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ABSTRACT
We present a derivation from the first principles of the coupled equations of motion of an active self-diffusiophoretic Janus motor and the
hydrodynamic densities of its fluid environment that are nonlinearly displaced from equilibrium. The derivation makes use of time-dependent
projection operator techniques defined in terms of slowly varying coarse-grained microscopic densities of the fluid species number, total
momentum, and energy. The exact equations of motion are simplified using time scale arguments, resulting in Markovian equations for
the Janus motor linear and angular velocities with average forces and torques that depend on the fluid densities. For a large colloid, the
fluid equations are separated into bulk and interfacial contributions, and the conditions under which the dynamics of the fluid densities can
be accurately represented by bulk hydrodynamic equations subject to boundary conditions on the colloid are determined. We show how
the results for boundary conditions based on continuum theory can be obtained from the molecular description and provide Green–Kubo
expressions for all transport coefficients, including the diffusiophoretic coupling and the slip coefficient.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0185361

I. INTRODUCTION

Self-propelled small synthetic particles have been extensively
studied through experiment, theory, and simulation.1–7 Much of the
stimulus for this research activity stems from the potential and actual
applications of these active agents, often related to their uses for
cargo transport and as vehicles for targeted drug delivery, but there
are many other uses.8–11 Such active particles often have micrometer
or sub-micrometer dimensions, which is an interesting and theoreti-
cally challenging regime lying between the fully microscopic and
macroscopic domains.

While active particles can have many different shapes and
use different mechanisms for propulsion, a great deal of work has
focused on micrometer-sized active Janus colloids propelled by
phoretic mechanisms. Here, we are interested in diffusiophoresis,
where chemical species concentration gradients, either externally
imposed or self-generated, are an essential part of the mechanism.
Continuum descriptions of colloidal motion by this mechanism are
well known and are based on solutions of the Stokes equation cou-
pled to reaction–diffusion equations.12–15 Continuum models are

often appropriate, even for micrometer-sized colloids, although in
this domain fluctuations are important and may be treated using
fluctuating hydrodynamic methods.16 In both cases, an essential
part of the theory is the application of suitable boundary condi-
tions for the fluid fields on the colloid surface. As one proceeds
to the sub-micrometer regime, especially for particles with order
nanometer sizes, the continuum description will lose its validity,
and microscopic descriptions must be used. Active colloids in this
nanometer regime have been studied experimentally and through
simulation.17–19

The development of a microscopic description of small dif-
fusiophoretically active colloids that allows one to pass from the
microscopic to macroscopic domains would provide a better under-
standing of how active motion occurs across these space scales. The
results presented in this paper are twofold: First, from a molecu-
lar perspective, we construct evolution equations for a Janus colloid
and fluid field equations that account for the presence of the active
colloid. Second, for a large Janus particle, we derive boundary con-
ditions from the microscopic theory and, in the process, obtain
correlation function expressions for the surface transport properties
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that appear as parameters in phenomenological continuum descrip-
tions. Since active motion occurs only if the system is driven out
of equilibrium, we employ a statistical mechanical framework that
accounts for non-equilibrium constraints on the system.20–22 The
resulting generalized hydrodynamic equations may then be simpli-
fied in specific time and space regimes. If the colloid is massive
compared to the solvent, Brownian motion scaling can be applied
to simplify the evolution equations for the active colloid. The equa-
tions for the fluid-conserved fields adopt a Markovian form on time
scales that are long compared to microscopic times. If the charac-
teristic size of the colloid is large compared to the boundary zone
where fluid colloid interactions occur, the colloid’s coupling to the
fluid can be described through boundary conditions.

This paper begins with a description of the microscopic model
of the system, the definition of the colloid and coarse-grained
fluid fields whose equations of motion are of interest, and the
non-equilibrium ensemble and constraints imposed on these fields.
After the colloid and generalized hydrodynamic fluid equations
are derived, space and time scale considerations are used to sim-
plify the equations into tractable form. The resulting equations are
decomposed into bulk and surface contributions for a large colloid,
and boundary conditions are derived from the surface equations.
Noteworthy results in this part of the paper are microscopic cor-
relation function expressions for the transport properties that enter
the boundary conditions. The discussion and conclusions establish
links between this microscopic theory and fluctuating hydrody-
namic and continuum methods. Technical details are given in the
Appendices.

II. MICROSCOPIC MODEL FOR A FLUID
WITH AN ACTIVE JANUS COLLOID

We consider an active Janus colloid in a fluid environment at
temperature T, comprising NS solvent molecules S and NR dilutely
dispersed reactive molecules R, so that NS ≫ NR and the total num-
ber of fluid molecules is N = NS +NR. All of these species are taken
to have mass m. The phase space coordinates of the fluid particles
are denoted by x. The Janus colloid resides in a large volume of
fluid far from any confining walls. It is a rigid spherical object with
a radius of RJ and a uniform mass distribution with a total mass
of M and a moment of inertia of I0. We assume that M ≫ m so
that the small parameter μ = (m/M)1/2 can be used to character-
ize the colloid dynamics as in derivations of Langevin dynamics for
inactive23 and active24 Brownian particles. To account for its molec-
ular structure on a coarse-grained level, the colloid is constructed
from ns, small spherical beads uniformly distributed on its surface.25

Catalytic and noncatalytic beads are arranged in two hemispherical
caps to form a Janus colloid with a unit orientation vector u. The
surface beads, labeled by an index α, are located at positions Sα in
the laboratory frame and lie at a distance RJ from the center R of
the colloid at locations relative to the colloid center, Sα(R) = Sα − R.
The phase space coordinates of the rigid colloid are X = {R, θ, P, Π},
where the center-of-mass momentum is P =MV , with V its velocity,
and θ is the set of Euler angles with Π the corresponding generalized
rotational momentum. The angular momentum of the colloid, L, is
related to its angular velocity by ω by L = I0ω (Fig. 1).

Depending on their molecular configurations and bonding
states, the reactive molecules can be classified as species A or B.

FIG. 1. Diagram of the active Janus colloid in solution. Two reactive molecules,
in red and blue, that can interconvert when catalyzed by the catalytic beads (red)
are shown. The image on the right depicts the coordinate system relative to the
lab frame, where the colloid center and a site α on the surface of the colloid are
located at positions R and Sα, respectively.

When interacting with the catalytic sites of the Janus colloid, chem-
ical reactions AÐÐ⇀↽ÐÐ B may take place due to the lowering of the free
energy barrier that separates reactants from products. We assume
that the barrier is very high in the absence of interactions with the
colloid, so reactions in the fluid phase can be neglected.

The Hamiltonian for the entire system can be expressed as the
sum of the kinetic energy of the colloid, K = P2/(2M) + L2/(2I0),
and the Hamiltonian for the fluid in the presence of the fixed colloid,
H0, is

H = K +H0.

The Hamiltonian H0 can be written as the sum of the kinetic energy
of the solvent KS, the Hamiltonian of the molecular species, Hm,
the potential energy of the fluid molecules, U f, and the interaction
energy between the colloid and fluid molecules, UI,

H0 = KS +Hm +Uf +UI.

The equation of motion of an arbitrary dynamical variable
B(X, x) of the full phase space, where x is the phase space coordinate
of the solvent degrees of freedom, is

d
dt

B(X, x, t) = iLB(X, x, t),

where iL is the Liouville operator that we write as the sum of the
Liouvillian operators for the colloid and fluid in the presence of the
colloid, iL = iLc + iL0. Further details of the interactions, Liouville
operators, and rigid-body dynamics are given in Appendix A.

III. COARSE-GRAINED VARIABLES AND FLUXES
A. Coarse-grained microscopic variables

The microscopic variables of interest are the set of colloid
variables, Ac = (1, P, L), where the 1 in this list accounts for the
presence of the single colloid in the system, and the coarse-grained,
slowly varying fields for the conserved fluid variables: number
N(r), momentum gN(r), and total energy E(r) densities, as well
as the reactive species densities Nγ(r), γ ∈ {A, B}. The set of fluid
variables is denoted by A(r) = {Nγ(r), N(r), gN(r), E(r)}. These
coarse-grained fields take the form26

A(r) =
N

∑
i=1

A(xi)Δ(ri − r), (1)
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where Δ is the coarse-graining function that vanishes for dis-
tances ℓΔ > ℓint, where ℓint is the range of the short-range inter-
action potentials. It satisfies the condition ∫ dr′Δ(r − r′) = 1. The
coarse-grained fields are related to the local microscopic fluid fields,
Am(r) = ∑N

i=1 A(xi)δ(ri − r), by

A(r) = ∫ dr′ Δ(r − r′)Am(r′). (2)

The coarse-graining function Δ smooths over rapid variations
appearing in microscopic density averages on short length scales,
ℓint. For example, consider the gradient of the non-equilibrium aver-
age of the coarse-grained number density of particles at position r in
the vicinity of a colloid at R,

∇rn(r, t) = ∇r ∫ dr′ Δ(r − r′)nm(r′, t), (3)

where nm(r′, t) is the probability density to find the solvent particle
at position r′ at time t. For an equilibrium fluid in the presence of
a colloid, the average fluid density nm(r′) is uniform except when
∣r′ − R∣ ≲ ℓint and, hence, ℓΔ∇rn(r, t) ∼ ℓint/ℓΔ ≡ ϵΔ, where ϵΔ is the
small parameter. The introduction of a coarse-graining function
Δ(r) to define hydrodynamic densities is similar to the standard
treatment of hydrodynamic equilibrium fluctuations, in which one
considers only smoothly varying local deviations in the microscopic
densities of conserved variables. This is accomplished by restrict-
ing the Fourier decomposition of the deviations to wave vectors k
with magnitudes less than ∼ ℓ−1

int . If no restrictions are imposed on
the density fields, the microscopic densities retain rapidly varying
spatial components that lead to motion on short, microscopic time
scales.27 When the contributions of such Fourier components are
not removed, the time scales of the evolution of the densities of
conserved dynamical variables are not well-separated from those of
other microscopic motions of the system, and simplifications of the
dynamics to give hydrodynamic equations that are based on time
scale separation are not possible.

The expressions for the components of A(r) are as follows: The
total number density of fluid molecules,

N(r) =
N

∑
i=1

Δ(ri − r),

is equal to the sum of solvent and reactive solute densities,
N(r) = NS(r) +NR(r), where these densities are given by

Nν(r) =
N

∑
i=1

Θν
i Δ(ri − r).

(In the text, we consistently use the notation γ ∈ {A, B}, ν ∈ {S, R},
and λ ∈ {S, A, B}.) The reactive molecule density can be parti-
tioned into the sum of the local number densities of the A and
B species: NR(r) = NA(r) +NB(r). The A and B species vari-
ables may be defined in terms of scalar reaction coordinates
ξi(rnr

i ) that are some functions of the configurational coordi-
nates of the reactive molecules,24 θγ

i (ξi) = ΘR
i Hγ(ξi(rnr

i )), where

Hγ(ξi(rnr
i )) restricts molecular configurations to species γ ∈ {A, B}:

HA(ξi(rnr
i )) = H(ξ‡ − ξi(rnr

i )) and HB(ξi(rnr
i )) = H(ξi(rnr

i ) − ξ‡)
with H a Heaviside function. Thus, we can write the species
densities as

Nγ(r) =
N

∑
i=1

θγ
i (ξi)Δ(ri − r).

The total momentum density of the centers of mass of the solvent
and solute molecules is

gN(r) =
N

∑
i=1

piΔ(ri − r),

and the total energy density E(r) that includes the kinetic energy of
the colloid at position R is

E(r) = Kδ(r − R) +
N

∑
i=1

eiΔ(ri − r)

≡ Kδ(r − R) + EN(r),

where ei is defined by H0 = ∑N
i=1 ei. Note that the energy density is

the only microscopic density that depends explicitly on the location
and orientation of the colloid through the interaction potential UI.
The entire set of variables is denoted by C(r) = (Ac, A(r)).

B. Fluxes of colloid and fluid variables
The fluxes of the colloid variables are Ȧc = iLAc = (0, F, T),

where F and T are the force and torque, respectively. The fluxes of
the slowly varying fluid densities in the presence of the colloid are
Ȧ(r) = iLA(r) and can be written as

Ȧ(r) = J(r) −∇r ⋅ j(r). (4)

The fluxes of the species densities are given by

Ṅγ(r) = JRγ(r) −∇r ⋅ jγ(r),

where the local reaction rate is JRγ(r) and jγ(r) is the number density
flux of species γ. From its definition, we have θ̇A

i (ξi) = −θ̇B
i (ξi), and

we can write the local reaction rate as

JRγ(r) ≡ νγJR(r),

where νγ is the stoichiometric coefficient for species γ, with νA = −1
and νB = 1. Since we have assumed that the free energy barrier is very
high in the bulk phase, this reactive flux is confined to the colloid
reaction zone.

