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ABSTRACT
Under certain conditions, the dynamics of coarse-grained models of solvated proteins can be described using a Markov state model, which
tracks the evolution of populations of configurations. The transition rates among states that appear in the Markov model can be determined
by computing the relative entropy of states and their mean first passage times. In this paper, we present an adaptive method to evaluate
the configurational entropy and the mean first passage times for linear chain models with discontinuous potentials. The approach is based
on event-driven dynamical sampling in a massively parallel architecture. Using the fact that the transition rate matrix can be calculated
for any choice of interaction energies at any temperature, it is demonstrated how each state’s energy can be chosen such that the average
time to transition between any two states is minimized. The methods are used to analyze the optimization of the folding process of two
protein systems: the crambin protein and a model with frustration and misfolding. It is shown that the folding pathways for both systems
are comprised of two regimes: first, the rapid establishment of local bonds, followed by the subsequent formation of more distant contacts.
The state energies that lead to the most rapid folding encourage multiple pathways, and they either penalize folding pathways through kinetic
traps by raising the energies of trapping states or establish an escape route from the trapping states by lowering free energy barriers to other
states that rapidly reach the native state.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0098612

I. INTRODUCTION

Coarse-grained models of polymers1 and proteins2,3 are
designed to bridge the gap in time scale between the motion of
molecular components and slower, large-scale structural changes.
A wide variety of such models exist, including Gō lattice models,
in which monomers are restricted to lattice sites,4–9 elastic
networks,10–12 and off-lattice linear chain models, which make use
of a continuous force field that may include quantum effects in
an approximate way.13 These models have been used to probe the
mechanism of protein folding, the process by which a denatured
protein reaches its experimentally determined native structure.14

The dynamics derived from coarse-grained models indicate that
short, fast-folding proteins follow a hierarchical folding process. In
this process, the backbone adopts secondary structural elements and
a small number of nonlocal contacts early on, and then subsequently

folds in a directed fashion along a dominant pathway.15–17 Other
simulation work has suggested that the folding is fast and
efficient when the system is free of bottlenecks or kinetic traps, and
when multiple pathways exist to the final state.18,19 Experimental
evidence, primarily through studies of cytochrome c20–22 and
RNase,23 support the picture that the initial phase of the folding
process consists of the formation of “foldon” subunits made up of
secondary structures.23–25

In recent years, there has been an interest in engineering
polymer and protein systems that possess properties similar to those
of naturally occurring proteins.26–29 Although a number of design
considerations have been identified that are associated with sec-
ondary and tertiary structure, such as the use of residue sequences
that have a propensity to form α-helices and other structural ele-
ments or that have hydrophobic side chains to facilitate packing,
the relative importance of each design feature for a particular
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folded structure is not easily determined.30 Experimental and sim-
ulation studies suggest that secondary structure is important in
providing the building blocks for foldons that nucleate the folding
process,17,23–25 but other types of structures might provide a similar
framework if they satisfy a set of physical characteristics. Under-
standing such requirements could provide insight into how to
design synthetic polymer systems with protein-like structure and
functionality.

Much recent work to connect the primary sequence to protein
functionality has been data-driven, using machine learning methods
trained on sequence data both predictively and generatively.31,32

Prominent among the predictive machine learning models is
the AlphaFold33 project of DeepMind, a subsidiary of Alphabet,
Inc. Biophysical models of protein evolution frequently assume that
evolution is determined by the sequences that optimize a structurally
based “fitness landscape.”34,35 For example, lattice models of short
proteins, for which an exact enumeration of configurations is feasi-
ble, have been used to study the connection between sequence and
specific targeted folded structures.36–38 In the lattice models, where
the dynamics of configurations itself is not well defined, a fitness
landscape based on a target structure for a sequence is optimized via
random mutations in the sequence space. Rather than being based
on dynamical information, the fitness criterion is determined by the
free energy of a Potts model,39 defined in terms of the adjacency
matrix of contacts in the protein.38,40 In contrast, while the micro-
scopic dynamics in off-lattice models is clear, the definition of a
fitness criterion for optimal folding is both conceptually and com-
putationally challenging. Part of the difficulty in investigating the
molecular features that determine protein structure and its connec-
tion to dynamics arises from the intractability of determining how
the free energy landscape and dynamical folding pathways depend
on sequence structure and external conditions such as the tempera-
ture. Unlike most off-lattice coarse-grained models of biomolecular
systems, the structure and dynamics of discontinuous potential
models based on distance constraints can be examined at any tem-
perature for any choice of interaction energy once the entropy of the
system’s states and the distribution of bond distances within each
state are known.

The purpose of this paper is twofold: First, we introduce an
efficient computational approach to evaluate both the configura-
tional entropy and the mean first passage times for discontinuous
potential models, based on adaptive event-driven sampling. We then
present a variational optimization procedure in the context of a
Markov state model to determine the state energies that minimize
the first passage time, subject to a set of structural constraints. In
this case, the first passage time is evaluated for a process in which
an initial state with no bonds evolves to the fully bonded “native”
state under a set of constraints determined by the thermodynamic
requirement of a predominant native state population.

The outline for this paper is as follows: In Sec. II, the protein-
like model is introduced.41–44 In Sec. III A, the configurational
entropy is defined and related to the thermodynamic structure of
the discontinuous potential model. In Sec. III B, a Markov state
model for the simplified dynamics of the evolution of state popu-
lations is introduced. The explicit expressions are given for elements
of the rate matrix that can be computed using only temperature-
independent geometric information. Subsequently, we outline an
adaptive procedure based on event-driven dynamics to evaluate the

configurational entropies, as well as the first passage times, that
parameterize the rate matrix in the Markov state model. Adapta-
tions to the method are discussed in the two sections that follow. We
aim to apply the sampling approach in a massively parallel frame-
work and introduce techniques to improve the rate of convergence
in calculations involving states that differ substantially in their con-
figurational entropy, for which the first passage times are large. This
is followed by Sec. V, with the introduction of a variational principle
to optimize the interactions that lead to rapid folding in the Markov
state model, as well as several key-related measures that are useful
to characterize the folding mechanism. The variational optimiza-
tion of the folding time of two different model protein systems—a
model of the crambin protein, which is rich in secondary struc-
tures, and a small model system that possesses a native state with
a highly strained helical structure and frustrated intermediates—is
discussed in Secs. V A and V B. Finally, concluding remarks are
contained in Sec. VI.

II. THE COARSE-GRAINED MODEL
The model we consider here, similar to one introduced by

Zhou and Karplus,41–43 is based on a coarse-grained approach in
which each amino acid residue of a linear, protein-like chain is rep-
resented by a bead. The chain is immersed in a fluid in thermal
equilibrium at a temperature T. We assume that the effect of the
fluid is to alter the energy of the configurations of the chain and pro-
vide a stochastic environment for the motion of the beads diffusing
in the fluid. In the chain, there are local and nonlocal bonds that con-
nect the beads. Local bonds occur between nearest and next-nearest
neighboring beads. These bonds can correspond to peptide bonds in
the primary structure of a protein. Local bonds are modeled using
an infinite square well potential,

U(rij) =

⎧⎪⎪
⎨
⎪⎪⎩

0 if σ1 < rij < σ2,

∞, otherwise,
(1)

where U(rij) is the potential energy of the local bond, rij is the
distance between two nearest or next-nearest neighboring beads i
and j, and σ1 and σ2 are the minimum and maximum bonding dis-
tances, respectively. For nearest neighbors, σ1 = 1, which is taken as
the unit of length in the model, and σ2 = 1.17.45 For next-nearest
neighbors, σ1 = 1.4 and σ2 = 1.67 are chosen to restrict the bond
angles to be between 75○ and 112○ to mimic the space that the side
chains in amino acids would normally occupy in a protein.

Nonlocal bonds occur between beads that are not nearest
or next-nearest neighbors. These bonds account for interactions
between the side chains of amino acids in a protein to form its
secondary structures. A nonlocal bond k, formed at a distance
rck between beads i and j, is modeled using a step potential,

Uk(rij∣α) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

∞ if rij < rh,

ϵk(α) if rh ≤ rij ≤ rck,

0 if rij > rck,

(2)

where rij is the distance between the beads. The energy of the bond
ϵk(α) may depend conditionally on the overall configuration α of
the system (i.e., the other nonlocal bonding distances). With this
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flexible design of the bonding energy, the model can describe
systems with nonlocal interactions that effectively allow for non-
pairwise interactions in which the energy of a bond depends on the
specific configuration involved. In this way, side chain interactions
and temperature-dependent solvent effects, such as hydrophobicity,
can be incorporated into the model in a mean-field way. At a dis-
tance of rij = rh = 1.25, a hard-core repulsion accounts for excluded
volume interactions. At a distance of rck, a bond forms between
two nonlocal beads, which contributes a factor of ϵk(α) to the total
energy. Note that such a bond is either “on” or “off,” depending
on the geometric distance between the beads forming the nonlocal
bond. If two beads do not form a nonlocal bond, they will collide
elastically at the hard-core repulsion distance rh.

III. THE THERMODYNAMICS AND DYNAMICS
OF THE COARSE-GRAINED MODEL
A. The configurational entropy

A configuration of a system with N monomer beads is specified
by the 3N-dimensional vector of bead positions R = (r1, . . . , rN),
where ri is the position vector of bead i in the system. In a model
with a step potential and infinite hard wall interactions, physically
allowed configurations R of the system must satisfy distance con-
straints that force nearest and next-nearest beads in the chain to be
within a short distance of one another determined by σ1 and σ2. The
entire configurational space of allowed configurations is geometri-
cally partitioned into states of the system by the set of nb nonlocal
bonding distances {rck ∣k = 1, . . . , nb}. A configurational state c can
be represented as a binary string,

c = c1 . . . cnb , (3)

where each term ci in the string c takes on a binary value of 1 if
xi < rci and 0 if it is not. For example, for a model with three nonlocal
bonds, the configuration 000 refers to an unfolded chain with no
nonlocal bonds.

