

m�t , can
also be factored into two S operators that separately or-
der the adiabatic and non-adiabatic terms in Equation (28).
More precisely, we adopt the following approximation (ex-
act up to order O(�t2)):

S[
e

i
�

→
Ha

m�t Âe− i
�

←
Ha

m�t
]

= S[
e

→
J1�tS[(

ei
→
Lmf �te

i
�

ĥm�t
)
Â

× (
ei

←
Lmf �te− i

�
ĥm�t

)]
e

←
J1�t

]
, (29)

where
→
J1 = P

M
· dλλ′ (1 + 1

2Sλλ′
→
∂

∂P
)b̂†λb̂λ′ ,

→
iLmf = 1

2 (i
→
L0 +

Fλ
W

→
∂

∂P
b̂
†
λb̂λ), and ĥm = Eλb̂

†
λb̂λ. The other left-acting oper-

ators can be defined in an analogous manner. In summary,

we should replace every instance ofS[e
i
�

→
Ha

m�t · · · e− i
�

←
Ha

m�t ]
in Equation (19) with an expression like that in
Equation (29).
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Next, similar to the development given in the previous
section, we introduce quantum coherent state variables to
represent matrix elements of the adiabatic propagator in
Equation (28),

(
e

i
�

→
Ha

m�t
)
αβ

≈ e
i�t
�

(
P 2

2M
+V0(R)

)

×
(
e�t P

M
·dλλ′ (1+ 1

2 Sλλ′
→
∂

∂P
)b̂†λb̂λ′

)
αβ

×
∫

d2y

πN
〈mβ |y〉ei

→
Lcl (X,y) �t

2 〈y(�t)|mβ〉, (30)

where now 〈y(�t)| = 〈y| e i
�

�tEαb̂
†
α b̂α and does not involve

non-adiabatic effects.
The next step in the calculation is to substitute Equation

(30) and the corresponding equation for (e
i
�

←
Ha

m�t )α′β ′ into a
properly modified Equation (19), i.e. after applying the ap-
proximation (29). By repeatedly applying Equation (23),

one may replace ei
→
Lmf (X,yi )

�t
2 and ei

←
Lmf (X,y ′

i )
�t
2 with

eiLeff (X,y,y ′)�t = e
i�t

2 (Lmf (X,y)+Lmf (X,y ′)) at each time step.
Finally, we have to evaluate the matrix elements of non-
adiabatic transition terms in Equation (30). To this end,
we introduce a super-operator defined by its action on an
operator Â,

(
e−J�t

)
αα′;ββ ′ Aββ ′

≡ S
[(

e�t P
M

·dλλ′ (1+ 1
2 Sλλ′

→
∂

∂P
)b̂†λb̂λ′

)
αβ

Aββ ′

×
(
e�t P

M
·dλλ′ (1+ 1

2 Sλλ′
←
∂

∂P
)b̂†λb̂λ′

)
β ′α′

]
, (31)

where the super-operator J can be determined by matching
the first-order terms in the Taylor expansions of both sides
of the equation,

Jαα′;ββ ′ = −(dαβδα′β ′ + dα′β ′δα,β) · P

M

−1

2

(
�Eαβdαβδα′β ′ + �Eα′β ′dα′β ′δαβ

) · ∂

∂P
.

(32)

We note that the superoperator J has appeared in the QCL
operator in the adiabatic basis [15], and the propagator
e−J�t can be evaluated using the scheme presented in
Ref. [11].

In summary, the modified formal solution in the adia-
batic mapping representation reads

B
ββ ′
W (X, t) =

∑
αi ,α

′
i

(i=1,...,M+1)

∫ M∏
i=1

dx̃dx̃ ′φ(x̃i)φ(x̃ ′
i)

{
M∏
i=1

(
e−J�ti

)
αiα

′
i ;αi+1α

′
i+1

eiLeff (X,yi ,y
′
i )�ti

× yi,αi+1y
∗
i,αi+1

(�ti)y
′∗
i,α′

i+1
y ′

i,α′
i+1

(�ti)

}

×B
αM+1α

′
M+1

W (X), (33)

where α1 = β and α′
1 = β ′, and we substituted the inner

product of coherent states and mapping states with its ex-
plicit form, 〈mα|y〉 = yαe−|y|2/2.

In this form the adiabatic evolution segments are
interspersed with non-adiabatic transitions at every time
step. This separation of adiabatic and non-adiabatic events
is analogous to that in surface-hopping algorithms [10,11]
for the QCLE. Nevertheless, the present formulation is still
a mean-field algorithm in practice. In order to simulate the
trajectories needed for a MC evaluation of Equation (33),
one has to sample values of yi and y ′

i from the Gaussian
distributions φ(x̃i) and φ(x̃ ′

i), respectively. Thus, both the
forward and backward quantum states are superpositions
of all possible adiabatic states with weights given by |yα |2

and |y ′
α|2.

