Classical Statistical Mechanics: Part 2

January 23, 2013

Variational approach to equilibrium densities

Hypothesis: functional form of equilibrium distribution is that which
maximizes the statistical entropy.

— Statistical entropy viewed as a functional of f(x(™).

— Form must satisfy basic properties of a probability density: nor-
malized.

Microcanonical Ensemble

All systems in ensemble have an energy in the energy shell [E, E+0E].

Task is to maximize
S=—k / dx™ f(x"™)In (BN NIf(x™M)) .
E<Hx(N))<E+JE
subject to the constraint

!/
/ dx™) f(xM)) = / dx™ f(x™M)) = 1.
E<H(xMN)<E+JE

Procedure:
5(S+al) = / dx™ [k f(x"™) In (NIEN f(x™M)) + apf(x™N)] =0

= / dx™ [—kIn (N1E*N f(x™)) — k + ao) 6 f(x™)) = 0.



— Since the variation is arbitrary:
—kIn (NIB*N f(x™M)) =k +ao=0
SO

kln (NIR*N f(xN))) = ap — k
NIEN f(x)) = go/k=1 — ¢,
— Hence, as desired, we get:

(N)
Fx = C forE<'H(x )< E+0FE
0 otherwise

where C' is a constant.

— From normalization, C' = 1/4).

It is cumbersome to work with integrals over restricted energy shells.
Can we relax this restriction and obtain ensemble averages that agree
with time averages (and each other)?

Canonical Ensemble

Remove restriction of defining probability only on constant energy hy-
persurface.

Allow total energy of systems in ensemble to vary (hopefully) narrowly
around a fixed average value.

Task now is to maximize
S =—k / dx™ f(x")In (BN N1 f(x™))
subject to the constraints
/dX(N) fMy =1

ol / ™) F (xN)) £ (M)



e Procedure:
5/dX(N) [~k f(x™)In (N1R*N fF(x™) + ap f(x™)) + apH(xMN) f(x™)] =0

So
ap +apH(EM) —kIn (NN f(x™)) =k = 0

1 o} a
fxM)Y) = NN OXP {?0 -1+ ?EH(X(N))}

— What are the Lagrange multipliers?

1. From normalization:

/dx(N) fxM)y =1 = expiao/k — 1} dx™) exp{%H(x(m)}

NIRh3N

1 o
exp{l — ap/k} = W/dx(m exp{?EH(X(N))}

2. From the thermodynamic relation:

()
oFE v,norm T

— Note from above that since kIn(N!R3N f(x(M)) = agH(x™) +
ag — k, we have

S = —/dx(N) FEN (apH (M) + ag — k)
= (k?—O[())—OéEE.

— It is now clear that:

(85) 1 N
_ = — = —Qpg
oL v,norm T

1
O = _T

— Thus TS =T(k —ag) + Eor E—TS =T(ag — k).



— E — TS = A, the Helmholtz free energy, so
T(Oéo - k) =A
and exp{ag/k — 1} = exp{BA} where 5 = 1/(kT).

e We conclude that for the canonical ensemble:

FEM) = < exp{A(A — H(x™)))

e We define the partition function Qn (T, V') by

AN(TV) = s [ A exp{=H ™)} = exp{~54}
exp{—BH (x™)
F) = S expUAA — HO)) = e ST,

e Relation A = —kT'InQn(T,V) gives thermodynamic connection: For
example

1. The pressure is:

o 8A o alHQN
r= (W>T‘”( oV >

2. The chemical potential is:

3. The energy is:

— xp{SA
E = % dx™ H(x™) exp{—BH(x™M)}
A 0
UL 55 | B exp{=BH )

1 8QN . 8111QN
Qv B o -




e We have obtained two different probability densities corresponding to
different “ensembles”.

— Microcanonical ensemble: vanishing probability to find a system
in ensemble with energy function (Hamiltonian) different from av-
erage energy.