To develop the statistical mechanics of the model, we define the
indicator function for a configurational state c,

𝟙c(R) =
⎧⎪⎪
⎨
⎪⎪⎩

1 if all constraints for c are satisfied,

0, otherwise.
(4)

The partitioning of the 3N-dimensional space of microscopic
configurations enables us to reduce the large number of allowed
configurations (equal to the volume of the configurational space) to
a finite and discrete set of ns = 2nb coarse-grained states for which
structural and dynamical properties can be derived.

The coarse-grained model is unusual in that the dimensionless
nonideal entropy, Sc, defined by

Sc = ln(
1

VN ∫ 𝟙c(R)dR) (5)

can be determined entirely by the distance constraints between the
beads for any configuration c. The integral of 𝟙c over the volume of
configurations can be viewed as the volume of the subspace occupied
by configuration c in the full configurational space.

For a given model with a prescribed set of interaction energies
{E}, the canonical probability, Pc, of a configuration c with a
potential energy Ec at an inverse temperature β∗ is

Pc = ⟨𝟙c⟩ =
e−β∗Ec eSc

∑
ns
α=1e−β∗Eα eSα

=
e−β∗Fc

∑
ns
α=1e−β∗Fα

. (6)

Here, ⟨⋅ ⋅ ⋅⟩ denotes the canonical ensemble average, ns = 2nb is the
total number of configurations, and Fc = Ec − T∗Sc is the free energy
of configuration c.

As evident in Eq. (5), the entropy difference between two states
is independent of both the temperature of the system and the set of
interaction energies. As a result, once the configurational entropy
for all states has been determined, the canonical probability of any
state for any choice of interaction energies at any temperature can
be evaluated. This flexibility permits us to examine not only how
the morphology of the free energy landscape changes with temper-
ature but also how changing the interaction energies of different
states, which is similar to changing the molecular identity of each
bead, influences the thermodynamics of the system. The generality
of the model also allows for the effects of different interaction ener-
gies on aspects of the dynamics, such as the structural folding time,
to be examined.

B. The transition rate matrix and the mean first
passage times

In a viscous fluid environment, there is a separation of time
scale between the typical time for a change of configuration of a
protein and the time it takes to equilibrate locally in each state.
Under such conditions, the evolution of populations of configu-
rations at intermediate time scales that are long compared to the
molecular time scale, but much shorter than the overall folding time,
can be described by a Markov state model.45 The dynamics can
describe the folding process as a series of transitions between config-
urations, defined in Eq. (4), that differ by one bond; such transitions
represent a structural change in the protein as bonds form or break.

In a Markov state model, a population of configurations,
P(t) = {P1(t), . . . , Pns(t)}, evolves according to the continuous
time Markovian dynamics,

dP(t)
dt
= K ⋅ P(t), (7)

where K is the transition rate matrix. The off-diagonal elements of
K are the time-independent rates of transitioning from one state to
another. Consider the case where states are ordered in index from
fewest bonds to most bonds, and suppose j > i is formed from i by
the addition of a single bond. Then, due to diffusive barrier crossing,
the inverse of K ji is of the form45

K−1
ji = e−β∗Fij τ−(ij) + τ+(ij)

=
Pi

Pj
τ−(ij) + τ+(ij), (8)

where τ−(ij) and τ+(ij) are the mean inner and outer equilibrium first
passage times for the pair of states i and j: That is, τ+(ij) corresponds
to the time required for a pair of beads, whose initial separation rij is
greater than the transition state value rc, to diffuse to rc, averaged

J. Chem. Phys. 157, 125101 (2022); doi: 10.1063/5.0098612 157, 125101-3

Published under an exclusive license by AIP Publishing

 01 M
ay 2024 17:11:04

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

over a (conditional) equilibrium distribution of initial separations.
Correspondingly, τ−(ij) is the mean first passage time to rc for beads
averaged over an equilibrium distribution of initial distances rij < rc.
When the dynamics of beads in the solvent is diffusive, the mean
first passage times for the transition from i to j can be estimated as45

τ+(ij) =
1

D(ij)
∫

rmax

rc

(1 − C+(ij)(r))
2

ρ+(ij)(r)
dr, (9)

τ−(ij) =
1

D(ij)
∫

rc

rmin

C−(ij)(r)
2

ρ−(ij)(r)
dr, (10)

where D(ij) is the self-diffusion coefficient for the relative distance
r between beads involved in the bond that is formed or broken
between states i and j in the solvent, ρ is the probability density of
the bonding distance, and

C−(ij)(r) = ∫
r

rmin

ρ−(ij)(x) dx,

C+(ij)(r) = ∫
r

rc

ρ+(ij)(x) dx

are the respective cumulative distributions of the distances r. The
constants of integration rmin and rmax correspond to the minimum
and maximum distances that can separate a pair of nonlocally bond-
ing beads, and they can be taken to be zero and infinity, respectively,
since the integrand vanishes in both limits. Generally speaking, the
self-diffusion coefficients D(ij) depend on both the solvent friction
as well as the internal friction that arises from the particular dis-
tance constraints determining the states i and j. By construction, the
Markov state model obeys detailed balance,

KijPj = KjiPi, (11)

and Eq. (7) has a unique stationary equilibrium distribution of
populations.

Note that the relative probability of states i and j,

Pi

Pj
=

e−β∗Ei eSi

e−β∗Ej eSj
= e−β∗(Fi−Fj), (12)

plays an important role in determining the transition rates, but it
does not affect the mean first passage times. In the low temperature
limit, Pj ≫ Pi, since state j has an additional bond relative to state
i and, hence, Kji ≈ 1/τ+(ij). Under these conditions, the rate of back
transitions, K ij, will be exponentially small since

Kij =
Pi

Pj
Kji ≈ e−β∗Fij 1

τ+(ij)
.

The adaptive algorithms that we present in the following
sections generate bond distances distributed according to the con-
ditional equilibrium densities ρ+(r) and ρ−(r) during the iterative
process. Using the set of recorded distances, the smooth fit of the
probability density ρ(r) and the cumulative distribution functions
C(r) are constructed in one of two ways: Either the empirical
cumulative distribution is expanded in an orthonormal basis46 or,
alternatively, a maximum-likelihood estimate of an expansion of

FIG. 1. The integrand of the outer mean first passage time τ+ for a 40-bead system
for a nonlocal bond between beads separated by 20 monomers. The inset shows
the probability density ρ+(r) of the bonding distance.

the logarithm of the density is constructed using splines.47 Both
approaches make use of goodness-of-fit statistical tests to judge
the quality of the fit. In Fig. 1, the integrand for the outer first
passage time for the transition between states in a 40-bead system is
shown as a function of the bonding distance, as well as the probabil-
ity density ρ+(r). The latter is constructed from a continuous spline
fit of the logarithm of the density or the potential of mean force.
With these continuous and smooth functions in hand, the mean first
passage times in Eqs. (9) and (10) and the elements of the transi-
tion rate matrix K are easily evaluated numerically using Gaussian
quadrature. Note that the integrand of the outer first passage time is
determined primarily by the fit of the density in the transition region
near rc where the integrand is largest.

IV. NUMERICAL SOLUTION
OF THE CONFIGURATIONAL
ENTROPY AND FIRST PASSAGE TIME

In a complex system with a large number of beads, the shapes
of the sub-volumes of different configurations in the high dimen-
sional space are complicated, making Eq. (5) impossible to evaluate
exactly for all but the simplest models. To compute the config-
urational entropies for larger model chains, we must resort to
using Monte Carlo (MC) methods. In the next several sections, the
algorithm used to compute the configurational entropy and first
passage times is detailed. A brief overview of the procedure is as
follows:

1. An ensemble of initial structures with no bonds is generated
by selecting a set of bond distances, bond angles, and dihedral
angles from the appropriate distribution of values. Config-
urations violating any distance constraints are rejected. The
distribution of the distances of nonlocal interactions are used
to estimate the first passage time to form each of the pos-
sible nonlocal bonds for the set of structures with a single
bond [see Eq. (9)].
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2. The set of states defined by which nonlocal bonds are active
is partitioned into layers based on the number of nonlocal
bonds. The layer method is detailed in Sec. IV B.

3. For states for which the estimate of the mean first passage
time from earlier calculations is large (τ+ > 10), the attrac-
tive step potential depending on the active bond distance is
replaced by a staircase potential in Sec. IV C to reduce the
computational cost.

4. The difference in entropy and the first passage times between
pairs of states in adjacent layers that differ by only one
bond are computed in parallel using an adaptive Monte
Carlo sampling algorithm (see Sec. IV A) combined with
replica-exchange between simulations at fixed intervals.

5. In the adaptive procedure, rejection-free Monte Carlo updates
are carried out using event-driven dynamics in a hybrid
Monte Carlo algorithm.
(a) The initial phase of the evaluation of the entropy

difference consists of a fixed number (107
) of adaptive

adjustments of the entropy using a Wang–Landau
algorithm [Eq. (18)].

(b) Convergence of the entropy difference is assessed by
applying the event-driven dynamics with fixed entropy
values to generate a set of (independent) configurations
and applying the G-test for uniformity given in Eq. (19).

(c) If the G-test is not satisfied, the entropy values are
adjusted using Eq. (20) and the previous step is repeated
until the test is satisfied.

6. The distances between beads forming nonlocal bonds, which
are recorded at regular time intervals throughout the sim-
ulation, are used to obtain the mean first passage times
given in Eqs. (9) and (10).