The fluxes of the other local densities are given by

Ṅ(r) = −∇r ⋅ gN(r)/m,
ġN(r) = Ff(r) −∇r ⋅ τ(r),

expressed in terms of the fluid stress tensor τ(r) and the local force
on the fluid Ff(r). We have ∫ drFf(r) = −F since the total momen-
tum is conserved in the absence of an external force. The local total
energy flux is

Ė(r) = JE(r) −∇r ⋅ je(r).
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The total energy ∫ drE(r) is constant so that the total integrated
energy flux is zero. The full expressions for these fluxes are given
in Appendix B.

IV. NON-EQUILIBRIUM DISTRIBUTIONS
AND AVERAGE FLUID FIELDS

Prior to the derivation of a set of equations for the non-
equilibrium averages c(r, t) of the set of slowly varying colloid and
fluid variables C(r), we describe the non-equilibrium distributions
that are used to compute these average values.

The non-equilibrium distribution function for the system
satisfies the Liouville equation,

∂tρ(t) = −iLρ(t),

so that the evolution equations for the average values follow from

∂tc(r, t) = Tr [∂tρ(t)C(r)] = Tr [ρ(t)Ċ(r)], (5)

where the trace operation includes an integration over phase
space and a sum over particle numbers and types, Tr [⋅ ⋅ ⋅ ]
=∏λ∑∞Nλ=0 ∫dXdx ⋅ ⋅ ⋅ . To derive equations for average fields
c(r, t), it is useful to define a local non-equilibrium distribution
ρL(t). This distribution is constructed by maximizing the entropy
functional S(t),22

S(t) = −kB Tr
⎡⎢⎢⎢⎢⎣

ρL(t) ln
⎛
⎝∏γ

Nγ!h3Nγ ρL(t)
⎞
⎠

⎤⎥⎥⎥⎥⎦
,

with respect to the functional form of ρL(t), subject to a set of
constraints to be determined self-consistently,

c(r, t) = Tr [C(r)ρ(t)] = Tr [C(r)ρL(t)] ≡ ⟨C(r)⟩t. (6)

From Eq. (6), we see that the local equilibrium distribution is con-
structed so that non-equilibrium averages c(r, t) of the set of slow
variables C(r) at time t are exactly given by their average over the
normalized local equilibrium density, ρL(t). We represent the set of
averages as c(r, t) = (ac(t), a(r, t)), where the components of c are

ac(t) = {1, Pc(t), Lc(t)},
a(r, t) = {nγ(r, t), n(r, t), mn(r, t)v(r, t), e(r, t)}.

Here, the average velocity of the colloid is defined by Pc =MVc, the
colloid’s position can be found from dRc/dt = Vc, and the local fluid
velocity v(r, t) is defined through the non-equilibrium average of
the momentum density, g(r, t) = mn(r, t)v(r, t).

The resulting local equilibrium distribution is

ρL(t) =
Πλ(Nλ!h3Nλ)−1eC(r)∗ϕC(r,t)

Tr [Πλ(Nλ!h3Nλ)−1eC(r)∗ϕC(r,t)]
, (7)

expressed in terms of a set of local fields,

ϕC(r, t) = {ϕc(t), ϕA(r, t)}.

In Eq. (7),

C(r)∗ϕC(r, t) = Ac ⋅ ϕc + ∫ drA(r) ⋅ ϕA(r, t),

the ∗ denotes the scalar product or tensor contraction and integra-
tion over r. The ϕC(r, t) fields, which are spatial and time-dependent
Lagrange multipliers that enforce the constraint conditions, are
functionals of the average variables and are given by

ϕc(t) = β(−Kc, Vc, ωc),

where Kc = P2
c /2M + L2

c/2I0, and

ϕA(r, t) = (ϕγ(r, t), ϕn(r, t), ϕv(r, t), ϕe(r, t))

with

ϕγ(r, t) = βμ̃γ(r, t), ϕv(r, t) = βv(r, t),

ϕn(r, t) = β(μS(r, t) − 1
2

mv2(r, t)), ϕe(r, t) = −β.
(8)

The chemical potential of species γ above is defined by
μ̃γ(r, t) = μγ(r, t) − μS(r, t). In the more general situation where the
temperature field is inhomogeneous, β(r, t) is the function of space
and time determined by the constraints.

In contrast to the case where the local equilibrium density is
defined by the constrained averages of the microscopic hydrody-
namic densities,22 the Lagrange multipliers ϕA(r, t) are connected
to the averages of the coarse grain hydrodynamic densities via non-
local relations that arise from the coarse-graining function Δ(r)
introduced in Eq. (1). The conditions that result in Eq. (8) are given
in Appendix C.

The local equilibrium distribution can also be written conve-
niently as a function of the instantaneous internal energy density
E‡(r), in which the momenta of the fluid particles pi are replaced by
their relative momenta p‡

i = pi − ⟨pi⟩t = pi −mv(ri, t), and the lin-
ear and angular momenta of the colloid are expressed in terms of
their relative values, P‡ = P −MVc and L‡ = L − I0ωc, respectively.
In this case, we have

C(r)∗ϕC(r, t) = −βE‡ +Nγ(r)∗βμ̃γ(r, t) +N(r)∗βμS(r, t).

The non-equilibrium average of the internal energy density is
⟨E‡(r)⟩

t
= e‡(r, t), where

e‡(r, t) = e(r, t) − 1
2

mn(r, t)v2(r, t) +O(ϵ2
Δ).

Since H0 does not depend on the linear or angular momenta,
we can define a local equilibrium distribution for the colloid kinetic
terms by

ρc
L(t) = e−βK‡

/∫ dPdΠ e−βK‡

and write ρL(t) = ρc
L(t)ρ0

L(t), where

ρ0
L(t) =

Πλ(Nλ!h3Nλ)−1eA0(r)∗ϕA(r,t)

Tr′[Πλ(Nλ!h3Nλ)−1eA0(r)∗ϕA(r,t)]
,

where the set A0(r) = {Nγ(r), N(r), gN(r), EN(r)} differs from the
set A in that the total energy density is replaced by the fluid
energy density in the presence of a fixed colloid, and Tr′[⋅ ⋅ ⋅ ]
= ∫dRdθ∏λ∑∞Nλ=0 ∫dx ⋅ ⋅ ⋅ .
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In what follows, we will assume that the conjugate fields
ϕA(r, t) are uniform sufficiently far from the location of the Janus
particle R and, in particular, at the outer boundaries of the system.
Under these circumstances, averages of fluid densities A(r) at field
position r with respect to the local equilibrium density are functions
of the position r − R relative to the colloid due to the translational
invariance of the interaction potential between the Janus particle and
the solvent. These results follow directly from the fact that

a(r, t) = Tr′
N

∑
i=1

ai(ri, pi)Δ(ri − R + R − r)ρL(t)

= Tr′
N

∑
i=1

ai(ric, pi)Δ(ric + R − r)ρL(t)

= ã(r − R, t).

Similarly, for a fixed colloid, the relative field position r − R = rc can
be written in a body-fixed frame in which the Janus orientation vec-
tor u is the zenith direction and the hydrodynamic fields a(r, t) are
expressed in this coordinate system.

However, for a finite system, the interaction potential must
include interactions of the colloid that confine it within the system’s
boundaries, either through an external potential that depends on R
or via specific interactions with a microscopic description of the con-
fining walls. Such interactions break the translational symmetry of
the interaction potential and result in a positional dependence of the
hydrodynamic fields on the location of the colloid within the finite
system.

V. GENERALIZED COLLOID AND FLUID EQUATIONS
To derive the equations of motion for the average c(r, t) fields,

we first show that averages over the full density ρ(t) in Eq. (5) can be
expressed as averages over the local equilibrium density ρL(t). The
time evolution of the local density satisfies

∂tρL(t) = ρL(t)C̃(r)∗ ϕ̇C(r, t),

where C̃(r) = C(r) − ⟨C(r)⟩t . To relate the non-equilibrium den-
sity ρ(t) to the local equilibrium density ρL(t) that yields the same
average c fields, we define the projection operators,

P†
C(t)ρ̂(t) = Tr [ρ̂(t)]ρL(t) + Tr [ρ̂(t)C̃(r1)]∗ ⟨C̃C̃⟩−1

t (r1, r2)
× C̃(r2)ρL(t),

PC(t)D = ⟨D⟩t + ⟨DC̃(r1)⟩t ∗ ⟨C̃C̃⟩−1
t (r1, r2)∗ C̃(r2),

where ρ̂(t) is a general probability density and D is an arbitrary
dynamical variable, as well as their respective complements Q†

C(t)
= 1 − P†

C(t) and QC(t) = 1 − PC(t). These projection operators
are Hermitian conjugates under the trace, Tr [ρ̂(t)(PC(t)D)]
= Tr [(P†(t)ρ̂(t))D]. Note that when ρ̂(t) = ρ(t), P†

C(t)ρ(t)
= ρL(t) since Tr [C̃(r1)ρ(t)] = 0. It follows that24

ρ(t) = ρL(t) +U†
QC
(t, 0)Q†

C(0)ρ(0)

− ∫
t

0
dt1 U†

QC
(t, t1)FC,t1(r)∗ϕC(r, t1)ρL(t1), (9)

where FC,t1(r) = QC(t1)iLC(r). In Eq. (9), U†
QA
(t, 0) is the pro-

jected evolution operator

U†
QC
(0, t) = T + exp(−∫

t

0
dt1 Q†

C(t1)iL),

where the time-ordering operator T + orders operators with smaller
time arguments to the right of operators with larger time arguments.

Inserting Eq. (9) into Eq. (5) and integrating by parts, we obtain

∂tc(r, t) = ⟨Ċ(r)⟩t + Tr [ρ(0)FC,t(r, 0, t)]

− ∫
t

0
dt1 ⟨FC,t(r, t1, t)FC,t1(r′)⟩t1 ∗ϕC(r

′, t1), (10)

where the time-dependent random force is defined as

FC,t(r, t1, t) = UQC(t, t1)FC,t1(r)

and the evolution operator is given by

UQC(t, t1) = T − exp(∫
t

t1

dτ iLQC(τ)).

The time ordering operator T − orders operators with smaller time
arguments to the left of operators with larger time arguments.

Equation (10) is an exact non-local equation with memory for
the non-equilibrium averages c(r, t) of the coarse-grained micro-
scopic fields. In the subsequent development, we make approxima-
tions based on time and length scales to reduce this equation to
tractable forms that apply to the physical situations of interest in this
work.

While the derivation above is for average values, fluctuating
fluid hydrodynamic equations may also be derived from molecular
theory, similar to those used to obtain the Langevin equations for
an active colloid.24 Such equations have also been obtained using
fluctuating hydrodynamics methods.16,28,29

VI. REDUCTION TO MARKOVIAN EQUATIONS
The following analysis shows how the equations for the colloid

and fluid fields may be approximated when there is a time scale sep-
aration in the system. The variables that comprise the C(r) fields
were chosen to have average values that evolve slowly in time com-
pared to microscopic times. When the mass ratio μ =

√
m/M ≪ 1,

the colloid linear and angular momenta vary slowly on a time scale τc
that is much larger than microscopic times τmic. The coarse-graining
of the microscopic fluid conserved fields smooths the interactions
that occur at short intermolecular distances where strong forces act,
and, consequently, coarse-grained fields vary on slow hydrodynamic
times τh, which are also much larger than τmic. Since the ϕC(r, t)
fields are constructed to give the exact average values c(r, t), these
fields vary on the above slow time scales. Thus, there are two small
parameters, μ ∼ τmic/τc and ϵ ∼ τmic/τh, that gauge the magnitudes
of these characteristic times for the colloid and fluid fields.

This time scale separation allows us to obtain simpler forms
for the projected evolution operators that appear in the equations
of motion. For any dynamical variable B, we can write

QC(t1)B = QC(t)B − ∫
t1

t
dτ

δ(PC(τ)B)
δϕC(r

′, τ) ∗ ϕ̇C(r′, τ)

= QC(t)B + O(μ, ϵ),
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where the second line follows from the fact that the time deriva-
tives of the ϕC(r, τ) fields are slowly varying. In turn, using this
result, we can replace the projectors QC(tn) that enter the time-
ordered evolution operator UQC(t, t1) by QC(t), so that UQC(t, t1)
≈ eQC(t)iL(t−t1).