In order to extract the zeroth-order adiabatic dynam-
ics from the current formalism, we resort to an ap-
proximation termed ‘focusing’ [20], first proposed by
Bonella and Coker. The focusing approximation replaces
a normalised Gaussian function with a specific delta
function:

∫
d φ(x)

(
q2

λ + p2
λ

)
f (x)

≈
∫

dx δ
(
q2

λ + p2
λ − 1

) ∏
μ �=λ

δ(qμ)δ(pμ)

× (
q2

λ + p2
λ

)
f (x). (34)

In Refs. [6,14,21], the effects of the focusing approx-
imation on FBTS and closely related algorithms were
analysed in some detail. In general, focusing only provides
accurate results for short times or for weak non-adiabatic
perturbations. In the present case, we only have to simulate
strictly adiabatic dynamics for the trajectories, as the
non-adiabatic perturbing terms are separated from the
Liouvillian operators in Equation (33). Indeed, one can
easily show that the application of the focused condition,
δ(|yα |2 − 1)

∏
β �= αδ(yβ), to the coherent state integrals in

Equation (33) will result in exact dynamics in the adiabatic
state α. Thus, in the adiabatic representation, the focusing
approximation can be physically motivated and provides
insight into the dynamics.
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Finally, we present an approximate expression for Equa-
tion (33) that employs focussing:

B
ββ′
W (X, t) =

∑
αi ,α

′
i

(i=1,...,M+1)

{
M∏
i=1

(
e−J�ti

)
αiα

′
i ;αi+1α

′
i+1

× e
iLαi+1α′

i+1
(X)�ti

e
∫ ti+1
ti

dτωαi+1α′
i+1

(τ )

}

×B
αM+1α

′
M+1

W (X), (35)

where iLαi+1α
′
i+1

(X) = iL0 + 1
2

(
Fα

W (R) + Fα′
W (R)

)
∂

∂P
.

Thus, through the use of the focusing approximation in the
adiabatic representation, we obtain a starting point suitable
for the construction of a surface-hopping algorithm for
QCLE dynamics.

4. Discussion and conclusions

The present work on the adiabatic mapping forward–
backward solution for QCLE provides a way to link two
different numerical methodologies, mean-field and surface-
hopping, for the simulation of QCLE dynamics. The differ-
ent adiabatic mapping formulations arise from the different
decompositions of the forward and backward short-time
evolution operators given in Equations (20) and (28). The
work also suggests that it may be possible to devise hybrid
methodologies that combine the advantages of both mean-
field and surface-hopping algorithms. The simplest of such
hybrid methodologies would be to evaluate the short-time
evolution operator by the surface-hopping approach, Equa-
tion (28), in only certain time steps when the non-adiabatic
transition probability is high, and treat the short-time evo-
lution operator by the mapping mean-field approach for the
rest of the simulation. Such a hybrid scheme might extend
the usefulness of surface-hopping algorithms to evolution
for long times.
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Appendix A
Here, we summarise the steps involved in the introduction of
coherent state variables in Equation (20) [6]. First, we expand
the evolution operators up to O(�t2). In the zeroth order, we
simply apply Equation (7). In the first order, we reverse the nor-
mal ordering of b̂†

αb̂α′ = b̂α′ b̂†
α − δαα′ and insert the resolution of

identity of coherent states between the annihilation and creation
operators. Because we use the traceless form of the Hamilto-
nian the Dirac delta term in the above relation can be dropped.
Finally, we approximate the evolution operator (in exponential
form) using the first two terms to O(�t2) that were represented
in the coherent state basis. These major steps are summarised as
follows:

e
�t
2 [i

→
L0+Fαα′

W ·
→
∂

∂P b̂
†
α b̂α′ ]

= I + �t

2

[
i

→
L0 I + F αα′

W ·
→
∂

∂P
b̂α′Ib̂†

α

]

+O(�t2),

=
∫

d2y

πN
|y〉

(
1 + �t

2

[
i

→
L0 +F αα′

W ·
→
∂

∂P
yα′y∗

α

])
〈y| ,

+O(�t2),

≈
∫

d2y

πN
|y〉 ei

→
Lcl (X,y) �t

2 〈y| , (A1)

where I is defined in Equation (7).
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Appendix B

In this section, we first prove the claim that

S
[
ei(

→
A+→

B )�t Ôei(
←
A′+

←
B′)�t

]
= S

[
ei

→
A�tS

[
ei

→
B�t Ôei

←
B′�t

]
ei

←
A′�t

]
, (B1)

whenever Â(′) commutes with B̂ (′).

According to Ref. [6], the left side of the above equation can
be expressed in the following form:

S
[
ei(

→
A+→

B )�t Ôei(
←
A′+

←
B′)�t

]

=
∞∑

j=0

(i�t)j

j !
(
→
A + →

B +
→
A′ +

→
B′)j Ô. (B2)

Similarly, the right side of the same equation can be written as
follows:

S
[
ei

→
A�tS

[
ei

→
B�t Ôei

←
B′�t

]
ei

←
A′�t

]

=
∞∑

jA=0

∞∑
jB=0

(i�t)jA+jB

jA!jB !
(
→
A +

→
A′)jA (

→
B +

→
B′)jB Ô,

=
∞∑

j=0

∞∑
jA=j

(i�t)j

jA!(j − jA)!
(
→
A +

→
A′)jA (

→
B +

→
B′)j−jAÔ,

=
∞∑

j=0

(i�t)j

j !

∞∑
jA=j

j !

jA!(j − jA)!
(
→
A +

→
A′)jA

× (
→
B +

→
B′)j−jAÔ,

=
∞∑

j=0

(i�t)j

j !
(
→
A + →

B +
→
A′ +

→
B′)j Ô, (B3)

where j = jA + jB. To go from the second line to the third line,
we re-arranged the sum by ordering j = jA + jB. To go from the

fourth line to the fifth line, we rely on the assumption that
→
A(′) and

→
B(′) commute.
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