7. The biased entropies and mean first passage times can, then,
be used to construct the transition rate matrix in the Markov
state model for a choice of interaction energies [see Eq. (8)].

A. Adaptive Monte Carlo sampling
For a molecular system suspended in a solvent in thermal

equilibrium at inverse temperature β, the configurations of the
molecule are canonically distributed. For a given model with a
set of ns energies {β∗E}, the probability of a configuration in the
ensemble is given by Eq. (6). The entropy difference between states
i and j obeys

eSi−Sj = eSij =
eβ∗Ei Pi

eβ∗Ej Pj
,

and, hence,

Sij = ln(
Pi

Pj
) + β∗(Ei − Ej).

Suppose nc samples of states are drawn independently with a
canonical probability for a model with a set of energies {β∗E}. The
number of states of type i in the sample is denoted by ni. Using

the empirical probability of state i, P̂i = ni/nc, an estimator of the
entropy difference between states i and j can be defined as

Ŝij = ln(
ni

nj
) + β∗(Ei − Ej). (13)

If the states {1, 2, . . . , s} are sampled independently, the set of counts
{n1, n2, . . . , ns} is multinomially distributed with probability

P({n1, n2, . . . , ns}) =
nc!

n1! . . .ns!
Pn1

1 Pn2
2 . . .Pns

s .

The mean and the variance of the entropy estimator in Eq. (13) are

⟨Ŝij⟩ = Sij +
1

2nc
(

1
Pj
−

1
Pi
) +O(

1
n2

c
), (14)

σ2
S =

1
nc
(

1
Pi
+

1
Pj
) +O(

1
n2

c
) ≥

2ns

nc
, (15)

where all Pk > 0, which implies that ⟨Ŝij⟩ converges to Sij as n−1
c →∞.

Note that the rate of convergence of the estimator is optimized
when Pi ≈ Pj, at which point the minimum value of the variance
is 2ns/nc. The minimum variance is achieved when β∗Ei = Si. This
choice of the set {β∗E} is not known a priori and must be deter-
mined self-consistently, as discussed below. Note that other choices
of {β∗E}may result in Pi ≫ Pj, in which case the empirical average
of the entropy converges slowly due to a large standard error given
that 1/(ncPj)≫ 1.

The estimator Eq. (13) requires a set of samples drawn from
the canonical ensemble. Metropolis Monte Carlo (MMC) algo-
rithms are an appealing sampling approach to generate a sample
of states since they do not require computing normalizing fac-
tors to generate states with known probabilities. However, efficient
implementations of the MMC algorithm require proposing trial
configurations from the current state that are both statistically likely
and yet differ significantly. For chain molecules, particularly those
that have excluded volume constraints, this is a difficult task,48

although methods using crankshaft rotations,49,50 configurational
bias regrowth,51,52 and normalizing flows53 exist to generate global
changes to configurations.

The principal challenge in efficient MMC sampling in this
context is the highly correlated way in which configurations must
change to generate states of high probability. Dynamical sampling
methods that evolve all degrees of freedom provide a viable solu-
tion for the rapid exploration of local structures. Here, we use
the hybrid Monte Carlo (HMC) method to generate configura-
tions with a canonical probability based on a dynamical updat-
ing scheme.54 In this procedure, the dynamical updates must be
time-reversible and must conserve phase space volume. In most
applications, proposed configurations are generated by numerically
solving the equations of motion for a given potential using sym-
plectic split-operator integration schemes. For systems interacting
via discontinuous step potentials and hard walls, the equations of
motion are exactly solvable (within numerical precision) and the
dynamics of the system is time-reversible and conserves phase space
volume.
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In our implementation of the HMC scheme, the current
configuration R is augmented with momenta P drawn from a normal
distribution with zero mean and unit variance so that the system
acquires a kinetic energy K(P) = P2

/2. Then, the system is prop-
agated forward for a time interval τp with Hamiltonian dynamics
from an initial state X = (R, P) to a final state Xτp = (Rτp , Pτp). The
Hamiltonian H(R, P) is the sum of the kinetic energy K(P) and
a discontinuous potential U(R). The final configuration Rτp of the
trajectory is then accepted or rejected as the next state in a Markov
chain with acceptance probability given by

A(X→ Xτp) = min(1, e−ΔH
), (16)

where ΔH is the difference between the final and initial Hamiltoni-
ans. When event-driven dynamics generate trial configurations Rτp ,
the HMC algorithm proposes updates in a rejection-free manner
since the Hamiltonian is exactly conserved so that ΔH = 0, and the
probability of acceptance of a trial configuration is unity. For dis-
continuous potential systems, the dynamic sampling trajectories are
solved exactly (i.e., within numerical precision) using event-driven
simulation methods, and efficient implementation of event-driven
dynamics should make use of event trees, hybrid queues, and other
cost-saving techniques.55 The sampling procedure generates a set of
states R asymptotically distributed with probability proportional to
e−U(R). Instead of using an actual physical potential U(R) to govern
the dynamical updates in the Monte Carlo procedure, we use an
estimate of the entropy U(R) = Sb(R) that approximates the true
entropy S(1(R)), where 𝟙c(R) is the indicator function for state
c defined in Eq. (4). The HMC sampling procedure generates
a Markov chain of states in which configuration i appears with
probability

Pi(Sb) =
e−Si,b eSi

ns

∑
k=1

e−Sk,b eSk

≈
1
ns

. (17)

In order to ensure that the nc samples are drawn independently,
the time τs between recording configurations of the system should be
larger than the largest outer mean first passage time between states
when only local, dynamic updates are used to propose trial config-
urations. In this case, τs is set to be a multiple of the basic short
propagation time τp of the dynamical updates.

However, in Eq. (17), the optimal values of the set of the
biasing potential S∗b = {S

∗
i,b∣i = 1, . . . , n)} that lead to a uniform

sampling are not known a priori and must be determined iteratively
using an adaptive procedure. A number of adaptive methods that are
effectively equivalent have been proposed in the literature to address
this problem, including the Wang–Landau algorithm in its many
flavors,56 well-tempered metadynamics,57,58 and self-healing
umbrella sampling.59

The essential idea of the adaptive procedure is to construct a
sequence of configurations {Ri∣S(n)b }, in which each of the states
Rn+1 is obtained from the previous state Rn by applying an evolving
transition matrix T(S(n)b ). The parameters S(n)b are determined by a
difference equation of the form

S(n+1)
b = S(n)b + γn+1 f(Rn+1∣S(n)b )

= S(n)b + γn+1 h(S(n)b ) + γn+1 H(Rn+1∣S(n)b ), (18)

where γn+1 is a decreasing function of n and the adaptive function
f penalizes visits to the current state and encourages visits to other
states. In Eq. (18), h is the mean drift in the difference equation at
index n and H is the fluctuation around the mean.

The various algorithms differ in their choice of both the
dependence of γn on the number of steps n and the form of the
adaptive function f. Here, we use the commonly chosen adaptive
function f (R) = 1(R) that penalizes future visits to the current
state by increasing its entropy by γn+1. In general, the convergence
of the sequence of biases {S(n)b } to a unique fixed-point solution
S∗b is difficult to establish for a particular choice of γn, f, and the
transition matrices T, but it has been proved for the algebraic proto-
col γn = γ∗/nα, where α ∈ (1/2, 1], provided the transition matrices
are sufficiently mixing.60,61 For example, for the parameter choice
γ∗ = ns and α = 1, it has been shown60 that the sequence {S(n)n } con-
verges to S∗b as n−1, and that the set S(n)b has a multivariate normal
distribution with a mean S∗b and a covariance matrix proportional
to Ut = nsγnU∗ = ns/tU∗, where t = n/ns is the state size-dependent
scaled time between updates of γn. Here, U∗ is a covariance matrix
that depends on the fluctuations of H determined by the sequence
of transition matrices T. As a result, it is difficult to estimate U∗ to
determine the standard errors of the entropy values Sb in the
adaptive procedure.

To assess the accuracy of the configurational entropy, we iterate
Eq. (18) for a fixed number of total updates t f = mt with a large value
of m = 107. At this point, a series of nc independent trajectories are
generated using the final set of biases and the number ni of counts of
uncorrelated states i recorded. The recorded empirical distribution
of states is then checked for uniformity using a statistical test. Here,
we use the G-test based on the statistic

G = −
2
q2

ns

∑
i=1

ni ln(
ni

ei
), (19)

where ei = Pinc = nc/ns is the expected number of counts of state
i when Pi is uniform and the term62

q2 = 1 +
ns + 1

6nc
+

n2
s

6n2
c

corrects for small sample sizes. When the sample counts {ni} are
independent, the G-statistic is asymptotically χ2-distributed with
ns − 1 degrees of freedom, allowing the p-value of the computed
statistic to be evaluated.

Convergence has been achieved when p > pc and the
distribution of configurations is considered statistically consistent
with a uniform distribution. If p < pc, the biased entropy values in
iteration n can be updated according to

S(n+1)
i,b = S(n)i,b + ln(

ni

nc
). (20)

Strictly speaking, this additional iterative process is not required
since the estimator for the configurational entropy is unbiased and
has a variance that is close to optimal since the biased probabilities
are already close to uniform, Pi ≈ Pj. If desired, another iteration
of the sampling can be performed with the updated bias values
until convergence is obtained and Si = Si,b within statistical resolu-
tion. More stringent statistical tests for convergence can be applied
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if desired. For example, after the process has passed the condition
p > pc, the actual distribution of a set of G-statistics from indepen-
dent runs can be tested against a χ2-distribution using a goodness-
of-fit test, such as the Kolmogorov–Smirnov test.63 It should be
emphasized that the failure of the condition p > pc does not nec-
essarily indicate that the data of counts are inconsistent with a
multinomial distribution, since the statistical test also relies on the
assumption that the samples are drawn independently.