Below, we use the following notation for the components of
the average fields: For c(r, t) = (1, ac(t), a(r, t)), we have ac(t)
= (Vc(t), ωc(t)) and a(r, t) = (nγ(r, t), n(r, t), g(r, t), e(r, t)) and
the indices c = {ac, a} = {V , ω, γ, n, v, e}.

A. Active colloid equations
The equations of motion for the colloid linear and angular

momenta are simplified by using scaled variables similar to those
that enter Brownian motion theory for the molecular derivation of
the Langevin equation.23 This scaling was also used in the molecu-
lar derivation of the Langevin equation for an active colloid.24 The
linear and angular momenta are scaled as μP = P∗ and μL = L∗,
respectively, or μac = a∗c . The dynamics are considered in the limit
where μ tends to zero while a∗c remains finite, which implies that
ac ∼M1/2. In addition, since ϕc = (βVc, βωc), Vc = Pc/M, and
ωc = Lc/I0, we have μϕc = μ2(βP ∗c /m, βL∗c /Im) ≡ μ2ϕ∗c , where Im is
the moment of inertia expressed in terms of the small mass m.

Taking the ac component of Eq. (10) and multiplying by μ,
we have

d
dt

a∗c (t) = μ⟨Ȧc⟩t + μ Tr [ρ(0)Fc,t(0, t)]

− μ∫
t

0
dt1 ⟨Fc,t(t1, t)FA,t1(r′)⟩t1 ∗ϕA(r

′, t1),

− μ2∫
t

0
dt1 ⟨Fc,t(t1, t)Fc,t1⟩t1 ⋅ ϕ∗c (t1),

≡ μEc(t) − μ2∫
t

0
dt1 ζb

c(t1, t) ⋅ ϕ∗c (t1), (11)

where there are terms on the right that are at least of O(μ)
and O(μ2). In this equation, Fc,t = QC(t)Ȧc = (QC(t)F, QC(t)T)
≡ (Ft , Tt). The contributions that are O(μ) to the lowest order can
be written as

Ec(t) = ⟨Ȧc⟩t + Tr [Fc,t(0, t)ρ(0)]

− ∫
t

0
dt1 ⟨Fc,tU†

QC
(t, t1)FA,t1(r′)⟩t1 ∗ϕA(r

′, t1)

= Tr [Ȧc(ρL(t) +U†
QC
(t, 0)Q†

C(0)ρ(0)

− ∫
t

0
dt1 U†

QC
(t, t1)FA,t1(r′)∗ϕA(r

′, t1)ρL(t1))],

where, in the second line of this equation, we moved the propaga-
tors back onto the densities. This term also contains contributions
O(μ2) since the fluid velocity fields have terms O(μ) arising from
the slip velocity discussed below. Notice that the quantity in paren-
theses under the trace has the same form as that in Eq. (9) that relates
ρ(t) to ρL(t), except for terms of O(μ2) due to the coupling to col-
loid variables. This coupling is accounted for by the O(μ2) term in
Eq. (11). Furthermore, we can write FA,t1(r)∗ϕA(r, t1) as

FA,t1(r)∗ϕA(r, t1) = β[JRγ,t1(r)∗ μ̃γ(r, t1) + jγ,t1
(r)

×∇rμ̃γ(r, t1) + τt1(r)∗∇rv(r, t1)

+ Ff,t1(r)∗v(r, t1)], (12)

taking into account the conservation of total energy. As above, in
writing this equation, we denoted the components of the projected
dissipative fluxes FC,t1(r) by jγ,t1

(r) = QC(t1)jγ(r), etc.
Since iL = μiL ∗c + iL0, we may replace L by L0 to terms

O(μ). Then iL0 acting on fluid fields yields a quantity that does
not depend on the linear or angular momenta, and the projectors
that enter the formulation can be replaced by QA(t) and Q†

A(t) that
project only onto the fluid fields. Thus, in this limit, we have

Ec(t) ≈ Tr′[Ȧc(ρ0
L(t) +U†

QA
(t, 0)Q†

A(0)ρ0(0)]

− ∫
t

0
dt1 U†

QA
(t, t1)FA,t1(r′)∗ϕA(r

′, t1)ρ0
L(t1))],

≡ Tr′[Ȧcρ0(t)]. (13)

In writing this equation, we have also taken the initial condition to
be given by ρ(0) = ρc

Lρ0(0), and from its definition, one can see that
the density ρ0(t) has a structure analogous to that in ρ(t) in Eq. (9).

Next, we consider the memory term O(μ2) to be in the lowest
order. After the change of variables t′ = t − t1, and evaluation in the
limit of small μ and long times t on the time scale τ = μ2t, we find

∫
t

0
dt1 ζb

c(t1, t) ⋅ ϕ∗c (t1) ≈ [∫
∞

0
dt′ ⟨(eQA(t)iL0t′Fc,t)Fc,t⟩t] ⋅ ϕ∗c (t)

≡ ζb
c ⋅ ϕ∗c (t).

The quantity ζb
c is the friction tensor, and the superscript “b” is used

to indicate that it is the bare friction since the contributions from the
fluid fields are projected out of the dynamics.

Returning to unscaled coordinates, the colloid equations are

d
dt

ac(t) = Tr′[Ȧcρ0(t)] − ζb
c ⋅ ϕc(t).

Writing this equation in terms of its components, we have

M
d
dt

Vc = Tr′[Fρ0(t)] − ζb
VV ⋅Vc − ζb

Vω ⋅ ωc, (14a)

I0
d
dt

ωc = Tr′[Tρ0(t)] − ζb
ωV ⋅Vc − ζb

ωω ⋅ ωc. (14b)

The first terms on the right contain contributions that contribute to
the friction coefficients and account for the diffusiophoretic force
and torque, while the remaining terms involve the bare translational
and rotation friction coefficients and their cross terms. For a Janus
colloid with cylindrical symmetry, there is no active torque or cou-
pling between translation and rotation, and the equation for the
colloid velocity simplifies further to give

M
d
dt

Vc = Tr′[Fρ0(t)] − ζb
VV ⋅Vc. (15)

From Eqs. (12) and (13) we see that Tr′[Fρ0(t)] depends on the fluid
fields. We construct the equation for these fields in Sec. VI B.
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B. Fluid equations
The fluid equations in the presence of an active colloid follow

from the a(r, t) components of Eq. (10) and are given by

∂ta(r, t) = ⟨Ȧ(r)⟩t + Tr [ρ(0)FA,t(r, 0, t)]

− ∫
t

0
dt1 ⟨FA,t(r, t1, t)FC,t1(r′)⟩t1 ∗ϕC(r

′, t1). (16)

A Markovian approximation to the integral term in Eq. (16) can
be made under the conditions discussed above, where μ, ϵ≪ 1. Let-
ting t1 = t − τ, in this approximation, to leading order in the small
parameters, we can write

∫
t

0
dt1 ⟨FA,t(r, t1, t)FC,t1(r′)⟩t1 ∗ϕC(r

′, t1)

≈ [∫
∞

0
dτ ⟨FA,t(r, τ)FC,t(r′)⟩t]∗ϕC(r

′, t),

where FA,t(r, τ) = eQA(t)iL0τFA,t(r). The time scale condition,
τmic ≪ τc, τh, has been used to replace ρL(t1) by ρL(t) in the kernel
and make a Markovian approximation on the time integral.

Writing FC,t1 ∗ϕC in full, we have

FC,t1(r)∗ϕC(r, t1) = β[JRγ,t1(r)∗ μ̃γ(r, t1) + jγ,t1
(r)

×∇rμ̃γ(r, t1) + τt1(r)∗∇rv(r, t1)

+∑
α

Fα
f,t1(r)∗v

α(r, t1)], (17)

which is closely related to Eq. (12) except that vα(r, t) enters in place
of v(r, t) in the last term. This field arises from coupling to the col-
loid and is defined by vα(r, t) = v(r, t) − (Vc(t) + ωc(t) ∧ Sα(R))
and is the velocity field relative to the site α in the colloid. Using the
results in Appendix D, where it is shown that∑α Fα

f,t(r′)∗vα(r, t1)
≈ Ff,t(r′)∗vsl(r′, t), we may express the last term in Eq. (17) in
terms of the slip velocity, where for ∣r − R∣ = RJ ,

vsl(r, t) = v(r, t) −Vc(t) − ωc(t) ∧ (r − R). (18)

Since FC,t1 ∗ϕC has the same form as FA,t1 ∗ϕA in Eq. (12) with
v replaced by the slip velocity vsl, we write FC,t1 ∗ϕC = FA,t1 ∗ϕA,
keeping in mind that the slip velocity appears in the fluid field equa-
tions. Because the slip velocity depends on Vc and ωc, it gives rise to
a term of O(μ) in the fluid equation.

With these results, the fluid hydrodynamic equation takes the
form

∂ta(r, t) = E(r, t) − LAA(r, r′, t)∗ϕA(r
′, t), (19)

where

LAA(r, r′, t) = ∫
∞

0
dτ ⟨FA,t(r, τ)FA,t(r′)⟩t (20)

and E(r, t) = ⟨Ȧ(r)⟩t . Since the initial condition term
Tr [ρ(0)FA,t(r, 0, t)] will vary on a molecular time scale because
of the projection operators it contains, it can be neglected for times
long compared to τmic and was not included in Eq. (19).

Making use of the expressions for the time derivatives of the
colloid and coarse-grained fluid fields in Sec. III B, we can write the
components of the random forces as

Fa,t(r) = j (0)a,t −∇r ⋅ j(1)a,t (r),

Here and below, we use the superscripts (ℓ), ℓ ∈ {0, 1}, to indicate
whether the flux is associated with the gradient operator. The gener-
alized fluid hydrodynamic equations in the presence of colloid can
be written as

∂ta(r, t)= Ea(r, t)+J (0)a (r, t) −∇r ⋅J (1)a (r, t) (21)

and using the summation convention on repeated indices, the fluxes
J (ℓ)a are given by

J (ℓ)a (r, t) = −[L(ℓ0)
aa′ (r, r′, t)∗ϕa′(r

′, t)

+ L(ℓ1)
aa′ (r, r′, t)∗∇r′ϕa′(r

′, t)], (22)

where the L(ℓℓ′) coefficients are defined by

L(ℓℓ
′
)

aa′ (r, r′, t) = ∫
∞

0
dτ ⟨j(ℓ)a,t (r, τ)j(ℓ

′
)

a′ ,t (r
′)⟩t (23)

with j(ℓ)a,t (r, τ) = eQA(t)iL0τj(ℓ)a,t (r). The full expressions for the
J (0)a (r, t) and J (1)a (r, t) fluxes are given in Appendix E.

Expressing Eq. (21) in terms of its components a = {γ, n, v, e},
and inserting the forms for the J (ℓ)a (r, t) fluxes given in
Appendix E, the full expressions for the fluid hydrodynamic
equations in the presence of a moving active Janus colloid are

∂tnγ = −∇r ⋅ (nγv) − βL(00)
γR ∗ A − βL(00)

γv ∗vsl − βL(01)
γγ′ ∗∇r′ μ̃γ′

− βL(01)
γv ∗∇r′v +∇r ⋅ βL(10)

γR ∗ A +∇r ⋅ βL(10)
γv ∗vsl

+∇r ⋅ βL(11)
γγ′ ∗∇r′ μ̃γ′ +∇r ⋅ βL(11)

γv ∗∇r′v, (24a)

∂tρ = −∇r ⋅ (ρv), (24b)

∂t(ρv) = −∇r ⋅ (ρvv) −∇r ⋅ ⟨τ‡(r)⟩t + ⟨Ff(r)⟩t − βL(00)
vR ∗ A

− βL(00)
vv ∗vsl − βL(01)

vγ′ ∗∇r′ μ̃γ′ − βL(01)
vv,t ∗∇r′v

+∇r ⋅ βL(10)
vR ∗ A +∇r ⋅ βL(10)

vv ∗vsl +∇r ⋅ βL(11)
vγ′

∗∇r′ μ̃γ′ +∇r ⋅ βL(11)
vv ∗∇r′v, (24c)

where ρ(r, t) = mn(r, t) is the total mass density, and

A(r′, t) = −(μ̃A(r′, t) − μ̃B(r′, t))

is the chemical affinity. Under isothermal conditions, the energy
field does not couple to the species density, number density, and
momentum density fields and will not be needed. Note that the equa-
tions are Galilean invariant and can be written in a Cartesian frame
co-moving with the Janus colloid, in which the densities are func-
tions of the field position relative to the moving colloid rc = r − R,
and the fluid velocity fields are vc(rc, t) = v(r, t) −Vc.
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In the next section, we analyze these equations in the co-
moving frame in further detail, both in the bulk phase and the
surface layer near the colloid.