— Canonical ensemble: Hamiltonian can differ among states but
states must be weighted so that the ensemble average of Hamilto-
nian corresponds to the average energy.

e What is the correspondence between averages in the different ensem-
bles?

e We can write the canonical partition function as:

1

Q(TV) = g [ i exp(-pH))

= /OO dENJLSN /dx(N) exp{—BH (x")N5(F — H(xM))
0 !

> 1
= /0 dE exp{—BE} (W / dx\"V) §E — H(X(N)))

QuT.V) = /0 "B exp{—BE}N(E)

N(E)
N!h3N
= density of unique states at energy E (microcanonical partition function).

=
=
I

— Partition function Qn(8,V) is the Laplace transform of density
of unique states.

— @y is like a generating function for N(F).

e Recall the definition of the statistical entropy:
Q(E,§E,N,V)
NIp3N
~ kIn(N(E)0E)=kInN(E)+C

S(E) = klnW = k;ln(

for small §F where Q ~ N(E)JE.



e Thus
NE) ~exp(SEV}  Qu(T.V)~ [ dE ewpl-a(B~T5)
— Typically, N(FE) is a rapidly increasing function of £
N(E) ~ f (E/N,V/N) exp{Ng(E/n,V/N)}  S(E) ~ Nkg(E/N,V/N).
Thermodynamic Stability

e Define P(E)dE to be the probability of finding a system with energy
E in the canonical ensemble.

P(E) = (5(E — H(x™))) = /dX(N) J(E — H(x™N)) f(x™)) = exp{BA} exp{—BE} N(E)
e From normalization, it follows that
exp{—fA} = /000 dE exp{—BE}N(E).

o At low temperatures, how much more likely are we to find a system
with £ = E1 than £ = E27

P(El) . eﬁA 6_'8E1 N(El)
P(E,)  ePAeBE2 N(E),)
_sap N(EY)
BAE__ = AE=F,—F

P(Ey) _gap-r _
PlE,) ~ e AAE-TAS) — AS = S(Ey) — S(E,)

— The density of states is important (entropic factor).
— Probabilities determined by balance between AE and AS.
e Consider a bio-molecule (like a polymer chain): Each phase point cor-

responds to a particular configuration (and set of momenta) of the
molecule.



— Suppose there are two different types of configuration I'; and T'y:
represented by basins in configurational space.

— Define conditional probabilities partioning configurational space:

P(E) =Y P(EID)

eﬁAefﬁE

PEIT) = [ ax™ 68— Hx ")) = S

/ dx™) §(F — H(x™M))

= e PEN(E|D)

6(E — H(x™)
N(E|l'Y) = /r dx™) ( N!hS\f ) = # of unique states in basin I';.
1

e Thus
P(E\TY) sapN(ELT)

e
P(Ey|T,) N(E|E)
gives the relative stability of the conformations at the given energies.
Relationship between ensemble averages

e How likely are we to observe a system in the canonical ensemble with
an energy very different from the average energy E = (H(x(M))?

2

Pr(|H(x™) = E| > AE) < —£

T E
e Now the variance in the energy is:
?InQy OF
2 N)\2 N\ 2 2
and hence
kT?C,

(MY _E| > \E
Pr(|[Hx"™))—E| > XE) < o



e We will show that for an ideal gas system, E = 3/2NkT and hence
C, = 3/2Nk.

e Typically, E ~ N and C, ~ N.

— o _ kT?C, 1
Pr(|Hx™) - E| > AE) < %5 BT

— As N increases, it becomes less and less likely to observe a system
with energy very different from F,

(B(x™))canon = /dE P<E)<B(X(N))>micro at B~ <B(X(N))>micro at B (1+O(1/N)).

e P(E) is sharply-peaked around E = E: Can show (homework?)

P(E) ~ P(E) (2771(7%)1/26}(1){_%}

1/2

e Relative spread of energy op/E ~ N~