The final configurational entropy difference between states
i and j with counts ni and nj is

ΔSij = ΔS(n)ij,b + ln(ni/nj) ±

√
A

ni + nj
,

where samples are recorded at time intervals τ > n2
bτ+ and A is the

upper percentile value of the χ2-distribution with ns − 1 degrees of
freedom.64 The length of the production run required for a given
statistical resolution can be estimated using confidence intervals for
multinomial proportions.64,65

During each iteration, the bonding distances between all beads
for each state i of the ns states explored can be used to calculate
the mean first passage times for state i. The bonding distances are
distributed with the conditional equilibrium density for this state
due to the fact that the bias Si,b is the same for all configurations
in state i.

It is important to emphasize that the statistical analysis
presented above assumes that each sampled configuration is drawn
independently from the canonical probability density with a cor-
responding multinomial distribution of states. In practice, this will
not be the case when local Monte Carlo proposals alone are used,
since the proposed trial configurations are highly correlated with the
current state. Correlations exist when the lengths of the trajectories
τs are not long enough to generate independent configurations in
the Markov chain. If the trajectory segments are only long enough to
form or break a single bond, the overall dynamics in the state space
is diffusive at best and the statistical tests for uniformity are inappro-
priate. Under these circumstances, the correlation time of the state
counts {ni}must be analyzed to insure that successive states used in
the convergence test are independent.

B. The layer simulation method
If the protein being modeled can form many bonds nb, the

number of possible states and the number of configurational entropy
values ns = 2nb to be computed will be large. As ns increases,
the covariance matrix Ut of the adaptive procedure, which scales
quadratically with ns, becomes large. The convergence of the entropy
to S∗b will, therefore, be very slow, particularly when some of the
transitions are infrequent due to long first passage times. The states
generated via short trajectories remain correlated for increasingly
long periods of time as the number of bonds increases. For example,
when the full set of ns states are sampled using local dynamical
updates, the dynamics of the state space in the limit where the states
are generated with uniform probability obeys a Master equation of
the form

dPi(t)
dt

= κ(Pi+1(t) + Pi−1(t) − 2Pi(t)),

where κ = 1/(τ− + τ+) ∼ 1/τ+ is the rate of transitions to
neighboring states. These dynamics generate a uniform distribution
of states Pi ∼ 1/ns on time scales governed by the relaxation modes
λm = 2κ sin2

(mπ/(2(nb + 1))). States remain correlated for time
scales up to the overall equilibration time τeq ∼ 1/λ1 ∼ (8/π)n2

bτ+,
where nb is the total number of bonds that can be formed. Thus, to
generate uncorrelated samples uniformly, the length of trajectories
τs = sτp should be scaled by n2

b, relative to two-state models for
which trajectories of length τ+ are adequate.

To improve the rate of convergence of S(n)b to Sb, we con-
sider a layered simulation approach, in which short calculations are
conducted in parallel to sample two states at a time differing by a sin-
gle bond. If we define the layer ℓ to be the ( nb

ℓ
) states in which there

are ℓ nonlocal bonds that have formed and nb − ℓ bonds that have
not, each state in layer ℓ can lead to nb − ℓ states in layer ℓ + 1 by the
formation of a single new bond. The pairing of all states connected in
adjacent layers leads to a total set of nbns/2 pairs of connected states
for which the difference in entropy is computed. If the entropy of
a configuration is defined relative to the nonbonded state in layer
0, the entropy ΔS(α0, αℓ) of a particular state αℓ in layer ℓ can be
estimated by the sum of the entropy differences between states in
adjacent layers in a path that connects state α0 to the state αℓ,

ΔS(α0, αℓ∣{αi}) = ΔS(α0, α1) + ΔS(α1, α2) + ⋅ ⋅ ⋅ + ΔS(αℓ−1, αℓ),

where the path {αi} used is α0 → α1 → α2 → ⋅ ⋅ ⋅→ αℓ−1 → αℓ.
However, when all states are dynamically connected and none are
geometrically prohibited, there are a total of ℓ! unique paths that
connect α0 and αℓ, so a more precise estimate can be obtained by
averaging over all paths that connect the same initial and final states,

ΔS(α0, αℓ) =
1
ℓ!∑{αi}

ΔS(α0, αℓ∣{αi}). (21)

When each of the computations of ΔS(αi, αi+1) has converged and
the probability of the states αi and αi+1 is the same, the mean of the
estimator defined in Eq. (13) is zero with variance 4/nc, where nc is
the number of event-driven trajectories used to sample the states in
the simulation. Hence, the variance of the estimator for a state in
layer ℓ, Eq. (21), is

σ2
ΔSℓ ≥

4
(ℓ − 1)! nc

. (22)

This estimate is useful to determine the number of independent
configurations nc chosen per iteration for a given level of precision. If
the relative precision is set to 5%, then the number of sampled states
should be chosen to be larger than nc ≥ 1600/ΔSm, where ΔSm is an
estimate of the minimum increase in entropy obtained by breaking
one of the bonds. Typically, for the models considered here, this
quantity is roughly unity (though often, it is three times larger).

To illustrate the layer method, consider a three-bond model for
which ns = 8. We present the layer approach in Fig. 2.

The initial state of the chain is linearly extended and entirely
devoid of nonlocal bonds, which is represented by the binary string
000. The configuration 000 makes up layer 0 (in green). To obtain
the configurations in layer 1 (in red) with a single nonlocal bond,
we run three simulations: one in which we transition from 000 to
100 by forming the first bond, one from 000 to 010 by forming
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FIG. 2. The layer approach for a 20-bead, three-bond model.

the second bond, and one from 000 to 001 where the third bond
is formed. In the event-driven dynamical sampling of the two desig-
nated states, the active nonlocal bond that can be formed or broken
is treated normally with dynamics governed by the step potential
[see Eq. (2)], while the state of all other nonlocal bonds is fixed by
an elastic collision at rc (i.e., the step potential for these bonds is infi-
nite and positive). To obtain the configurations in layer 2 (in blue),
we start with each configuration in layer 1 and turn on one of
each of the two remaining bonds. Thus, between the first and the
second layer, we have a total of ( 3

1) = 6 simulations: 100 to 110, 100
to 101, 010 to 110, 010 to 011, 001 to 101, and 001 to 011. In each
of the simulations, each existing bond in layer 1 is fixed and is not
allowed to break. Overall, there are a total of nbns/2 = 12 computa-
tions of configurational entropy differences. To compute the entropy
of a state in layer 2 relative to the nonbonded state, the average is
taken over the paths connecting it to state 000. For example, ΔS110,000
= (ΔS110,100 + ΔS100,000 + ΔS110,010 + ΔS010,000)/2.

To avoid quasi-ergodic sampling issues in which transitions
between different types of structures for a given state are rare, the
layer simulations are coupled together by replica-exchange Monte
Carlo moves,66–68 in which configurations are exchanged between
adjacent layers with unit probability when they satisfy the same
bonding constraints. For example, a layer simulation connecting a
state in layer i − 1 with a state in layer i that differs by a single bond
can be coupled to a simulation between a pair of configurations
in layers i and i + 1 that also differ by a single bond. The replica-
exchange swaps between the Markov chains are accepted when both
simulations are in states in layer i and, therefore, satisfy the same
bonding pattern. The swap moves should be attempted frequently to
optimize the efficiency of the replica-exchange sampling.69,70 Thus, a
given set of configurations are exchanged with a frequency of 25% if
each layer simulation consists of two states that only differ by a sin-
gle bond. The exchange frequency can be increased by increasing
the number of layers that are explored in a given chain. Simi-
lar replica-exchange algorithms have been proposed in the context
of the Wang–Landau algorithm.71,72 An alternative parallel imple-
mentation73 of the Wang–Landau algorithm that requires frequent

communication between stochastic trajectories uses an adaptive
function h. This function depends on a mean number of visits to
update a shared set of biases S(n)b . In a serial approach, population
Monte Carlo algorithms, which generate pools of different structures
for a pair of states and uniformly select a structure from the pool to
be updated, can accomplish the same task.74

As before, the bonding distances can be recorded and used to
compute 2nb inner or outer mean first passage times. The outer first
passage time τ+ between a source and destination state in the next
layer can be also used to estimate the length of a trajectory τs ∼ τ+ to
generate a statistically independent configuration in the next layer,
where the destination state is a source state for the next layer. This
information is useful in two ways. First, the computational cost of
the procedure can be optimized by adapting the trajectory length
τs to the pair of states. Second, problems can indicate when a pair
of states either are not connected due to geometrical constraints that
are impossible to satisfy or require unreasonably long trajectories
due to a large value of τ+. In Sec. IV C, a biasing procedure is intro-
duced to mitigate the problems associated with large first passage
times.

Another issue that arises for models with a large number of
bonds is that some bonding states have mutually exclusive distance
constraints that cannot be satisfied simultaneously. In this event, the
state is not allowed and must be removed from the model. The layer
simulation approach provides a reliable method to eliminate states,
since an estimate of the outer first passage time τ+(ij) between states
i in layer ℓ and j in layer ℓ + 1 is computed before the entropy of
state j. If there are no outer collisions in all states i that are con-
nected to state j, and τ+(ij) is infinite, state j can be eliminated from the
layer ℓ + 1.