VII. FLUID PHASE AND SURFACE
HYDRODYNAMIC EQUATIONS

Equation (21), or more explicitly Eqs. (24a)–(24c), describes the
fluid fields in the presence of an active Janus colloid, regardless of
its size. In many instances, interest centers on active colloids with
micrometer sizes, while the solvent molecules comprising the fluid
in which they reside have nanometer or smaller dimensions. Since
the range of solvent–colloid interactions is also on sub-nanometer
or nanometer scales, the radius of the colloid RJ is much larger than
the characteristic size of a solvent or solute molecule, rs, and the
length of the colloid–solvent interaction zone, ℓint, RJ ≫ (rs, ℓint).
Although such colloids are subject to thermal fluctuations, hydrody-
namic treatments are applicable where the fluid fields interact with
the colloid through boundary conditions. In this and the following
sections, we show how the boundary conditions can be deduced
from the generalized hydrodynamic equations in the presence of
the colloid. In preparation for deriving such boundary conditions,
we decompose the hydrodynamic equations into bulk and surface
contributions.

A. Fluid phase hydrodynamic equations
We first consider the fluid field hydrodynamic equations in

the absence of a Janus colloid and show that we obtain the stan-
dard results. We denote these bulk-phase fields by a+(r, t) and
drop all contributions in Eqs. (24a)–(24c) that involve the colloid
to obtain

∂tn+γ = −∇r ⋅ (n+γ v+) +∇r ⋅ βL+γγ′ ∗∇r′ μ̃
+

γ′ , (25a)

∂tρ+ = −∇r ⋅ (ρ+v+), (25b)

∂t(ρ+v+) = −∇r ⋅ (ρ+v+v+) −∇r ⋅ ⟨τ‡(r)⟩t
+∇r ⋅ βL+vv ∗∇r′v

+. (25c)

All contributions come from the L(11)
aa′ coefficients, and for these

coefficients, we replace the (11) superscript with + to indicate their
values in the absence of the colloid. In addition, since the system is
isotropic, we have retained only those terms that involve coupling
between forces and fluxes of the same tensorial character.

The local equilibrium averages may be approximated by aver-
ages in the homogeneous ensemble,30 where r-dependent dynamical
variables, f (r), in the averages are replaced by their volume averages
and the r dependence arises solely from the ϕ(r, t) fields, ⟨ f (r)⟩+t
≈ V−1⟨ f ⟩+H(r, t) = V−1 Tr [ρH

L (t) f ], where f = ∫ dr f (r) and

ρL(t) ≈ ρH(t) =
Πλ(Nλ!h3Nλ)−1eA⋅ϕ+A(r,t)

Tr [Πλ(Nλ!h3Nλ)−1eA⋅ϕ+A(r,t)]
, (26)

where A ⋅ ϕ+A(r, t) = −βE+ + βμ+S (r, t)NS + βμ̃+γ (r, t)Nγ. Taking
L+aa′(r, t) ≈ L+aa′ ,H(r, t), we then have

L+aa′ ,H(r, t) = 1
V ∫

∞

0
dτ ⟨j(1)a,t (τ)j

(1)
a′ ,t ⟩H(r, t). (27)

Since the j(1)a′ ,t fluxes are integrated over r and ∫ dr Δ(r − r′) = 1, the
fluxes in the correlation function take their microscopic values in the
homogeneous ensemble.

We then have

βL+vv,H(r, t) = (kBTV)−1∫
∞

0
dτ ⟨τt(τ)τt⟩+H(r, t)

= η(r, t)Δ4 + ζ(r, t)1⊗ 1, (28)

where (Δ4)ijkl = δikδ jl + δilδ jk − (2/3)δi jδkl is the fourth rank sym-
metric traceless unit tensor, with I the fourth rank symmetric unit
tensor, and η(r, t) and ζ(r, t) are the local shear and bulk viscosities.
These transport coefficients depend locally on the hydrodynamic
densities a+(r, t) through the functional dependence of the con-
jugate fields ϕ+A[a

+(r, t)] on the average internal energy e‡ and
the hydrodynamic densities nγ(r, t) and n(r, t). Due to the form
of the homogeneous density ρH(t), this functional dependence is
the same as that of the equilibrium transport coefficients on the
equilibrium bulk density and internal energy.30 In almost all cir-
cumstances, the spatial and time dependence of the transport coeffi-
cients is ignored, which is perhaps justified when nonlinear effects
are small. The inclusion of such nonlinearities introduces higher
order terms of the small parameter τmic/τh into the hydrodynamic
equations.

Similarly, we can write

βL+γγ′ ,H(r, t) = (kBTV)−1∫
∞

0
dτ ⟨ jγ,t(τ)jγ′ ,t⟩

+
H(r, t)

= δγγ′βDγ(r, t)n+γ (r, t)1

that defines the diffusion coefficient of species γ. Since the solute
species are assumed to be dilute, we have dropped cross-diffusion
contributions. When the solution is dilute, the chemical potential
of the solvent S may be taken to be uniform, and the chemi-
cal potential of the solute species γ can be written as μ̃+γ (r, t)
= μ̃0

γ + β−1 ln (n+γ (r, t)/n0). The fluid pressure field is given by
⟨τ‡(r, t)⟩+H(t) = p+h (r, t)1. Henceforth, we neglect the spatial depen-
dence of the transport coefficients in the bulk phase. The fluid phase
hydrodynamic equations then adopt their standard forms,

∂tn+γ = −∇r ⋅ (n+γ v+) +Dγ∇2
r n+γ , (29a)

∂tρ+ = −∇r ⋅ (ρ+v+), (29b)

∂tg+ = −∇r ⋅ (g+v+ + P+), (29c)

where here and below we omit the (r, t) arguments for simplicity
when possible. The fluid pressure tensor is

P+ = p+h 1 +Π+

= p+h 1 − 2η(∇rv
+)sym − (ζ − 2η/3)∇r ⋅ v+1, (30)

where (ab)sym = (ab + ba)/2. Below, we shall assume that the fluid
is incompressible: ∇r ⋅ v+ = 0, although this simplification can be
relaxed.
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B. Hydrodynamic equations in the surface layer
To obtain the equations in the surface layer, we assume that the

radius of the active Janus colloid is orders of magnitude larger than
those of the fluid particles and the length of the interaction zone,
RJ ≫ rs, ℓint. In this circumstance, we can adopt a local Cartesian
coordinate frame to construct the surface hydrodynamic equations.
We take the unit vector ẑ to be locally normal to the colloid surface
and r∥ to be parallel to the surface. The equations in the interfacial
zone can be obtained by defining the surface fields as(r, t) through
the equations31,32

a(r, t) = as(r, t) + θ(z − z0)a+(r, t)

and similar expressions for other surface quantities, where z is the
component of r along ẑ and z0 is the location of the dividing surface.
While the location of the dividing surface may be chosen in various
ways, it is convenient to suppose that it is located at the outer edge of
the interaction zone but within the correlation length in the normal
direction of surface transport coefficients. Using these definitions in
Eq. (21), the equation of motion for the surface fields as(r, t) takes
the form

∂tas(r, t)= Es
a(r, t)+J (0)a (r, t) −∇r ⋅J (1)sa (r, t)
− δ(z − z0)ẑ ⋅J +

a (r, t), (31)

where J +
a (r, t) = −L+aa′(r, r′, t)∗∇r′ϕ

+

a′(r
′, t). The surface Euler

term is given by Es
a(r, t)= Ea(r, t) − θ(z − z0)E+a (r, t), where E+a is

the Euler contribution in the bulk phase, whose components are
given in Eqs. (29a)–(29c). The surface fluxes J (1)sa are given by

J (1)sa (r, t) = J (1)a (r, t) − θ(z − z0)J +
a (r, t). (32)

These equations describe the evolution of the surface excess densi-
ties and their coupling to the fluxes of the bulk density fields at the
interface at z0.

Since the surface excess densities are discontinuous functions
of z, we integrate them over the boundary layer corresponding to
the coarse-grained fluxes, as

0(r∥, t) = ∫dz as(z, r∥, t), to obtain

∂tas
0(r∥, t)= Es

a0(r∥, t)+J (0)a0 (r∥, t) −∇r∥ ⋅J
(1)s
a0 (r∥, t) − ẑ

⋅J +
a (z0, r∥, t), (33)

where J (1)sa0 (r∥, t) = ∫dz J (1)sa0 (z, r∥, t), etc. In Appendix F, we
show that the fluxes in this equation can be evaluated to give

J (0)a (r, t) ≈ −[L(00)
aa′ ,H(r∥, t) ⋅ ϕ+a′(z0, r∥, t)

+ L(01)
aa′ ,H(r∥, t) ⋅∇r∥ϕ

+

a′(z0, r∥, t)], (34)

J (1)sa0 (r∥, t) ≈ −[L(10)
aa′ ,H(r∥, t) ⋅ ϕ+a′(z0, r∥, t) + L(11)

aa′ ,H(r∥, z0, t)

⋅ (∇r∥ϕ
s
a′0(r∥, t) + ẑϕ+a′(z0, r∥, t))

+ Lθ
aa′ ,H(r∥, t) ⋅∇r∥ϕ

+

a′(z0, r∥, t)]. (35)

Equation (33), along with the definitions of the surface fluxes
in Eqs. (34) and (35), constitutes the basic set of equations for

the surface fields that describe the dynamics in the boundary layer
and will be used below to derive the boundary conditions. They
account for correlations in the surface layer and between the surface
fields and bulk fluid fields, depending only on the properties of the
coarse-grained fields and the associated small parameters that allow
a Markov approximation to be made.

In the following sections, we show how these equations can be
used to obtain boundary conditions consistent in structure with con-
tinuum theories after approximations are made. Consequently, the
calculations provide microscopic correlation function expressions
for the parameters in these boundary conditions.

VIII. LINEARIZED SURFACE EQUATIONS
The surface hydrodynamic equations derived above are local

in space but are nonlinear since the homogeneous averages depend
on ϕa(r, t) fields. In the linear regime, these local equilibrium aver-
ages in the homogeneous ensemble can be replaced by equilibrium
averages, and we present these linearized results below since they can
be used for comparisons with standard phenomenological boundary
conditions.

The general surface equations given in Eq. (33), with the fluxes
given by Eqs. (34) and (35), include all couplings of the surface
and bulk densities. Some of these couplings occur through transport
coefficients of different tensorial characters that vanish for equilib-
rium systems with specific symmetries. Other couplings, such as the
coupling between the reaction and the diffusive flux or the reac-
tion and the fluid stress, are likely to be small. Here, we consider
a Janus motor system with cylindrical symmetry and neglect cou-
pling between the reaction and diffusive transport and the reaction
and fluid stress by setting L(01)

γγ′ = 0, L(01)
γv = 0, and L(10)

vγ = 0. In the

following, we also neglect the Lθ
aa′ transport coefficients that account

for the difference between transport at the dividing surface and in
the bulk. If z0 is chosen to be larger than the solvent–colloid interac-
tion distance, these terms are small. However, they can be retained
to give higher-order gradient corrections to the boundary conditions
we obtain in Sec. IX.

Written in terms of components, the linearized surface hydro-
dynamic equations for the species density and momentum fields
are

∂tns
γ0 = −∇r∥ ⋅ j

s
γ0,ad −∇r∥ ⋅J

(1)s
γ0 + J (0)

γ0

− ẑ ⋅ (n+γ v+ +J +
γ )(z0, r∥, t), (36a)

∂tρs
0 = −∇r∥ ⋅ j

s
ρ0,ad(r∥, t) − ẑ ⋅ (ρ+v+)(z0, r∥, t), (36b)

∂tgs
0 = −∇r∥ ⋅ j

s
v0,ad −∇r∥ ⋅ P

s
0 + ⟨Ff0⟩t+J (0)v0 (r∥, t)

− ẑ ⋅ P+(z0, r∥, t), (36c)

where the bulk phase diffusion flux is J +
γ = −βL+γγ′ ⋅∇rμ̃+γ′ , the

surface pressure tensor is Ps
0(r∥, t) = p∥(r∥, t)12 +J (1)sv0 , and the

parallel pressure is defined by p∥(r∥, t)12 = ⟨τ‡
∥,∥,0(r∥)⟩

s
t .

