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Variational approach to equilibrium densities

• Hypothesis: functional form of equilibrium distribution is that which
maximizes the statistical entropy.

– Statistical entropy viewed as a functional of f(x(N)).

– Form must satisfy basic properties of a probability density: nor-
malized.

Microcanonical Ensemble

• All systems in ensemble have an energy in the energy shell [E,E+δE].

• Task is to maximize

S = −k
∫
E<H(x(N))<E+δE

dx(N) f(x(N)) ln
(
h3NN !f(x(N))

)
.

subject to the constraint∫
E<H(x(N))<E+δE

dx(N) f(x(N)) ≡
∫ ′

dx(N)f(x(N)) = 1.

• Procedure:

δ (S + α01) =

∫ ′
dx(N)

[
−kf(x(N)) ln

(
N !h3Nf(x(N))

)
+ α0f(x(N))

]
= 0

=

∫ ′
dx(N)

[
−k ln

(
N !h3Nf(x(N))

)
− k + α0

]
δf(x(N)) = 0.
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– Since the variation is arbitrary:

−k ln
(
N !h3Nf(x(N))

)
− k + α0 = 0

so

k ln
(
N !h3Nf(x(N))

)
= α0 − k

N !h3Nf(x(N)) = eα0/k−1 = C̃.

– Hence, as desired, we get:

f(x(N)) =

{
C for E < H(x(N)) < E + δE
0 otherwise

where C is a constant.

– From normalization, C = 1/Ω.

• It is cumbersome to work with integrals over restricted energy shells.
Can we relax this restriction and obtain ensemble averages that agree
with time averages (and each other)?

Canonical Ensemble

• Remove restriction of defining probability only on constant energy hy-
persurface.

• Allow total energy of systems in ensemble to vary (hopefully) narrowly
around a fixed average value.

• Task now is to maximize

S = −k
∫
dx(N) f(x(N)) ln

(
h3NN !f(x(N))

)
.

subject to the constraints ∫
dx(N) f(x(N)) = 1

E =

∫
dx(N)H(x(N))f(x(N))



• Procedure:

δ

∫
dx(N)

[
−kf(x(N)) ln

(
N !h3Nf(x(N))

)
+ α0f(x(N)) + αEH(x(N))f(x(N))

]
= 0

So

α0 + αEH(x(N))− k ln
(
N !h3Nf(x(N))

)
− k = 0

f(x(N)) =
1

N !h3N
exp

{α0

k
− 1 +

αE
k
H(x(N))

}
– What are the Lagrange multipliers?

1. From normalization:∫
dx(N) f(x(N)) = 1 =

exp{α0/k − 1}
N !h3N

∫
dx(N) exp

{αE
k
H(x(N))

}
exp{1− α0/k} =

1

N !h3N

∫
dx(N) exp

{αE
k
H(x(N))

}
2. From the thermodynamic relation:(

∂S

∂E

)
V,norm

=
1

T

– Note from above that since k ln(N !h3Nf(x(N))) = αEH(x(N)) +
α0 − k, we have

S = −
∫
dx(N) f(x(N))

(
αEH(x(N)) + α0 − k

)
= (k − α0)− αEE.

– It is now clear that:(
∂S

∂E

)
V,norm

=
1

T
= −αE

αE = − 1

T
.

– Thus TS = T (k − α0) + E or E − TS = T (α0 − k).



– E − TS = A, the Helmholtz free energy, so

T (α0 − k) = A

and exp{α0/k − 1} = exp{βA} where β = 1/(kT ).

• We conclude that for the canonical ensemble:

f(x(N)) =
1

N !h3N
exp{β(A−H(x(N)))}

• We define the partition function QN(T, V ) by

QN(T, V ) =
1

N !h3N

∫
dx(N) exp{−βH(x(N))} = exp{−βA}

so

f(x(N)) =
1

N !h3N
exp{β(A−H(x(N)))} =

1

N !H3N

exp{−βH(x(N))}
QN(T, V )

.

• Relation A = −kT lnQN(T, V ) gives thermodynamic connection: For
example

1. The pressure is:

P = −
(
∂A

∂V

)
T

= kT

(
∂ lnQN

∂V

)
T

.

2. The chemical potential is:

µ =

(
∂A

∂N

)
T,V

3. The energy is:

E =
exp{βA}
N !h3N

∫
dx(N) H(x(N)) exp{−βH(x(N))}

=
exp{βA}
N !h3N

− ∂

∂β

∫
dx(N) exp{−βH(x(N))}

= − 1

QN

∂QN

∂β
= −∂ lnQN

∂β
.



• We have obtained two different probability densities corresponding to
different “ensembles”.

– Microcanonical ensemble: vanishing probability to find a system
in ensemble with energy function (Hamiltonian) different from av-
erage energy.