The decomposition of the calculation of the configurational
entropy into a number of independent calculations between adjacent
layers reduces the computational demands of the task relative to a
procedure in which all nonlocal bonds are active and ns = 2nb values
of the entropy are evaluated simultaneously. This gain in serial effi-
ciency is due to the reduction in the overall sampling time τs per
sample required in the iterative procedure of verifying the uniform
convergence of the sampled states that scales as the square of the
number of bonds (see Sec. IV B). In Fig. 3, the relative efficiency of
the layer method is demonstrated for a simple model with 20 beads
and a variable number of bonds nb. The two simulation approaches
coincide for a model with a single bond where nb = 1 and ns = 2, and
it is evident that the relative efficiency of the layer method increases
roughly linearly with the number of bonds for a given choice of
sampled configurations per state.

C. Biasing the entropy calculation: The staircase
potential

As the mean first passage time between two states increases,
the length of the trajectories τs required to sample independent
configurations becomes prohibitively large, rendering the direct cal-
culation of the configurational entropy difference between the states
computationally inefficient. This situation arises when the proba-
bility density for the bond distance ρ+(r), which is the reaction
coordinate for a change in state, is small in the vicinity of the
transition state at r = rc. In the vicinity of rc, C+(r) ≈ 0 and the inte-
grand in Eq. (9), which is proportional to 1/ρ+(r), becomes large
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FIG. 3. The ratio of the relative efficiency of the layers to the general procedure as
a function of the number of bonds (or levels). In the general procedure, all states
(rather than a pair) are accessible within a simulation. The relative efficiency is
the ratio of the wall clock times needed to achieve convergence in each method.
The data were generated by averaging the serial execution time to convergence of
100 instances of a 20-bead model with ni = 400 configurations sampled per state
i and a convergence level of p = 0.25.

(see Fig. 1). The probability density ρ+(rc) at the transition distance
can be small either because (i) in the unbonded state, the range of the
bond distance allowed is broad and the configurational volume of
the unbonded state is large or (ii) existing nonlocal bonds in the ini-
tial state introduce geometrical constraints in the chain that prevent
the bonding distance from being reached unless beads in the rest of
the chain are placed optimally. In both situations, the low probabil-
ity of exploring the reaction coordinate values in the region of the
transition state results in inefficient sampling. For systems with con-
tinuous potentials, sampling methods such as metadynamics57,58 or
umbrella sampling59 can be used to bias the stochastic sampling to
visit improbable regions of the reaction coordinate. However, event-
driven dynamical sampling is not amenable to the introduction of
continuous force fields.

To encourage these bonds to form more readily while main-
taining the discontinuous nature of the model, we introduce modifi-
cations to the potential described in Eq. (2) to bias the calculation of
the configurational entropy by reducing the required trajectory time
τs. This bias is a computational device to calculate the biased entropy
and mean first passage times for the original model. Like an adap-
tive binning strategy,73 we subdivide the outer region of the constant
energy potential to create a discontinuous potential that resembles a
staircase, as in Fig. 4.

To simulate dynamics in the staircase potential, we use a layer
approach in which each step of the staircase defines a new state that
is implemented in a separate layer. As a result of the restrictions to
the bond distance, the mean first passage time between the staircase
regions is small, and only short trajectories are required to evaluate
the ratio of the relative number of states.

When the initial state is divided into ℓ sub-states (such as those
defined by the ℓ = 3 regions 1, 2 and 3 in Fig. 4), the configurational
entropy for the i to j transition in the original model is not the sum of
the entropy differences between the regions due to the fact that the
total number of states in configuration i is the sum of the number of

FIG. 4. Example of a staircase with three steps. Note that ϵ3 > ϵ2 > ϵij and
r3 > r2 > rc .

states in each of the regions. Rather, the entropy difference between
states i and j is

eΔSij =
ni

nj
,

ni =
ℓ

∑
k=1

nik,
(23)

where ni is the total volume of state i and nik is the volume of
region k. If each of the regions is treated as a separate layer,
S̃k,k−1 = ln(nik/nik−1) corresponds to the entropy difference between
the sub-states defined by adjacent regions k and k − 1. If the volume
of region j is taken as ni0, then we find

ΔSij = ln
ℓ

∑
k=1

exp{
k

∑
m=1

S̃m,m−1}. (24)

Each value of S̃m,m−1 is readily computed using the dynamical sam-
pling procedure in Sec. IV B. Note that the estimate of the entropy
difference in Eq. (24) has an approximate asymptotic variance
4ℓ/nc when S̃m,m−1 > 1. Consequently, the number of trajectories
per iteration should be scaled appropriately for a given level of
precision.

The number of steps ℓ in the staircase potential and the location
of each of the steps ri can be estimated from the expected dif-
ference in entropy ΔSij and the distribution of the relevant bond
distance from the simulation in the previous layer. If the drop in
entropy in each of the regions is constant, S̃m,m−1 ≈ S̃, which means
ΔSij ≈ ℓS̃, and hence ℓ ≈ ΔSij/S̃. The location ri of staircase i is deter-
mined from the cumulative bond distance distribution C+(r) by the

J. Chem. Phys. 157, 125101 (2022); doi: 10.1063/5.0098612 157, 125101-9

Published under an exclusive license by AIP Publishing

 01 M
ay 2024 17:11:04

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

condition that C+(ri) = e−S̃ C+(ri+1), where the outermost region
satisfies C+(rℓ) = e−S̃ .

We have found that for all models considered here, the largest
change in entropy ΔSij ≈ 12 so that a typical choice of S̃ = 4 requires
the introduction of no more than three staircase regions. Larger
choices of S̃ result in less efficient sampling since the first passage
time between regions increases exponentially with S̃. For the special
case of ℓ = 3, we have

ΔSij = S̃1,j + S̃2,1 + S̃3,2 + ln[1 + e−S̃ 3,2(1 + e−S̃ 2,1)]. (25)

For the crambin and frustrated models considered in Sec. V, the
typical values of the step location were r2 ≈ 1.8 and r3 ≈ 2.5.

The introduction of the staircase potential greatly reduces the
workload of computing the entropy difference between a pair of
states that infrequently interconvert, and it also improves the accu-
racy of the outer first passage times. The staircase bias increases the
rate of convergence of both the initial Wang–Landau estimates of
the entropy and the subsequent procedure for the verification of
convergence. To demonstrate this explicitly, we consider a 40-bead
chain with a single nonlocal bond between bead pair [10, 30]. The
entropy difference between the nonbonded and bonded states is
S0 − S1 = 9.0 ± 0.1, and the mean first passage time for this model
is ∼τ+ = 627 ± 29 due to the average separation between the bond-
ing beads. The convergence rate of the Wang–Landau procedure
depends on the magnitude of the standard deviation σt of the drift
term in the adaptive adjustments. As is clear in Fig. 5, the intro-
duction of additional staircase states into the system at a fixed
computational cost reduces the standard error of the Wang–Landau
procedure. This error decreases as t−1/2 with time step t = nsτ, even
though the cost-per-iteration of the algorithm increases linearly with

FIG. 5. The standard deviation σ t of the drift term vs 1/
√

t for a fixed scaled time
step t = nsτ averaged over 50 realizations of the adaptive procedure. The model
is a 40-bead system in which distant beads 10 and 30 form a nonlocal bond at
rc = 1.5. The black line denotes a system with no staircase, and the red, green,
and blue lines denote systems with one, two, and three additional steps. The inset
shows the value of Sb(t) vs 1/

√

t for the corresponding systems.

the number of steps in the staircase. For this model, the reduc-
tion saturates after the inclusion of two steps in the staircase (green
line in Fig. 5). The ratio of the standard errors σi(t) ∼ σi/

√
t for

a simulation without a staircase to one with i steps is roughly
σ0/σ3 ≈ 23/3, indicating that the inclusion of the steps reduces the
computational time needed at a given level of statistical resolu-
tion by a factor of roughly 60. At the same time, the efficiency of
the validation procedure to establish uniformity is also improved,
since the trajectory length required for each independent sample
decreases from τs ∼ 8τ+/π ∼ 6400 trajectories of unit length to less
than τs ∼ 50.

The bias introduced by the stairs also improves the calculation
of the outer first passage time. The sampling of the reaction
coordinate is enhanced in the vicinity of the transition state at rc,
where the integrand of the first passage time is the largest, as is
apparent in Fig. 1 for the 40-bead model. The density of the reaction
coordinate ρ+(r) is constructed by stitching together continuous fits
of the densities in each of the staircase regions. To improve the qual-
ity of the fit of the integrand in the region near rc, a larger number of
sampling points in the staircase region containing rc should be used.
Without enhancing the sampling, the standard error of the estimated
outer first passage time is large when transitions are rare.

V. FOLDING DYNAMICS, PATHWAYS, AND EVOLUTION
The simplicity of the discontinuous potential model allows both

the free energy and the transition rate matrix K in a Markovian
description of the dynamics to be determined analytically for any
choice of state energies at any temperature. These features enable
the study of how folding pathways from a nonbonded initial state to
the fully bonded “folded” state change with these parameters.

The utility of Markov chains in describing the dynamics of
chemical and biophysical systems has long been recognized, and vast
literature exists on the subject (for example, see Refs. 75 and 76).
A number of properties are of interest in a Markov state model
of protein dynamics. Since K is a regular, square matrix satisfying
detailed balance, it has a unique zero eigenvector that corresponds
to the equilibrium populations. The transition rate matrix can be
written in terms of a diagonal matrix as K = UλU−1, where U is a
matrix with eigenvectors of K as the columns, and λ is a diagonal
matrix with eigenvalues λi ≤ 0 on the diagonal. The spectrum of
eigenvalues {λi} can be useful to determine if a small number of
states dominate the long-time dynamics of the system. When this
is the case, reduction techniques such as stochastic complementa-
tion may be profitably applied to reduce the dimensionality of the
Markov model.77 In addition, the probability of particular paths
starting from an initial distribution of states to the folded state
can be analyzed to find dominant folding pathways and potential
bottlenecks in the nonequilibrium first passage path ensemble.78,79

Functional proteins have evolved to carry out specific tasks
under stressful environmental conditions. Since their function is
intimately linked to their three-dimensional structure, their struc-
ture must be resilient to thermal stress. This suggests that a fast-
folding, single-domain protein should not only exhibit a strong
preference for its active structure over a range of temperatures, but it
should also rapidly equilibrate or refold to this “native” structure if
perturbed. Naturally evolved proteins of this type have optimized
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sequences and energies of configurations that result in such
characteristics.