Using the results provided in Appendices E and F, the sur-
face fluxes that enter these equations are as follows: The flux
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J (0)
γ0 (r∥, t) can be used to define the reaction rate R by J (0)

γ0 (r∥, t)
≡ νγ R(z0, r∥, t) and is given by

J (0)
γ0 (r∥, t) ≈ −βL(00)

γγ′ ,eqμ̃+γ′ (z0, r∥, t).

≡ −νγβLR(r∥)A(z0, r∥, t), (37)

where

βLR(r∥) = Hc(r∥)
β
A∫

∞

0
dτ ⟨JR,t(τ)JR,t⟩eq (38)

is the standard reactive flux correlation function for the reaction
rate coefficient,33 and the Heaviside function Hc(r∥) restricts reac-
tions to the catalytic hemisphere. In Appendix G, we show that
R(z0, r∥, t) can be written in terms of the forward and reverse rate
coefficients per unit surface area, κ± as

R(z0, r∥, t) = Hc(r∥)[κ+n+A(z0, r∥, t) − κ−n+B(z0, r∥, t)]. (39)

The parallel component of the diffusion flux J (1)sγ0 is

1∥ ⋅J (1)sγ0 (r∥, t) ≈ −1∥ ⋅ βL(11)
γγ′ ,eq(z0) ⋅∇r∥ μ̃

s
γ′0 − 1∥ ⋅ βL(10)

γv,eq

⋅ v+sl∥ − 1∥ ⋅ βL(11)
γv,eq(z0) : ∇r∥ ẑv

s
z0. (40)

Here, for simplicity of notation, we have not indicated the spatial
dependence of the bulk fields evaluated at the dividing surface as well
as that of the surface-averaged fields. The first term in this equation
describes surface diffusion. Analogous to the development presented
above for dilute solute species in the bulk phase, the surface diffusion
coefficient Ds

γ(r∥, t) can be defined as

βL(11)
γγ′ ,eq(z0) = βDs

γ ns,eq
γ0 δγγ′12.

The second term in Eq. (40) provides a microscopic expression for
diffusiophoretic coupling βL(10)

γv,eq = −βLd
γv(r∥, t) given by

1∥ ⋅ βLd
γv ⋅ 1∥ =

β
A∫

∞

0
dτ ⟨j∥,γ,t(τ)F∥,t⟩eq = βLd

γv12. (41)

In writing this equation, we used the relation between the total par-
allel force on the colloid and the fluid, Ff∥,t = −F∥,t , that follows from
momentum conservation. The third in Eq. (40) accounts for the
coupling between the concentration flux and the microscopic stress
tensor. This transport coefficient vanishes in the bulk of the fluid by
symmetry and will contribute higher-order gradient corrections to
boundary conditions.

The parallel component of flux J (0)v0 (r∥, t) is

1∥ ⋅J (0)v0 (r∥, t) ≈ −β1∥ ⋅ L(00)
vv,eq ⋅ v+sl∥ − β1∥ ⋅ L(01)

vγ,eq ⋅∇r∥ μ̃
+
γ

− β1∥ ⋅ L(01)
vv,eq : ∇r∥ ẑv

+
z . (42)

The first term accounts for fluid slip, and the coefficient of sliding
friction, λs = βLs

vv , can be defined by the correlation function

β1∥ ⋅ L(00)
vv,eq ⋅ 1∥ =

β
A∫

∞

0
dτ ⟨Ff∥,t(τ)Ff∥,t⟩eq

≡ βLs
vv12. (43)

The relation between the time integral of the parallel force autocor-
relation function and the sliding friction coefficient, also called the
slip coefficient, was previously obtained by Bocquet and Barrat.34

Other ways of accounting for the partial slip of the fluid velocity
at boundaries are reviewed by Camargo et al.35 and can be con-
sulted for additional information on various formulas for the slip
coefficient. Note that in Eq. (43), as a result of the expansion of the
correlation function in terms of the mass ratio μ, the time evolution
of the force Ff∥,t(τ) = exp{QA(t)iL0τ}QA(t)Ff∥ is governed by the
projected evolution operator QA(t)iL0 for a fixed colloid, as in the
case of the friction coefficient in a Brownian system.23 Since the col-
loid is fixed, the integral of the force autocorrelation function over
the time argument does not vanish in the thermodynamic limit. Fur-
thermore, since iL0 PA(t)B ∼ O(τmic/τh), the time dependence may
be approximated by the unprojected evolution in the presence of a
fixed particle,23

λs12 =
β
A∫

∞

0
dτ⟨(eiL0τFf∥,t)Ff∥,t⟩eq

(1 +O(τmic/τh)).

To evaluate the fluid slip for a finite system with N fluid particles
in simulations, the system size dependence must be accounted for
since the time integral of the force autocorrelation function does not
have a plateau at long times but rather decreases exponentially36,37

for t ≫ Nm/(Aλs). If the full Liouville operator iL rather than iL0
is retained, care must be taken to properly evaluate the transport
properties using a plateau-value calculation.

The second term in Eq. (42) accounts for diffusiophoretic
effects, and the diffusiophoretic coefficient, reciprocal to that in
Eq. (41), is defined by

β1∥ ⋅ L(01)
vγ,eq ⋅ 1∥ = −

β
A∫

∞

0
dτ ⟨F∥,t(τ)j∥γ,t⟩eq

= −βLd
vγ12 = βLd

γv12. (44)

The third term in Eq. (42) accounts for the coupling between the par-
allel component of the force and the symmetric parallel fluid stress
tensor,

β1∥ ⋅ L(01)
vv,eq : ẑ1∥ = −

β
A∫

∞

0
dτ ⟨F∥,t(τ)τz,∥,t⟩eq

≡ βLg
vv12. (45)

The surface transport coefficient Lg
vv has previously appeared in the

hydrodynamic equations in the presence of solids35 and has been
shown to be significant.38

The parallel component of the surface momentum flux
1∥⋅J (1)sv0 is

1∥⋅J (1)sv0 ⋅ 1∥ ≈ −1∥1∥ : 2βL(11)
vv,eq : (∇r∥v

s
0∥)

sym.

The correlation function expression for L(11)s
vv,t is the surface analog

of that in Eq. (28) for the fluid shear and bulk viscosities,

βL(11)
vv,eq =

β
A∫

∞

0
dτ ⟨τ∥,∥,t(τ)τ∥,∥,t⟩eq(r∥, t),

= ηsΔ2 + ζs12 ⊗ 12, (46)
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where Δ2 and 12 are the surface analogs of the tensors in Eq. (28).
In the second line, we defined the surface shear ηs and bulk ζs

viscosities. Thus,

∇r∥ ⋅J
(1)s
v0 ⋅ 1∥ ≈ −ηs∇2

∥v
s
0∥ − (ζs − ηs)∇r∥(∇r∥ ⋅ v

s
0∥).

The normal component of flux J (0)v0 (r∥, t) is

ẑ ⋅J (0)v0 (r∥, t) = −βLz,xx
vv ∇r∥ ⋅ v

+
∥ ,

where the transport coefficient Lz,xx
vv 12 = ẑ ⋅ L(01)

vv : 1∥1∥ accounts for
the small cross-coupling between the normal component of the force
and the parallel stress.

The normal component of flux 1∥ ⋅J (1)sv0 (r∥, t) is

1∥ ⋅J (1)sv0 (r∥, t) ⋅ ẑ = −βẑ1∥ : L(10)
vv,eq ⋅ v+sl∥ − ẑ1∥ : [βL(11)

vγ,eq(z0)

⋅∇r∥ μ̃
s
γ0 + βL(11)

vv,eq(z0) : ∇r∥ ẑv
s
0z

+ βL(11)
vv,eq(z0) : ẑv+∥ ].

We note that the term L(10)
vv,eq is related to the transport coefficient

Lg
vv defined above by

βẑ1∥ : L(10)
vv,eq ⋅ 1∥ = −

β
A∫

∞

0
dτ ⟨τ∥,z,t(τ)F∥,t⟩eq

≡ βLh
vv12 = βLg

vv12 (47)

and a related quantity appears in the hydrodynamic equations in the
presence of solids.35 From their structures, all the transport coeffi-
cients in the expression in square brackets above are expected to be
small.

IX. BOUNDARY CONDITIONS
In macroscopic descriptions of an active Janus motor immersed

in a non-equilibrium fluid, the Navier–Stokes or Stokes equations
for hydrodynamic fluid densities are usually solved by treating the
effect of a translating and rotating active colloid as a boundary
condition.12,13,39 The presence of the slow-moving colloid induces
motion in the fluid that is established on a rapid time scale relative
to changes in the colloid degrees of freedom. In the simplest case,
the fluid equations are solved subject to the instantaneous values of a
uniformly translating and rotating colloid. Based on the surface and
bulk hydrodynamic equations above, in this section, we derive the
boundary conditions for the concentration and velocity fields from
the molecular theory. When writing the boundary conditions below,
we retain only the dominant terms in the dissipative fluxes derived
in the previous section.

The boundary conditions on the concentration fields may be
obtained by writing Eq. (36a) as

Dγẑ ⋅∇rn+γ (r, t)∣z0 = νγ R(z0, r∥, t) − Σs
γ, (48)

where the diffusion surface sink term Σs
γ is defined by

Σs
γ = ∂tns

γ0 +∇r∥ ⋅ j
s
γ0,ad +∇r∥ ⋅J

(1)s
γ0 , (49)

where

J (1)sγ0 ≈ −βL(11)
γγ′ ,eq(z0)∇r∥ μ̃

s
γ′0 + βLd

γvv
+
sl∥. (50)

The boundary condition that follows from Eq. (36b) is

ẑ ⋅ v+(z0, r∥, t)ρ+(z0, r∥, t) = −Σs
n,

where the mass sink is

Σs
n = ∂tρs

0 +∇r∥ ⋅ j
s
ρ0,ad. (51)

If the mass sink is zero, we have ẑ ⋅ v+(z0, r∥, t) = 0.
The boundary condition on the fluid velocity can be deter-

mined from Eq. (36c), written as

ẑ ⋅ P+(z0, r∥, t)= J (0)v0 (r∥, t) − Σs
v ,

where the momentum sink is defined to be

Σs
v = ∂tgs

0 +∇r∥ ⋅ j
s
v0,ad +∇r∥ ⋅ P

s
0 − ⟨Ff0⟩t.

For the parallel component of the fluid velocity, using Eq. (42)
for 1∥ ⋅J (0)v0 , we write

ẑ ⋅ P+(z0, r∥, t) ⋅ 1∥ = −βLs
vvv

+
sl∥ − βLg

vv∇r∥v
+
z

+ βLd
vγ∇r∥ μ̃

+
γ − Σs

v∥, (52)

where the parallel momentum sink term reads

Σs
v∥ = ∇r∥p∥ − ⟨Ff∥0⟩t + ∂tgs

∥0 +∇r∥ ⋅ j
s
v0,ad

− ηs∇2
r∥v

s
0∥ − (ηs − ζs)∇r∥(∇r∥ ⋅ v

s
0∥). (53)

Equations (48) and (52) are the general boundary conditions
for the species concentration and fluid velocity fields. If surface flow
terms vanish,26,32,40 the boundary conditions simplify to

ẑ ⋅ v+ = 0, (54a)

ẑ ⋅ P+(z0) ⋅ 1∥ = −βLs
vvv

+
sl∥ + βLd

vγ∇r∥ μ̃
+
γ − βLg

vv∇r∥v
+
z , (54b)

Dγẑ ⋅∇rn+γ (r, t)∣z0 = νγ R(z0, r∥, t) − βLd
γv ∇r∥ ⋅ v

+
∥ . (54c)

Generally, only the leading order terms in the gradients of the
couplings to each field are retained when applying the bound-
ary conditions. Equation (54c) is a generalization of the radiation
boundary condition applied to reactions, where the intrinsic reac-
tion rate coefficients κ± that appear in the reaction rate R(z0, r∥, t)
given in Eq. (39) depend on the reactive processes within the bound-
ary layer, while the diffusive flux term accounts for the concentration
gradients in the vicinity of the colloid, which have a much longer
range. Both of these contributions are controlled by the effective
reaction radius. Given that the boundary layer is small on the scale
of the colloid size RJ , the dependence on z0 is weak, provided it is in
the vicinity of the boundary layer.