– Canonical ensemble: Hamiltonian can differ among states but
states must be weighted so that the ensemble average of Hamilto-
nian corresponds to the average energy.

• What is the correspondence between averages in the different ensem-
bles?

• We can write the canonical partition function as:

QN(T, V ) =
1

N !h3N

∫
dx(N) exp{−βH(x(N))}

=

∫ ∞
0

dE
1

N !h3N

∫
dx(N) exp{−βH(x(N))}δ(E −H(x(N)))

=

∫ ∞
0

dE exp{−βE}
(

1

N !h3N

∫
dx(N) δE −H(x(N))

)
QN(T, V ) =

∫ ∞
0

dE exp{−βE}N(E)

where

N(E) ≡ Ñ(E)

N !h3N

= density of unique states at energy E (microcanonical partition function).

– Partition function QN(β, V ) is the Laplace transform of density
of unique states.

– QN is like a generating function for N(E).

• Recall the definition of the statistical entropy:

S(E) = k lnW = k ln

(
Ω(E, δE,N, V )

N !h3N

)
≈ k ln(N(E)δE) = k lnN(E) + C

for small δE where Ω ≈ Ñ(E)δE.



• Thus

N(E) ∼ exp{S(E)/k} QN(T, V ) ∼
∫ ∞

0

dE exp{−β(E − TS)}

– Typically, N(E) is a rapidly increasing function of E

N(E) ∼ f (E/N, V/N) exp{Ng(E/n, V/N)} S(E) ∼ Nk g(E/N, V/N).

Thermodynamic Stability

• Define P (E)dE to be the probability of finding a system with energy
E in the canonical ensemble.

P (E) = 〈δ(E −H(x(N)))〉 =

∫
dx(N) δ(E −H(x(N)))f(x(N)) = exp{βA} exp{−βE}N(E)

• From normalization, it follows that

exp{−βA} =

∫ ∞
0

dE exp{−βE}N(E).

• At low temperatures, how much more likely are we to find a system
with E = E1 than E = E2?

P (E1)

P (E2)
=

eβA e−βE1 N(E1)

eβA e−βE2 N(E2)

= e−β∆EN(E1)

N(E2)
∆E ≡ E1 − E2

– Since S(E) ∼ k ln(N(E)),

P (E1)

P (E2)
= e−β(∆E−T∆S) ∆S ≡ S(E1)− S(E2)

– The density of states is important (entropic factor).

– Probabilities determined by balance between ∆E and ∆S.

• Consider a bio-molecule (like a polymer chain): Each phase point cor-
responds to a particular configuration (and set of momenta) of the
molecule.



– Suppose there are two different types of configuration Γ1 and Γ2:
represented by basins in configurational space.

– Define conditional probabilities partioning configurational space:

P (E) =
∑
i

P (E|Γi)

P (E|Γ1) =

∫
Γ1

dx(N) δ(E −H(x(N)))f(x(N)) =
eβAe−βE

N !h3N

∫
Γ1

dx(N) δ(E −H(x(N)))

= eβAe−βEN(E|Γ1)

N(E|Γ1) =

∫
Γ1

dx(N) δ(E −H(x(N)))

N !h3N
= # of unique states in basin Γ1.

• Thus

P (E1|Γ1)

P (E2|Γ2)
= e−β∆EN(E1|Γ1)

N(E|E2)

gives the relative stability of the conformations at the given energies.

Relationship between ensemble averages

• How likely are we to observe a system in the canonical ensemble with
an energy very different from the average energy E = 〈H(x(N))〉?

Pr
(∣∣H(x(N))− E

∣∣ ≥ λE
)
≤ σ2

E

λ2E
2

• Now the variance in the energy is:

σ2
E =

〈
H(x(N))2

〉
− 〈H(x(N))〉2 =

∂2 lnQN

∂β2
= −∂E

∂β
= kT 2Cv

and hence

Pr
(∣∣H(x(N))− E

∣∣ ≥ λE
)
≤ kT 2Cv

λ2E
2



• We will show that for an ideal gas system, E = 3/2NkT and hence
Cv = 3/2Nk.

• Typically, E ∼ N and Cv ∼ N .

Pr
(∣∣H(x(N))− E

∣∣ ≥ λE
)
≤ kT 2Cv

λ2E
2 ∼

1

Nλ2

– As N increases, it becomes less and less likely to observe a system
with energy very different from E,

〈B(x(N))〉canon =

∫
dE P (E)〈B(x(N))〉micro at E ≈ 〈B(x(N))〉

micro at E
(1 +O(1/N)) .

• P (E) is sharply-peaked around E = E: Can show (homework?)

P (E) ≈ P (E)

(
1

2πσ2
E

)1/2

exp

{
−(E − E)2

2kT 2Cv

}
• Relative spread of energy σE/E ∼ N−1/2.