The evolution of sequences selected to optimize thermal
stability can be examined in the Markov state model by considering
the variation of the folding time with respect to the set of interac-
tions {β∗E} = {E∗} in the model. The folding time can be analyzed
by considering the probability density S(t) of the system in a non-
native configuration at time t in the presence of an absorbing state
f , defined as

S(t) =∑
i≠ f

Pi(t).

Here, f is taken to be the index of the folded (native) state and
Pi(t) is the population of state i at time t. Assuming the initial state
of the system is the fully unfolded state of index u, S(t) can be written
for the Markov state model as

S(t) =
ns−1

∑
i=1
(eK̃ t
)

iu
,

where K̃ is the square matrix of rank ns − 1 obtained by removing
the row and column from the transition matrix K corresponding
to the native state f . This matrix is invertible and has negative real
eigenvalues.

The first passage time density f (t) to the folded state is

f (t) = −
dS(t)

dt
= −∑

i≠ f

dPi(t)
dt

,

and hence the mean and variance of the folding time are given by

μt({E∗}) = ∫
∞

0
t f (t) dt = −

ns−1

∑
i=1

K̃−1
iu , (26)

σ2
t ({E

∗
}) =

ns−1

∑
i,j=1
(2 K̃−1

ij K̃−1
ju − K̃−1

iu K̃−1
ju ), (27)

which depend on the choice of the set {E∗} of dimensionless
interaction energies E∗i = β∗Ei.

There are a number of dynamical measures that are helpful
to understand the characteristic behavior of a Markov state model.
We consider an ensemble of “reactive” trajectories defined as the
set of trajectories initiated from the unfolded state u that reach the
folded state f without revisiting the initial state.78 The definition of
the ensemble makes use of the committor probability q+i that a tra-
jectory from a given state i reaches the folded target state f before
reaching the unfolded state u,

q+i = − ∑
j≠(u, f )

K f j
≈
K−1

ji , (28)

where the matrix
≈
K is obtained from K by removing the rows and

columns of the u and f states. We assume that set of macrostates
defining the originating set in the reactive ensemble consists only
of the unfolded state u and that the committors q+i are nonzero for

i ≠ u. One defines the transition probability matrix T of passing from
state i to state j from the transition rate matrix K as78,79

Tji =
Kji

∑k≠iKki
, (29)

and the reactive transition matrix T̃ with elements T̃j f = δj, f , T̃u,i
= 0, as

T̃ji =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

q+j Tji

q+i
if i ≠ u, i ≠ f ,

q+j Tju

∑j≠uq+j Tju
if i = u.

(30)

The elements Ñ ji of the fundamental matrix Ñ = (I − T̃)−1 are the
expected number of visits to state j from state i in the reactive ensem-
ble. The expected number of visits θ̃j for any state j from an ensemble
of reactive trajectories initiated from the unfolded state u is given
by θ̃j = Ñ ju. Similarly, the visitation probability matrix is denoted as
H̃, and it satisfies Ñ = I + H̃ ⋅ Ñ. Its elements H̃ji correspond to the
probability that a reactive trajectory initiated at state i will reach state
j, where the reactive probability

r+j = H̃ju (31)

is the probability that state j will be visited along the reactive path,
starting from the unfolded state.79

The reactive flux, J̃ji, measuring the reactive rate from state
i to state j, is defined as78

J̃ji = (
q+j Tji

∑k q+k Tki
) θ̃i. (32)

The reactive probability r+j and the reactive fluxes J̃ provide useful
measures of the probability of different pathways, and the impor-
tance of a particular state in the folding process. We make use of
these quantities in Secs. V A and V B.

The evolutionary process for the model system can be simu-
lated by defining a set of beneficial physical characteristics that the
system should have. For real biological systems, the selection pres-
sures vary according to their environment and the required physical
function of the biomolecule. The relevant physical characteristics,
which depend on the set of state energies {E∗i ∣i = 1, . . . , ns}, could
include the requirement that the native state is the most probable
state of the system over a large range of temperatures. Additionally,
interactions can be selected that make both the mean folding time
μt , given in Eq. (26), and the variance σ2

t in Eq. (27), as small as
possible assuming a fixed ratio of the probabilities of the unfolded
state to folded state, Pu/P f . These constraints on the selection of
energies ensure that the protein not only folds and refolds quickly,
but is also unlikely to have folding pathways that trap intermediate
structures for extended periods of time.

Here, we consider the simple loss function for the constrained
variational optimization of the set of energies {E∗},

L = μt({E∗}), (33)

to be the average folding time given in Eq. (26) from the nonbonded
state u to the folded state f . The most favorable choice of interac-
tion energies for a fixed ratio of Pu/P f is determined by minimizing
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the loss function L with respect to the ns − 2 adjustable interaction
energies. Additionally, the optimization is constrained such that
no intermediate state i is substantially populated by including the
inequality condition Pi/P f ≤ 0.005 to maintain the dominance of
the native population. Many choices of selective pressure, defined by
the loss function and constraints, are possible and relevant for other
types of proteins with different functionality. Note that the gradients
of the loss function can also be computed analytically from K̃, and
the probabilities of the configurations can be used to accelerate the
minimization of the loss function. For the simple loss function in
Eq. (33), the gradients are given by

∂μt

∂E∗k
=

ns−1

∑
ℓ,m,n=1

K̃−1
ℓm

∂K̃mn

∂E∗k
K̃−1

nu , (34)

and the derivatives of the K matrix are

∂Kji

∂E∗k
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K2
ji τ−(ij)

Pi

Pj
(δi,k − δj,k), j > i,

K2
ji τ+(ij)

Pi

Pj
(δi,k − δj,k), i > j,

−∑
l≠i

∂Kli

∂E∗k
, i = j,

(35)

where states are ordered by their number of bonds from fewest to

most. The derivatives of the matrix K̃ or
≈
K can be obtained from the

derivatives of K by the appropriate removal of the rows and columns
at the index of the absorbing and source states. The numerical
minimization of Eq. (33) is complicated by the high dimension of
the parameter search. Standard minimization algorithms, such as
the Nelder–Mead or Broyden–Fletcher–Goldfarb–Shanno (BFGS)
methods, make use of gradients, but this can lead to difficulties
in locating the global minimum. For such situations, methods that
combine local gradient search algorithms with multiple trajectory
sampling are suitable.80–82

A. The structure and dynamics of crambin
We now examine a coarse-grained model of crambin

(PDB ID: 1EJG),83,84 a 46-residue protein of unknown function
found naturally in cabbage. The three-dimensional crystal struc-
ture of the protein, shown in Fig. 6(a), has been measured with
0.48 Å resolution with x-ray crystallography.85 The structure of
crambin is interesting, since it contains three important structural

motifs: α-helices (in red), antiparallel β-sheets (in yellow), and disul-
fide bridges (in blue). The discontinuous model of crambin was
constructed from the crystal structure in the Protein Data Bank.
To model α-helices, attractive interactions representing hydro-
gen bonds occur only between nonlocal beads whose indices are
a = 2 + 4k and b = a + 4l, where l = 1, 4, 5, . . . and k is any positive
integer.44 The omission of bonds between monomers separated by
eight or twelve beads is done to discourage the formation of turns
and introduce rigidity along the protein’s primary structure to pre-
vent it from collapsing in on itself over short distances. For other
nonlocal interactions, bonds were identified based on distances in
the crystal structure, an idea used in the construction of elastic net-
work models.10 In particular, crambin was assumed to have bonds
formed at a distance rc = 1.5 between a set of beads separated by four
residues, viz., {[6, 10], [10, 14], [14, 18]}, and {[22, 26], [26, 30]},
that form two short α-helices. The relative orientation of the
helices is restricted by an antiparallel β-sheet formed by bonds
{[2, 34], [3, 33]}. The β-sheets are linked to the terminal section of
the protein, which has a random coil nature, by disulfide bridges
{[3, 40], [4, 32]}, and an additional bridge bond [16, 26] links the
helices. The resulting “native” structure when all bonds are formed is
shown in Fig. 6(b).