If we neglect the small dissipative contributions to the normal
component of the fluid velocity equation, we find

ẑ ⋅ P+(z0, r∥, t) ⋅ ẑ = p+h (z0) = ẑ ⋅ ⟨Ff0⟩t(r∥, t) + βLg
vv∇r∥ ⋅ v

+
∥ , (55)
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which relates the fluid pressure at z0 for an incompressible fluid
to the normal component of the average force integrated over the
surface layer.

A. Solution of the Janus system with uniform
interactions

The boundary conditions in Eqs. (54b) and (54c) have forms
that are similar to those in Eqs. (15) and (16) of Ref. 16, and are
structurally identical if the velocity-dependent term in Eq. (54c),
which is higher order in the Péclet number, is neglected. The addi-
tional coupling term involving Lg

vv in Eq. (54b) adds a correction
to the fluid viscosity without changing the form of the boundary
conditions. In this circumstance, we may directly use the induced
force methods28 to solve the fluid Navier–Stokes equations subject to
the boundary conditions to determine friction and diffusiophoretic
force that appear in the equation of motion for the colloid average
velocity,

M
d
dt

Vc = Fd − ζtVc,

where the translational friction coefficient is

ζt = 6πηRJ
(1 + 2b/RJ)
(1 + 3b/RJ)

and the diffusiophoretic force is

Fd =
6πηRJ

(1 + 3b/RJ)
βLd

vγ

λs
∇r∥μγ

s,

where b = (η − βLg
vv)/λs and the overline denotes the average over

the sphere’s surface. The correlation function expressions for the slip
coefficient βLs

vv = λs, the diffusiophoretic coupling βLd
vγ, and βLg

vv

are given in Eqs. (43)–(45), respectively.

X. DISCUSSION AND CONCLUSIONS
The general expressions for the transport coefficients

L(ℓℓ
′
)

aa′ (r, r′) in Eq. (23) are nonlocal functions of the spatial coor-
dinates r and r′ dependent on the choice of the coarse-graining
function Δ(r) that smooths over short spatial variations of length
scale ℓint. The coarse-graining procedure is necessary to define the
set of hydrodynamic fields whose evolution is slow compared to
microscopic time scales. In turn, the set of slow density fields A(r)
determines the form of the dissipative flux j(ℓ)a (r) that appears
in the transport coefficients and, consequently, the form of the
coupling of the hydrodynamic densities. For example, as has
been noted previously,35 if the set of slow variables includes the
microscopic number density Nm(r), then one finds that j (0)v (r) = 0
and the slip coefficient, λs = 0. However, including short-length
scale variations in the density results in the coupling of the velocity
field to rapid motions of the average density field n(r, t), which
evolves on a molecular time scale. Under these circumstances, the
equations of motion of the velocity and density fields are nonlocal,
both spatially and temporally. The coarse-graining procedure, or a
restriction in the Fourier components of the transformed densities,
is a minimal requirement to obtain Markovian equations of motion.

This requirement precludes the possibility of constructing a Marko-
vian dynamic density functional theory. Nonetheless, the spatial
dependence of both the bulk and surface transport coefficients
simplifies in the Navier–Stokes limit, in which all terms of order ϵΔ
are dropped in their evaluation.

The precise nature of the symmetries of the transport coef-
ficients in the general hydrodynamic equations for the fluid
fields, Eqs. (24a)–(24c), depends on the microscopic details of the
solvent–colloid interaction potential. For example, if each type of
solvent particle interacts with all sites on the colloid with the same
potential, then any inhomogeneity in the concentration field of the
reactive species produced by the asymmetric catalytic activity on
the surface of the Janus particle does not change the interaction
energy. Consequently, as was assumed in Sec. VIII, the transport
coefficients are axisymmetric around the normal axis ẑ and second-
rank tensors, such as the surface friction tensor L(00)

vv , have two
non-zero components, Lz,z

vv = ẑ ⋅ L(00)
vv ⋅ ẑ and λs = L∥,∥vv = 1∥ ⋅ L(00)

vv ⋅
1∥, and a third rank tensor L(10)

vv with a symmetric microscopic
stress tensor has three non-zero components: L∥∥,zvv , L∥z,∥

vv , and Lzz,z
vv .

In the general case in which the reactive species interact differ-
ently with sites on opposing hemispheres, the surface friction tensor
and the coupling tensor L(10)

vv have 9 and 27 components, respec-
tively.38 However, in the dilute solution limit, nγ(r, t)≪ n(r, t),
the non-isotropic components of the tensors are expected to be
small, provided the solvent–site interaction potential is the same for
all sites.

Generally, the local equilibrium density ρ0
L(t) is neither even

nor odd under time-reversal due to its dependence on the velocity
field, v(r, t). Consequently, the non-equilibrium transport coeffi-
cients do not obey the Onsager reciprocal relations that hold in
equilibrium,41,42

L(ℓℓ
′
)

aa′ (r, r′) = ηaηa′L
(ℓ′ℓ)
a′a (r

′, r), (56)

where ηa = ±1 is the signature of a under time-reversal. However,
the relations do hold to the Navier–Stokes order in the hydrody-
namic equations. Neglecting gradients of the hydrodynamic fields,
the local equilibrium density ρ0

L(r, t) can be approximated in ensem-
ble averages of densities in the region r by the homogeneous density
ρH(r, t) = exp{A ⋅ ϕA(r, t)}/ZH(r, t), where ZH(r, t) ensures nor-
malization, in which the conjugate fields ϕA(r, t) are fixed and
uniform. For this density, we may write A ⋅ ϕA(r, t) = −βE‡(t)
+ βμS(r, t)N + βμ̃γ(r, t)Nγ, where the energy is expressed in terms of
the relative momentum p‡

i = pi −mv(ri, t). The Liouville operator
for the fluid fields in the presence of the fixed colloid can be written
as iL0 = iL‡

0 +∑i v(ri, t) ⋅∇ri = iL‡
0 + iLv , where iL‡

0 is the Liou-
ville operator with the momenta pi replaced by the relative momenta
p‡

i , and the evolution operator UA(τ) = exp{QA(t)iL0τ} expanded
to get

UA(τ) = U+A (τ) + ∫
τ

0
dτ′ U+A (τ − τ′)QA(t)iLvU+A (τ′) + ⋅ ⋅ ⋅ ,

(57)
where U+A (τ) = exp{QA(t)iL‡

0τ}. Since the projected dynamics has
no slow time dependence (ignoring the pronounced mode-coupling
effects observed in non-equilibrium systems43,44), time correlation
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functions of the form ⟨[U+A (τ)j(r)] j(r′)⟩
t

vanish for τ ≫ τmic,
which implies that

⟨[UA(τ)j(r)] j(r′)⟩
t
= ⟨[U+A (τ)j(r)] j(r′)⟩

H
− v(r, t)τmic

⋅ ∇r⟨[U+A (τ)j(r)] j(r′)⟩
H
+ ⋅ ⋅ ⋅

= ⟨[U+A (τ)j(r)] j(r′)⟩
H
+O(v(r, t)τmic/ℓΔ),

where terms of order τmic∇rv(r, t) have been dropped. The corre-
lation function ⟨[U+A (τ)j(r)] j(r′)⟩

H
is independent of the velocity

field v(r, t) in the homogeneous ensemble30 since the integration
over the momenta pi in the ensemble average can be replaced by
an integration over the relative momenta p‡

i . In this limit, the trans-
port coefficients at position r can be evaluated in an equilibrium-like
ensemble with the chemical potentials fixed at their values at posi-
tion r and time t. Since the homogeneous density ρH(r, t) obeys
iL‡

0ρH(r, t) = 0 and is invariant under the time inversion oper-
ator T G(ri, p‡

i , t) = G(ri,−p‡
i ,−t), the transport coefficients obey

Eq. (56).
Our development of the surface hydrodynamic equations holds

for any choice of the spherical dividing surface at z0 between the col-
loid and the fluid. As is the case in the equilibrium thermodynamics
of surfaces,45–48 the value of z0 and, thus, the excess surface densities
as(r, t), can be chosen in a number of different ways. Nonetheless,
to derive boundary conditions for the bulk densities in the absence
of the colloid, the excess densities must be defined as the differ-
ence between the true hydrodynamic fields, a(r, t), and the bulk
fields, a+(r, t). The validity of replacing the surface hydrodynamics
by a boundary condition applied to the bulk hydrodynamic equa-
tions depends on the choice of z0 since the required vanishing of
the surface flow terms that appear in Σs

a in Eqs. (49), (51), and
(53) depend on the value of z0. For z0 sufficiently far from the col-
loid surface, at least several times the interaction length ℓint of the
solvent–colloid interactions, the surface hydrodynamic equations
should have a form analogous to the bulk equations, in which case
the sink terms are negligible. Numerical simulations of liquid sys-
tems near walls confirm that the thickness of the interface should
be sufficient to establish interfacial hydrodynamic behavior38 and
locate the interface at microscopic distances from the wall.49

We have assumed that the fluid is unbounded and have not
discussed the behavior of the hydrodynamic fields at the physical
boundaries of the system. Although this may seem like an oversim-
plification, in many experimental studies of isolated Janus motors
in finite systems of macroscopic size,50 the motors remain far from
the boundaries. A motor of micron size has a typical active speed
on the order of 3 μm/s and a long-time diffusion coefficient of
De ∼ 2 μm2/s. If a chemostat is applied to the system by feeding in
reactants in a circular microfluidic chamber of diameter 650 μm, as
is done in Ref. 50, a motor initially at the center of the chamber
will take on the order of 105 s to diffuse to and interact with the
system’s outer boundaries. For a motor near the feed source, the dis-
tance dependence of the motor to the boundary cannot be neglected,
and the hydrodynamic fluid fields are no longer functions of their
position relative to the colloid center alone. To describe the effect of
external boundaries, a microscopic model for the interactions that
confine or feed fluid particles into the system must be specified,
which is important for channel geometries and systems maintained

out of equilibrium by concentration gradients at the boundaries. The
resulting equations for the colloid and fluid densities will have a form
similar to those presented in Sec. VII A and include additional terms
that account for the coupling of the wall force to the fluid veloc-
ity. Following the procedures outlined in Sec. VII B, hydrodynamic
equations for the dynamics of the fluid densities in the surface layer
near the wall can be derived, and boundary conditions at the walls
can be extracted from these expressions.

The analysis presented here is easily generalized to non-
isothermal systems where the internal energy density couples to
the velocity and concentration fields, allowing for thermophoretic
effects.51–53 The additional terms in the hydrodynamic equations
arising from the internal energy density introduce an additional
boundary condition26,51,54 on the local inverse temperature β(r, t)
= (kBT(r, t))−1 at z0. Such considerations will be important if the
catalytic conversion of reactants and products is either endother-
mic or exothermic or if external temperature gradients maintain the
system out of equilibrium.
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APPENDIX A: INTERACTION POTENTIALS
AND DYNAMICS

The microscopic model is based on that introduced in the
molecular derivation of the Langevin equation for an active col-
loid,24 where further details can be found. It is simplified to describe
a Janus particle instead of a general active colloid.

The structureless solvent molecules have phase space coor-
dinates, xNS = (x1, x2, . . . , xNs) = (rNS , pNS). The reactive species
are made from na chemically bound atoms with masses {mk∣k
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= 1, 2, . . . , na} and total mass m. The phase space coordinates of
molecule i are denoted by xna

i = (x(1)i, x(2)i, . . . , x(na)i) = (r
na
i , pna

i ),
while those for all NR reactive molecules are xNR

m = (rNR
m , pNR

m ). For
the entire fluid, we have x = {xNR

m , xNS}.
The Hamiltonian for the system is

H = P2

2M
+ Krot +

N

∑
i=1

ΘS
i

p2
i

2m
+

N

∑
i=1

ΘR
i Hmi

+Uf(rNS , rNR
m ) +UI(R, θ, rNS , rNR

m ),
= K +H0, (A1)

where the Hamiltonian for reactive molecule i is

Hmi =
na

∑
k=1

p2
(k)i

2mk
+ Vm(rna

i )

with Vm(rna
i ) the potential function for the chemically bonded

nuclei in this molecule. Interactions among fluid particles are
denoted by U f, while UI describes the interactions between the col-
loid and fluid particles. These interactions are assumed to have a
short range so that interactions of the fluid molecules with the col-
loidal sites and those with each other are zero beyond a cut-off
distance of ℓint. In Eq. (A1), the indicator functions Θν

i , where Θν
i = 1

if molecule i is species ν and Θν
i = 0 otherwise with ν ∈ {S, R}, restrict

the sums over fluid particles. The Hamiltonian for the fluid in the
presence of a fixed colloid can be expressed in terms of the particle
energies as

H0 =
N

∑
i=1
(ΘS

i
p2

i

2m
+ΘR

i Hmi +Ufi +UIi) ≡
N

∑
i=1

ei,

where Uf = ∑N
i=1 Ufi and UI = ∑N

i=1 UIi = ∑ns
α=1 Uα

I , and in the last
equality we have written UI as sum over sites.

The Liouville operator for the colloid iLc is

iLc =
P
M
⋅∇R + F ⋅∇P + θ̇ ⋅∇θ + T ⋅∇L,

where the force on the colloid is given by Ṗ = F = ∑α Fα, where
the contribution Fα = −∇RUα

I is due to fluid interactions Uα
I with

site α, and the torque on the colloid is L̇ = T = ∑α Tα, where Tα

= Sα(R) ∧ Fα. Reference 24 gives additional information on the rigid
body dynamics.

The Liouvillian for fluid in the presence of the fixed colloid is

iL0 =
N

∑
i=1

ΘS
i (

pi
m
⋅∇ri + Fi ⋅∇pi

)

+
N

∑
i=1

ΘR
i

na

∑
k=1
(

p(k)i
mk
⋅∇r(k)i + F(k)i ⋅∇p(k)i

),

where Fi = −∇ri(Ufi +UIi) and F(k)i = −∇r(k)i(UIi + Vmi) are forces
on solvent particle i and atom k in reactive molecule i, respec-
tively. When an external force is present, the Liouvillian may be
supplemented by an additional contribution, iLext = Fext ⋅ ∇P.

APPENDIX B: FLUXES OF COARSE-GRAINED FIELDS

The expressions for the fluxes defined in Eq. (4) are as follows:
The fluxes of the species densities are

JR(r) =
N

∑
i=1

ΘR
i ξ̇iδ(ξi − ξ‡)Δ(ri − r),

jγ(r) =
N

∑
i=1

θγ
i (ξi)m−1piΔ(ri − r).

The quantities that enter the fluxes of the other local densities
are the fluid stress tensor, τ(r),

τ(r) =
N

∑
i=1

⎡⎢⎢⎢⎢⎣

pipi
m
− 1

2

N

∑
j≠i

rij∇ri Uf

⎤⎥⎥⎥⎥⎦
Δ(ri − r), (B1)

written in the small gradient approximation where ℓint/ℓΔ ≪ 1, and
the local force on the fluid due to interactions with the colloid,

Ff(r) = −
N

∑
i=1
∇ri UIΔ(ri − r) =∑

α
Fα

f (r).

The total energy density E(r) flux involves

JE(r) = (V ⋅ F + ω ⋅ T)δ(r − R) +∑
α

Fα
f (r) ⋅ (V + ω ∧ Sα(R)),

je(r) = VKδ(r − R) +
N

∑
i=1

⎡⎢⎢⎢⎢⎣

pi
m

ei −
1

2m∑j≠i
rji∇ri Uf ⋅ pi

⎤⎥⎥⎥⎥⎦
× Δ(ri − r).

Here and elsewhere, we omit explicitly writing the energy density
dependence on colloid variables for simplicity.

APPENDIX C: COARSE-GRAINED ϕ FIELDS

The conditions that lead to Eq. (8) are described below. To eval-
uate the term A(r) ∗ ϕA(r, t) that enters the local non-equilibrium
density, it is sufficient to consider one contribution, say, gN(r)
∗ ϕv(r, t) = gN(r) ∗ βv(r, t). We then have

gN(r)∗βv(r, t) =∑
i

pi ⋅ ∫ dr βv(r, t)Δ(ri − r)

≡∑
i

pi ⋅ βv(ri, t).

In the small gradient approximation where ϵΔ = ℓint/ℓΔ ≪ 1, we note
that since ϕ is the functional of the average coarse-grained densities
a(r, t), ℓΔ∇rϕ(r, t) ∼ ϵΔ, and we can write

ϕ(r, t) = ∫ dr′ ϕ(r′, t)Δ(r − r′)

= ∫ dr′ Δ(r − r′)[ϕ(r, t) + (r′ − r) ⋅∇rϕ(r, t)

+ 1
2
(r′ − r)(r′ − r) : ∇r∇rϕ(r, t) + ⋅ ⋅ ⋅ ].

For a spherically symmetric coarse-graining function, such as a
normal distribution with zero mean and covariance ℓ2

Δ1, we find
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the coarse-grained fields ϕ̃ coincide with the fields ϕ to second
order in ϵΔ,

ϕ(r, t) = ϕ(r, t) + 1
2
ℓ2

Δ∇2
r ϕ(r,t) = ϕ(r, t) +O(ϵ2

Δ).

It follows that

⟨pi⟩t = mv(ri, t) = mv(ri, t) +O(ϵ2
Δ),

and, hence, by Taylor expansion, we find

⟨gN(r)⟩t = m⟨∑
i
v(ri, t)Δ(r − ri)⟩

t

= mv(r, t)n(r, t) +∇rv(r, t) ⋅ n(1)(r, t),

where

n(1)(r, t) = ⟨∑
i
(ri − r)Δ(r − ri)⟩

t

= −ℓ2
Δ∇rn(r, t) ∼ O(ϵΔ).

Thus, we have ⟨gN(r)⟩t = mv(r, t)n(r, t) +O(ϵ2
Δ).

More generally, one can show that ϕ(r, t) = ϕ(r, t) +O(ϵ2
Δ);

thus, to terms of order ϵ2
Δ we obtain Eq. (8) in the text.

APPENDIX D: SLIP VELOCITY

We show that the last term in Eq. (17) involving Fα
f,t(r′),

Z =∑
α

Fα
f,t(r′)∗ (v(r′, t) −Vc − ωc ∧ Sα(R)),

can be expressed in terms of the slip velocity. The force Fα
f,t can

be written as the sum of contributions from each fluid particle i,
Fα

f,t = ∑N
i=1 Fα

fi,t(r′). Figure 2 shows a small portion of the surface of
a large colloid with radius RJ . In this figure, we see that particle i at
position ri at field point r′ interacts with a small set of surface sites
{αi} centered at site αi closest to it. Therefore, the sum of Fα

fi,t on α
can be restricted to sites in this set; hence,

Z ≈
N

∑
i=1
∑

α∈{αi}

Fα
fi,t(r′)∗ (v(r′, t) −Vc − ωc ∧ Sα(R)).

FIG. 2. Schematic diagram of a small portion of the surface of a colloid at position
R with a large radius showing a fluid particle i at position r i corresponding to the
field point r′. This particle i at r ic = r i − R interacts with the set {αi} of black
sites centered at site αi located Sαi (R) relative to the center of the colloid. The
dashed line at a distance δ from the surface sites denotes the region where the
interaction potential is non-zero. The dashed circle around the particle i denotes
the coarse-graining domain.

Since the set {αi} subtends a small surface angle, we may take
Sα(R) ≈ Sαi(R) = r′ − R +O(δ/RJ), where δ ∼ ℓint is the thickness of
the boundary layer. We observe that∑N

i=1 (∑α ∈{αi}
Fα

fi,t)Δ(ri − r′) ≈
Ff,t(r′) since the coarse-graining length is larger than the interaction
range of the potentials. We obtain

Z ≈ Ff,t(r′)∗ (v(r′, t) −Vc − ω ∧ (r′ − R))
≡ Ff,t(r′)∗vsl(r′, t))

with ∣ r′ − R ∣= RJ .

APPENDIX E: FLUXES THAT ENTER
HYDRODYNAMIC EQUATIONS

Writing Eq. (21), we have

∂ta(r, t)= Ea(r, t) − L(00)
aa′ (r, r′, t)∗ϕa′(r

′, t) − L(01)
aa′ (r, r′, t)

∗∇r′ϕa′(r
′, t) +∇r ⋅ L(10)

aa′ (r, r′, t)∗ϕa′(r
′, t)

+∇r ⋅ L(11)
aa′ (r, r′, t)∗∇r′ϕa′(r

′, t). (E1)

The expressions for the ϕa fields are given in Eq. (8), with the veloc-
ity field replaced by the slip velocity field. Using these results, we
can now write explicit expressions for L(ℓ0)

aa′ ∗ϕa′ and L(ℓ1)
aa′ ∗∇r′ϕa′

terms in Eq. (E1) that were used to obtain the hydrodynamic
Eqs. (24a)–(24c),

L(ℓ0)
aa′ ∗ϕa′ = βL(ℓ0)

av ∗vsl + βL(ℓ0)
aR ∗ A,

L(ℓ1)
aa′ ∗∇r′ϕa′ = βL(ℓ1)

av ∗∇r′v + βL(ℓ1)
aγ ∗∇r′ μ̃γ,

(E2)

where we have not displayed the dependence of the transport
coefficients and thermodynamic fields on r′ and t, and

βL(ℓ0)
av = ∫

∞

0
dτ ⟨j(ℓ)a,t (r, τ)Ff,t(r′)⟩

t
,

βL(ℓ1)
av = ∫

∞

0
dτ ⟨j(ℓ)a,t (r, τ)τf,t(r′)⟩

t
,

βL(ℓ0)
aR = ∫

∞

0
dτ ⟨j(ℓ)a,t (r, τ)JR,t(r′)⟩t ,

βL(ℓ1)
aγ = ∫

∞

0
dτ ⟨j(ℓ)a,t (r, τ)jγ,t(r

′)⟩
t
.

The Euler terms can be computed from the local equilibrium
average of the fluxes, and to order ϵ2

Δ are

Eγ(r, t) = −∇r ⋅ (nγ(r, t)v(r, t)) − νγ⟨JR(r)⟩t ,
En(r, t) = −∇r ⋅ (n(r, t)v(r, t),
Eg(r, t) = −∇r ⋅ ⟨τ(r)⟩t + ⟨Ff(r)⟩t

= −∇r ⋅ (mn(r, t)v(r, t)v(r, t))
−∇r ⋅ ⟨τ‡(r)⟩t + ⟨Ff(r)⟩t.

The stress tensor τ‡(r) has an expression similar to that in Eq. (B1)
with pi replaced by p‡

i = pi −mv(ri, t). In Appendix G, we show that
⟨JR(r)⟩t is the reactive contribution proportional to the fluid velocity
and may be neglected in most circumstances.
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The full expressions for the components of the J (0)A (r, t) and
J (1)A (r, t) fluxes are

J (0)γ = −βL(00)
γR ∗ A − βL(00)

γv ∗vsl − βL(01)
γγ′ ∗∇r′ μ̃γ′

− βL(01)
γv ∗∇r′v,

J (0)ρ = 0,

J (0)v = −βL(00)
vR ∗ A − βL(00)

vv ∗vsl − βL(01)
vγ′ ∗∇r′ μ̃γ′

− βL(01)
vv ∗∇r′v

and

J(1)γ = −βL(10)
γR ∗ A − βL(10)

γv ∗vsl − βL(11)
γγ′ ∗∇r′ μ̃γ′

− βL(11)
γv ∗∇r′v,

J(1)ρ = 0,

J(1)v = −βL(10)
vR ∗ A − βL(10)

vv ∗vsl − βL(11)
vγ′ ∗∇r′ μ̃γ′

− βL(11)
vv,t ∗∇r′v,

where the spatial and time dependence of all quantities has been
omitted for notational simplicity.

The full expressions for the fluid hydrodynamic equations
in the presence of a moving active Janus colloid given in
Eqs. (24a)–(24c) follow from these results.

APPENDIX F: SURFACE EQUATIONS AND FLUXES

We now use several physically motivated approximations to
express the fluxes in Eq. (33) in a more explicit and tractable form.
The J (0)a0 (r∥, t) fluxes exist only in the boundary layer and can be
written as

J (0)a0 (r∥, t) = −∫ dz [L(00)
aa′ (r, r′, t)∗ϕa′(r

′, t)

+ L(01)
aa′ (r, r′, t)∗∇r′ϕa′(r

′, t)]

= −∫ dz [L(00)
aa′ (r, t) ⋅ ϕa′(r, t)

+ L(01)
aa′ (r, t) ⋅∇rϕa′(r, t)].