The evaluation of the drop in entropy and the outer first passage
times for the formation of the long-range disulfide bonds benefits
from the use of the staircase bias, given that the decrease in entropy
for such bonds is roughly 10 and τ+ ∼ 103. The input parameters,
mean first passage times, and biased entropies for the simulation
of crambin are available on GitHub (see Acknowledgments) in the
hybridmc/examples folder. To visualize the free energy landscape
and the kinetics for a pairwise-additive model in which each bond
formed lowers the potential energy by a fixed amount ϵb, we use
disconnectivity graphs.86,87 The node levels in the graphs are deter-
mined by the dimensionless free energies, and the transition state
free energies are set by adding the negative logarithm of the rate
to the state’s free energy. Changes in the morphology of the free
energy landscape as the temperature is modified can be tracked by
the structure of the disconnectivity graphs. Unsurprisingly, the dis-
connectivity graph for the model crambin system shown in Fig. 7(a)
exhibits a “funnel-shape” at low temperatures (β∗ = 12), in which
the fully bonded structure corresponds to a deep-lying node in
the graph, centrally flanked by local minima over a wide range of
free energy values.86 The folding dynamics for the model, which
exhibits no kinetic traps, is particularly simple. The average folding

FIG. 6. The model crambin system. Panel (a) is a cartoon representation of the structure of the crystallized protein. Panel (b) is the fully folded minimum entropy state of the
46-bead, 10-bond model. The structure in panel (c) contains five bonds leading to a helical structure but none of the four nonlocal bonds between distant monomers that
culminate the folding process. In all three figures, the beads participating in nonlocal bonds in the α-helices are in red, the β-sheets are in yellow, and the disulfide bridges
are in blue and cyan for beads 16 and 40, respectively.
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FIG. 7. The disconnectivity graphs for the model crambin system in the low temperature regime, with β = 12. (a) Tree diagram: crambin model. (b) Tree diagram: optimized
crambin model.

time needed to pass from an initial state with no bonds to the
target native state, shown in Fig. 8 in dimensionless units inversely
proportional to the self-diffusion coefficient D, decreases monoton-
ically as β increases and approaches a constant value. Note that this
does not imply that the folding rate is fastest at low temperatures,
since from kinetic theory,88 the diffusion coefficient is expected to
scale as D ∼ β−1/2 so that the physical folding time increases at low
temperatures.

The most probable pathways of transitioning from the non-
bonded state to the folded target state can be visualized using

FIG. 8. The average folding times in units of 1/D as a function of inverse
temperature β for the crambin model.

network diagrams, in which each state appears as a node whose size
is represented by the probability r+ [see Eq. (31)] that the state is
visited in the reactive ensemble. The connecting arrows represent
the reactive flux [see Eq. (32)]. For the equal bond energy model
at low temperatures where the rate of breaking a bond is small and
the committor probability q+i ∼ 1 for all bonded states, the folding
pathways primarily consist of two distinct parts: Five local bonds are
formed first, leading to a helical intermediate state 617 [colored red
in Fig. 6(c), with β-sheet [2, 34], disulfide bridge [4, 32], and α-helix
bonds [6, 10], [14, 18], [26, 30] turned on], followed by the forma-
tion of the disulfide bridge [16, 26], the β-sheet [2, 34], [3, 33], and
the [4, 32] bond. In 70% of the folding pathways, the most probable
final transition to the folded structure involves the formation of the
disulfide bridge [3, 40], linking the β-sheet to the random coil end of
the chain, denoted as state 1021 to state 1024.

Heretofore, we have assumed that the formation of a bond
changes the energy of a configuration by an amount ϵb. Suppose
we are interested in determining the optimal set of interactions
that lead to a given structure, while maintaining a set of physical
requirements, i.e., the fully bonded structure has a free energy that is
well-separated from other structures so that it is thermodynamically
preferred over a range of temperatures yet reached quickly from a
fully unbonded configuration. In principle, since the coarse-grained
models are allowed a nonadditive (i.e., not pairwise) decomposition
of the potential energy to permit hidden effects such as hydropho-
bicity not directly incorporated into the model [see Eq. (2)], arbitrary
choices of the energies of states are possible provided they are physi-
cal. To mimic evolutionary behavior, we minimize the mean folding
time in Eq. (33) with respect to the set of state energies {E∗}, sub-
ject to the constraints that (1) the ratio of the probability of the
unfolded state to the folded state is fixed (i.e., the state energies
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of the folded and unfolded states are constant), (2) the probability
that each partially folded state cannot be too large, enforced by a
constraint 0.005 < Pi/P f , and (3) the maximum energy of a given
state is restricted to a finite value (taken here to be less than 10,
well above the zero energy of the unbonded state). For the cram-
bin model with ten bonds, there are 1022 intermediate states whose
energies are varied to minimize the mean folding time. To carry
out the minimization procedure of a loss function with many pos-
sible local minima, we use methods that combine the BFGS search
algorithms with multiple trajectory sampling.80–82

The result of the minimization procedure with Pu/P f = 10−52,
a value of the relative probability corresponding to β∗ = 12 when
the bond energy is fixed at ϵb = 1, lowers the mean folding time
by a factor of roughly 2 over a range of temperature values, as
shown in Fig. 8. Nonetheless, the smooth funnel morphology of the

FIG. 9. Simplified network diagrams of the most probable network of folding path-
ways for the model crambin system at low temperatures, where Pu/P f = 10−52,
and in which only states with reactive probability r+ > 0.1 are shown [see Eq. (31)].
The size of each node is representative of the probability of visiting the state in
the reactive ensemble, and the size of the arrows between nodes represents the
reactive flux between them [see Eq. (32)]. On the left is the network for a sys-
tem with bonds of equal energy with bottleneck state 617 colored red, and on the
right is the network following the optimization of the folding time. Note that the
two models have very different networks and folding pathways. (a) Network dia-
gram: equal bond energy crambin model. (b) Network diagram: optimized energy
crambin model.

disconnectivity graph is maintained [see Fig. 7(b)]. The disconnec-
tivity graph of the optimized model is more segmented, particularly
in the last level of states, with most states at a given level having
similar probability and hence roughly the same free energy. From
the network diagram of the optimized model shown in Fig. 9(b), it
is apparent that the folding mechanism is significantly altered. The
optimization yields energies of states that make the pathways leading
to the helical transition state equally likely (similar values of r+), and
the effect of bottleneck state 617 is mitigated by substantially facili-
tating the β-sheet formation by decreasing the energies of states with
long-range bonds (such as the β-sheet [2, 34] and [3, 33] bonds) to
allow additional connecting pathways at level 5. These findings are
consistent with the view that structure grows locally and models with
local stabilizing interactions that compensate the conformational
entropy loss as local structure forms result in faster folding.89 The
change in folding mechanism and the increase in the folding rate
correlate with the increase in the “contact order” in which the mean
separation in sequence between bonding beads90,91 is weighted by
the reactive probability r+ for that bond. There are also rapid transi-
tions between the state 830 and 943 that both have the [3, 33] bond
and then form or break the adjacent β-sheet [2, 34] bond. The ener-
gies of states in the penultimate level are similarly adjusted to create
three equally likely pathways to the final state. These results imply
that even a system with a smooth funnel will fold more quickly when
the state energies allow for a multitude of pathways rather than pass-
ing through a fixed sequence of states, in agreement with studies of
fast-folding proteins.18

B. Eliminating frustration and misfolding
The multiplicity of competing interactions in real systems can

give rise to free energy landscapes with many local minima, resulting
in long-lived metastable structures. Small proteins that fold quickly

FIG. 10. The reactive and average folding times (in units of 1/D) as a function of
inverse temperature β for the frustrated model. At high temperatures (low values
of β), the equilibrium probability of the folded state is small, leading to a large fold-
ing time due to trajectories that return to the unfolded state. At low temperatures
(large β), the slow transitions out of trapping states lead to folding times that
increase rapidly with β.
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FIG. 11. Example structures of the frustrated model system. On the left is the fully folded state (structure 37), in which all the bonding constraints between bonding atoms
(yellow) are satisfied. In the center is the transition state (structure 36), satisfying all local helical bonds, with the largest flux between it and the final state. On the right is
a kinetically trapped state (structure 29), in which the bond between bead 7 (blue) and bead 11 (red) cannot be formed without breaking existing bonds. There are three
low-lying trapping configurations in the model, identified as states 29, 30, and 34. (a) Fully-bonded state: state 37. (b) Maximum flux state: state 36. (c) State 29 lacking a
[7, 11] bond.

have amino acid sequences that lead to thermodynamically stable
configurations and avoid kinetically trapped metastable states.

To examine the role of kinetic traps and their elimination
through a selection process, we consider a 14-bead model with a
set of bonding interactions {[4, 12], [3, 7], [5, 9], [7, 11], [9, 13]}, all
formed at rc = 1.5. Highly bonded structures in this model, shown
in Fig. 11, resemble a short α-helix that folds over due to the
long-range interaction between beads 4 and 12. The model mimics
misfolding due to the existence of kinetic traps: For the trapping
states, the manner in which the structure satisfies a set of bonding
constraints geometrically prohibits the formation of the additional

bonds required to reach the fully bonded structure. An example
of such a structure is shown in Fig. 11(c). The identification of
trapping states and the calculation of their entropies can be difficult.
Within the layer approach, the trapping states are found by identi-
fying which and how many states in a pool of possible structures are
incapable of reaching a target state the next level down in a short
trajectory. Each of the pools is iteratively constructed in parallel,
starting from the fully unfolded state with no bonds. For a given
state, its pool of structures is generated by using the pools of all
structures in the previous layer that can reach the target state by the
formation of a single bond.

FIG. 12. Disconnectivity graphs of the 14-bead, 5-bond model. Note the difference in locations of the trapping states 29, 30, and 34 as well as state 17 in the respective
graphs. (a) Frustrated model. (b) Optimized model.
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FIG. 13. The first passage times in units of 1/D from the trapping states to the folded state. The inset in both figures shows the reactive probability of passing through the
trapping states. Note that the similarities of the first passage times to the mean first passage time in Fig. 10 indicates that the first passage times out of the three trapping
states dictate the overall folding behavior of both models. (a) Frustrated model. (b) Optimized model.

For this model system, we find a total of five trapping states:
Two of the states are in the third level and have three bonds, and
three are found in the fourth level and cannot form the [3, 7] bond
(structure 29), the [5, 9] bond (structure 30), or the [9, 13] bond
(structure 34) due to the preexisting long-range bond between beads
4 and 12. In Fig. 12(a), the trapping states appear as a separate fork in
the disconnectivity graph of the model system at low temperatures,
since dynamical events with high free energy barriers that break
bonds must occur to reach the fully folded state. The effect of the
trapping states on the dynamics is significant and leads to a qualita-
tively different temperature dependence from the fast-folding model
of crambin. At high temperatures, as in the crambin model, the fully
folded structure is thermodynamically unfavorable and reactive tra-
jectories have low probability. Instead, the main contribution to the
average first passage time to the target state comes from the nonreac-
tive paths that repeatedly revisit the unfolded state. The probability
of nonreactive trajectories rapidly decreases with temperature, and
the minimum folding time is reached at intermediate values of β near
β = 6. At low temperatures, many folding trajectories become kineti-
cally trapped, and the folding time increases exponentially as the free
energy barrier increases. This kinetic trapping, whose inverse tem-
perature dependence is plotted in Fig. 13(a), follows the same trends
as the mean folding time [see Fig. 10].

As is evident in Fig. 14, the constrained minimization of the
folding time with respect to the state energies eliminates the effect
of the trapping states by raising the energy of the trapping states so
that either they have negligible reactive probability r+ at all tempera-
tures (state 34) or they are in resonance with state 17 in the previous
level with fewer bonds (states 29 and 30). In the optimized model,
these states have a low activation barrier and rapidly break the bond
connecting them to the less bonded state 17, which appears with
enhanced reactive probability. At the same time, the flux of non-
trapping states in the final layer is optimized by lowering the energies
of those states to allow multiple pathways of similar probability to
pass to the target state. These effects are evident in the disconnectiv-
ity graph of the optimized model in Fig. 12(b) by the equal barrier

heights of the layer of states and the shift of trapping states 29, 30,
and 34 to higher points. Additionally, the trap outlet state 17, which
contains the [4, 12], [7, 11], and [9, 13] bonds, is repositioned in the
tree-like structure.

The changes in the network diagrams of the folding
[see Fig. 15(b)] highlight the disappearance of node 34 and the
increased flux of transitions among states in the middle levels of the
network. In both the equal bond energy and optimized energy mod-
els, the main final transition occurring in 70% of the folding trajec-
tories to the target state consists of the formation of the [4, 12] bond.
As a result, the qualitative nature of the folding pathways is similar to

FIG. 14. Energy adjustments to minimize the average folding time when the free
energy difference between the folded and unfolded states is constrained to be
60 and Pu/P f = 10−26. Note that the optimization raises the energies of the trap-
ping states 29, 30, and 34 to either minimize their path probability and flux or
facilitate escape by lowering backward transition barriers to outlet state 17, which
now lies below the energies of the trapping states.
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FIG. 15. Network diagrams of the folding process for the frustrated model. The
size of a node i is representative of the probability r+i that the state is visited
in the reactive ensemble, and the size of the arrows between nodes represents
the reactive flux between them [see Eq. (32)]. On the left is the network for a
system with bonds of equal energy, and on the right is the network following
the optimization of the folding time. Note the disappearance of trapping state
34 and the flux between trapping states 29 and 30 (all colored red) and state
17 (colored green) that appears in the optimized network. (a) Network diagram:
frustrated model. (b) Network diagram: optimized model.

that of the crambin model: The system first forms a helical element
that subsequently folds into the final structure. After optimization
and removal of the trapping kinetics, the temperature dependence
of the mean first passage time from the unfolded to folded states in
Fig. 13(b) approaches a constant as β increases, the same qualitative
behavior observed in the rapid-folding crambin system.

VI. DISCUSSION AND CONCLUSIONS
In this work, we introduced methodology to address the

computational challenges of computing the entropy and mean
first passage times for a linear chain model of proteins in which
monomers interact discontinuously. These quantities appear as
parameters in Markov state models of the population dynamics.
The methods combine adaptive sampling algorithms with statistical
tests to compute reliable interval estimates for all quantities. Given
the exponential growth of the number of states with the number
of bonding interactions included in the model, parallel algorithms
are a critical requirement to investigate large, complex models. The
level-based calculations in which individual pairs of linked states are
conducted in parallel with the inclusion of either replica-exchange
or population Monte Carlo components improve the rate of conver-
gence for the entire set of state entropies and allow the computation
to be carried out in massively parallel platforms with coarse-grained
parallelism. The numerical sampling difficulties associated with
large first passage times are lessened by the introduction of inter-
mediate staircase states, which was shown to significantly reduce the
sampling required for a given statistical resolution.

There are possible improvements to the sampling that are
relatively simple to implement. The methods presented here rely on
sampling states using a model with a discontinuous potential with
event-driven dynamics that prevent the implementation of contin-
uous adaptive biases frequently used in the molecular simulation
community. However, auxiliary sampling chains based on dynami-
cal trajectories governed by continuous potential approximations to
Heaviside and infinite square well functions can be applied to gener-
ate trial Monte Carlo updates, provided that the acceptance criterion
is suitably adjusted.92 The continuous potentials can be adaptively
adjusted along bonding distances using methods such as well-
tempered metadynamics57,58 and self-healing umbrella sampling.59

However, some care is required to ensure that the continuous poten-
tial system does not frequently allow configurations that violate the
strict geometrical constraints of the model. Current studies along
these lines are underway.

Given the computational cost of models with many nonlocal
bonds, an interesting open question is whether or not the methods
of machine learning on small systems can be used to accurately infer
the entropies and first passage times of more complicated models.
Nonetheless, machine learning algorithms frequently require large
sets of training data to be useful. The sampling algorithms intro-
duced here can help with the task of generating the necessary
training datasets.

Machine learning methods may also prove useful in the classi-
fication of trapping states that subdivide configurations determined
by their bonding patterns alone. Geometrical descriptors that gen-
eralize the state indicator functions will allow for more accurate
evaluation of the probability of the kinetic traps as well as their first
passage times.
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The main appeal of the Markov state model of the discontin-
uous potential lies in the possibility to evaluate both the structure
and dynamics for an infinite number of choices of interactions
at arbitrary temperatures, once the density of states and the first
passage times have been calculated for a given choice of bonding
pattern. In Secs. V A and V B, we demonstrated how this flexi-
bility may be exploited to select interaction energies that enhance
physical properties or desired functional characteristics. In these
sections, we analyzed the mean passage time from the unbonded
state to the fully bonded state for a model of the crambin protein,
which folds quickly and has a free energy landscape with a funnel-
shaped morphology, and for a short 14-bead helical protein designed
to exhibit a more complex free energy landscape and trapping
kinetics.

For the crambin model, a choice of pairwise-additive bond
energies for states led to a simple mechanistic folding pathway, in
which the helical portions of the model protein formed first with
no clear preference of order, followed by the passage with near unit
probability through a helical bottleneck state. In the second step of
the folding, distant bonds linking regions of the helix to one another
lead to a penultimate state with all bonds present except for those
linking the most distant edges of the chain. The optimization of
the state energies with a fixed relative probability of the unfolded
to folded states resulted in a different folding mechanism and fold-
ing rates that were twice as large. Interestingly, the initial stage of
the folding process in the optimization involved the rapid forma-
tion of the local helical bonds. However, the passage through the
restrictive bottleneck state was discouraged by adjustments that low-
ered the energy of states with long-range bonds. Similarly, multiple
pathways to the final state were found due to energy adjustments
of the long-range bonds to compensate for their different entropic
values.

The folding process for the 14-bead model system with
frustration was also initiated by the formation of local interactions
and a helical precursor to the final folded state. However, the inclu-
sion of a high density of interactions in the model introduces a
number of kinetic traps that are reflected in an exponentially increas-
ing folding time as the temperature decreases, and new distinct
branches appear in the disconnectivity graphs of the free energy
landscape at low temperatures. The deepest-lying trapping states
determine the folding time at low temperatures. In this case, the
optimization of energies destabilized the trapping states so that they
either had a negligible probability in the folding pathway or were
positioned in resonance with states with fewer bonds to enable the
rapid breaking of a bond.

The optimal energies for rapid folding depend on the choice
of constraints employed in the optimization procedure, and these
constraints should reflect conditions that are realizable for molec-
ular systems. If the bonds formed are intended to represent weak
electrostatic or hydrogen bonding interactions between segments
of the chain, the maximum drop in the state’s energy should be
restricted in magnitude. Large increases in the state energies can eas-
ily be achieved through steric repulsion or torsional strain. It is likely
chain stiffness along the peptide backbone effectively limits the den-
sity of bonds in the chain to avoid this type of kinetic trap. It would
be interesting to explore the inclusion of other information in the
loss function. For example, a target electrostatic map for the folded

structure could be included as a penalty in the loss function and
monomer-specific partial charges used to determine optimal residue
sequences.

The linear chain model can be generalized to include side chain
beads interacting with other beads to allow for the inclusion of steric
effects of bulky residues as well as attractive nonlocal bonding. Such
features are important in determining the overall three-dimensional
structure of real proteins. The sampling methods and optimization
procedure of the Markov state model introduced here can be applied
without modification.

The folding mechanism and optimization of the state energies
in the models of fast-folding proteins analyzed in this work are
indicative of the type of issues that can be explored with the
discontinuous potential model. Its simplicity opens the door to
explore general questions that are difficult to address by other
means. Other avenues to be explored include the following: Given
a particular three-dimensional structure, what state energies lead
to rapid folding and thermodynamic stability? To what extent is
the optimization of the native state of a protein for fast refold-
ing dictated by its topology? How additive are the energies of
biopolymers? How do biomolecular systems avoid kinetic traps?
Why do certain motifs of secondary structure appear and not oth-
ers, and what role do secondary structures play in the folding
pathways? Does the optimization of the folding time confirm well-
established principles of fast-folding proteins, such as the impor-
tance of Ramachandran angles, the existence of foldons, and the
statistical correlation between contact order90,91 and folding rate?
What are the differences in the interaction patterns of fast-folding
vs intrinsically disordered proteins? Work along these lines is
underway.
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