The second equality follows since the correlation functions in
L(0ℓ

′
)

aa′ (r, r′, t) vanish for ∣r − r′∣ > ξmic; thus, r′ is also restricted to
lie in this spatial region. We then use the fact that the conjugate
ϕa(r

′, t) fields are smoothly varying spatial functions, so they and
their derivatives may be expanded in a Taylor series around the point
r. Consequently,

j (0)a′ ,t (r
′)∗ϕa′(r

′, t) = j (0)a′ ,t ⋅ ϕa′(r, t) + ⋅ ⋅ ⋅ ,

j(1)a′ ,t (r
′)∗∇r′ϕa′(r

′, t) = j(1)a′ ,t ⋅∇rϕa′(r, t) + ⋅ ⋅ ⋅ ,

where the j(ℓ)a,t = ∫dr′ j(ℓ)a,t (r′) are the integrated microscopic fluxes.
Finally, since r is confined to the boundary layer, and again using the

smoothness of the coarse-grained ϕa′(r) fields, we can expand them
in a Taylor series about z0,

ϕa′(z, r∥) = ϕa′(z0, r∥) + (z − z0)∂zϕa′(z, r∥)∣z0 + ⋅ ⋅ ⋅ .

Taking z0 to be at the outer part of the boundary layer where the ϕa
fields closely approximate their bulk values, ϕ+a , we obtain

J (0)a (r, t) ≈ −[L(00)
aa′ (r∥, t) ⋅ ϕ+a′(z0, r∥, t) + L(01)

aa′ (r∥, t)

⋅∇r∥ϕ
+

a′(z0, r∥, t)]

with transport coefficients

L(ℓℓ
′
)

aa′ (r∥, t) = ∫
∞

0
dτ ⟨ j(ℓ)a,t (r∥, τ)j(ℓ

′
)

a′ ,t ⟩t ,

where j(ℓ)a,t (r∥, τ) = ∫dz j(ℓ)a,t (z, r∥, τ).
Using Eqs. (22) and (32) the J (1)sa0 (z, r∥, t) fluxes are given by

J (1)sa0 (r∥, t) = −∫ dz [L(10)
aa′ (r, r′, t)∗ϕa′(r

′, t)

+ L(11)
aa′ (r, r′, t)∗∇r′ϕa′(r

′, t)

− θ(z − z0)L+aa′(r, r′, t)∗∇r′ϕ
+

a′(r
′, t)]. (F1)

The first term in this equation can be evaluated as above to give

∫ dz L(10)
aa′ (r, r′, t)∗ϕa′(r

′, t) ≈ L10)
aa′ (r∥, t) ⋅ ϕ+a′(z0, r∥, t),

while the second term requires further analysis since there are
discontinuities in z that prevent straightforward localization.

For z ≫ z0, the transport coefficient L(11)
aa′ (z, r∥, r′, t) that

appears in the surface flux is equal to its value in the bulk,
L+aa′(r, r′, t), and hence this contribution to the surface flux
J (1)sa (r, t) is non-zero only in the boundary layer. To evalu-
ate it, we write the ϕa fields in terms of their surface and bulk
contributions, ϕa(r, t) = ϕs

a(r, t) + θ(z − z0)ϕ+a (r, t), so that
∇rϕa(r, t) = ∇rϕs

a(r, t) + ẑδ(z − z0)ϕ+a (r, t) + θ(z − z0)∇rϕ+a (r, t).
Next, we evaluate the surface terms in the lowest order multipole
approximation, ϕs

a(r, t) ≈ δ(z − z0)ϕs
a0(r∥, t). After localizing in r∥,

then have

∫ dz [L(11)
aa′ (r, r′, t)∗∇r′ϕa′(r

′, t)

− θ(z − z0)L+aa′(r, r′, t)∗∇r′ϕ
+

a′(r
′, t)]

≈ L(11)
aa′ (r∥, z0, t) ⋅ (∇r∥ϕa′0(r

′
∥, t) + ẑϕ+a′(z0, r∥, t))

+ Lθ
aa′(r∥, t) ⋅∇r∥ϕ

+

a′(z0, r∥, t) (F2)

with

Lθ
aa′(r∥, t) = ∫ dz′ [L(11)

aa′ (r∥, z′, t)θ(z′ − z0)

− θ(z − z0)L+aa′(r∥, z′, t)]

and

L(ℓℓ
′
)

aa′ (r∥, z0, t) = ∫
∞

0
dτ ⟨ j(ℓ)a,t (r∥, τ)j(ℓ

′
)

a′ ,t (z0)⟩t.
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In writing Eq. (F2), we dropped higher order terms involving z
derivatives of the fluxes. With these results, we can write

J (1)sa0 (r∥, t) ≈ L10)
aa′ (r∥, t) ⋅ ϕ+a′(z0, r∥, t) + L(11)

aa′ (r∥, z0, t)
⋅ (∇r∥ϕ

s
a′0(r

′
∥, t) + ẑϕ+a′(z0, r∥, t))

+ Lθ
aa′(r∥, t) ⋅∇r∥ϕ

+

a′(z0, r∥, t).

The final simplification is the evaluation of the correlation func-
tions in the homogeneous ensemble in a parallel direction. The Janus
colloid surface has two distinct catalytic and noncatalytic hemi-
spheres, which suggests that the use of the homogeneous ensemble
should be carried out separately on the two hemispheres. While this
can be done, it will lead to local surface transport coefficients that
depend on the hemisphere. This may be necessary in some instances
but is not usually implemented in standard boundary conditions. To
this end, we assume that the interactions of the fluid species with
the colloid beads do not depend on the bead identity so that a par-
allel homogeneous ensemble can be assumed for the entire colloid
surface. The exceptions are the reactive terms, since chemical reac-
tions occur only on the catalytic beads. Even in this case, we can
suppose that the entire colloid is catalytic to obtain reaction rate
coefficients per unit surface area and then restrict the reaction rate
to the catalytic hemisphere.

Taking this approach, the corresponding local equilibrium
density is analogous to that in Eq. (26) and is given by

ρH,∥(t) =
Πλ(Nλ!h3Nλ)−1eA⋅ϕA(z0 ,r∥ ,t)

Tr[Πλ(Nλ!h3Nλ)−1eA⋅ϕA(z0 ,r∥ ,t)]
.

The resulting expressions for the L(ℓℓ
′
)s

aa′ ,H surface coefficients, are

L(ℓℓ
′
)

aa′ ,H (r∥, t) = 1
A∫

∞

0
dτ ⟨j(ℓ)a,t (τ)j

(ℓ′)
a′ ,t ⟩H(r∥, t)

with similar expressions for other correlation functions.
The analysis above can be extended beyond the zeroth-order

multipoles of the surface excess densities.32 However, includ-
ing higher-order multipoles that couple to the dynamics of the
bulk hydrodynamic equations through boundary conditions leads
to a corresponding increase in the number of surface transport
coefficients, about which little is known.

APPENDIX G: REACTIVE FLUX ⟨JR(r)⟩t
The reactive contribution ⟨JR(r)⟩t in the first equation in (E2)

can be evaluated as follows: The time derivative of the species
variable for particle i is

θ̇γ
i (ξi(rna

i )) = ΘR
i

na

∑
k=1

p‡
(k)i

mk
⋅∇r(k)i Hγ(ξi(rna

i ))

+ΘR
i v(r, t) ⋅

na

∑
k=1
∇r(k)i Hγ(ξi(rna

i )).

On average, the first term vanishes so that the reactive flux is given
by

νγ⟨JR(r)⟩t = ⟨
N

∑
i=1

ΘR
i

na

∑
k=1
∇r(k)i Hγ(ξi(rna

i ))Δ(ric − r)⟩
t

⋅ v(r, t).

This contribution is proportional to the fluid velocity field v(r, t).
Its prefactor is nonzero only at the barrier top and is a fluid-velocity-
dependent term in the surface layer.

We now consider the computation of the dissipative reactive
flux contribution to J (0)γ0 (r∥, t) in Eq. (37). The projected reactive
flux that enters the reactive flux correlation function is

JD
R,t(r) = QA(t)JR(r) = JR(r) − ⟨JR(r)⟩t

− ⟨JR(r)Ã(r1)⟩t ∗ ⟨ÃÃ⟩−1
t (r1, r2)∗ Ã(r2), (G1)

where Ã(r) = A(r) − ⟨A(r)⟩t . As shown above, ⟨JR(r)⟩t is propor-
tional to v(r, t). Similarly, the Nγ, N, and EN components of A are
even in the momentum, and these contributions to Eq. (G1) are
also proportional to v(r, t). The exception is the gN component of
A. Dropping contributions proportional to v(r, t) in the projected
reactive flux for the reasons given above, we have

JD
R,t(r) = −

N

∑
i=1

ΘR
i

na

∑
k=1

p‡
(k)i

mk
⋅ (∇r(k)i ξi(rna

i ))δ(ξi(rna
i ) − ξ‡)

× Δ(ric − r) + ⟨
N

∑
i=1

ΘR
i

na

∑
k=1
(∇r(k)i ξi(rna

i ))

× δ(ξi(rna
i ) − ξ‡)Δ(ric − r)⟩

t
⋅ 1

m
g‡

N(r).

We require a more explicit expression for

LR(r∥, t) = 1
A∫

∞

0
dτ ⟨JD

R,t(τ)JD
R,t⟩H(r∥, t).

We make several approximations to obtain an estimate for this
transport property. The fluid velocity contributions to the dissipative
fluxes will be neglected, which should be valid for the low Reynolds
number conditions of interest. As discussed above, the projected
time evolution guarantees that the reactive flux correlation decays
to zero on long time scales, so that the infinite time integral is well-
behaved. If there is a time scale separation between the chemical
and other microscopic processes, the expression can be simplified
using unprojected dynamics, provided a plateau-value calculation
determines the rate coefficient. In this approximation, we can write

LR(r∥, t) ≈ 1
A∫

t ∗

0
dτ ⟨JD

R,t(τ)JD
R,t⟩H(r∥, t),

where the time integral of the reactive flux correlation will plateau
at a time t∗ such that tmic ≪ t∗ ≪ tchem and then decays slowly
to zero as t increases. The reaction rate coefficient may then
be estimated from the reactive flux correlation evolving by ordi-
nary dynamics, JD

R,t(τ) = exp{iL0τ}JD
R,t . Making use of the fact

that the reactive species are dilutely dispersed in the solution, the
definition θA

i (ξi) = ΘR
i H(ξ‡ − ξi), and its time derivative, and, given

the short time scale of passage from the barrier top, the replacement
ric(τ) ≈ ric, we can write this expression as

LR(r∥, t) = −Hc(r∥)
A

× ∫
t

0
dτ ⟨

N

∑
i=1

ΘR
i Ḣ(ξ‡ − ξi(τ))ξ̇iδ(ξ‡ − ξi)⟩

H

(r∥, t).
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The change from reactant to product (or vice versa) will not occur
unless the reactive molecule i is close to a catalytic site, say α.
Therefore, given that the particle is in the interaction zone, the vec-
tor distance of the parallel component of the center of a reactive
molecule from the site α, rα

i,∥ = ric,∥ − RJ Ŝ α(R), is restricted to lie
within the interaction zone of site α. Then r∥ is restricted to the
domain where the catalytic sites lie. The Heaviside function Hc(r∥)
accounts for this restriction. With this result in hand, we can write
the reactive flux in terms of the affinity A = μ̃B − μ̃A as

J (0)
γ0 (r∥, t) = −νγβLR

t (r∥, t) A(z0, r∥, t)

= νγH(r∥)(
LR(r∥, t)

neq
A

nA(z0, r∥, t)

− LR(r∥, t)
neq

B
nB(z0, r∥, t))

= νγH(r∥)(κ+(r∥, t)nA(z0, r∥, t)
− κ−(r∥, t)nB(z0, r∥, t)),

where the local chemical potentials μ̃γ have been approximated in
the dilute limit nγ ≪ n as

βμ̃γ(z0, r∥, t) = βμ̃eq
γ + (nγ(z0, r∥, t) − neq

γ )/neq
γ .

The last equality defines the local rate coefficients κ± and provides
a term in the reaction-diffusion equation that leads to the radiation
boundary conditions Eq. (54c) on the species density fields,

R(z0, r∥, t) = H(r∥)(κ+(r∥, t)nA(z0, r∥, t)
− κ−(r∥, t)nB(z0, r∥, t)).
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