Solving Problems Using Problem Solving Dr. David C. Stone Department of Chemistry University of Toronto TDSB Eureka Conference, February 2011 dstone@chem.utoronto.ca

http://www.chem.utoronto.ca/~dstone/teachers/

Dr. David C. Stone, Department of Chemistry, University of Toronto

Friday, February 25, 2011

Piagetian Development:

Concrete operational:	Formal operational:
classification	control of variables
conservation	combinatorial reasoning
decentering	correlational reasoning
reversibility	hypothetical-deductive reasoning
seriation	probabilistic reasoning
transitivity	proportional reasoning

Dr. David C. Stone, Department of Chemistry, University of Toronto

Friday, February 25, 2011

U. Guelph 1st-year Self-Test: • Given the expression A/B =2008 2005 2007 2006 X/Y, then B is equal to: 7.9% a) XY/A 6.9%b)AY/X 75.7% 76% 77% 68.4% c)X/AY 13.0% 18.4% d)Y/AX 5.3% 4.4% Courtesy of Prof. Lori Jones, U. Guelph Dr. David C. Stone, Department of Chemistry, University of Toronto Friday, February 25, 2011

U of T 2 nd -Year Self-Test:							
Consider the following balanced chemical reaction: $2 \text{ Mn} \Omega_4^- + 16 \text{ H}^+ + 15 \text{ I}^- \rightarrow 2 \text{ Mn}^{2+} + 5 \text{ I}^{3-} + 8 \text{ H}_2 \Omega_3^-$							
What volume of 0.0525 M iodide would be required to exactly react with 20.0 ml of 0.0125 M permanganate?							
a) 0.63 ml	7.0%	$\leftarrow \text{inverted coefficients}$					
b) 4.76 ml	18.6%	$\leftarrow \text{forgot the coefficients}$					
c) 35.7 ml	72.1%						
d) 84.0 ml	2.3%	← inverted concentrations					
Dr. David C. Stone, Department of Chemistry, University of Toronto							

U of T 2nd-Year Self-Test:

A solution of known iodine concentration may be prepared by mixing solutions of iodate and iodide under acidic conditions:

 $a IO_3^- + b I^- + c H^+ \rightarrow p I_2 + q H_2O$

When correctly balanced, the stoichiometric coefficients in this reaction equation are:

a) a = 1, b = 1, c = 6, p = 1, q = 3 51.2% \leftarrow mass only b) a = 1, b = 5, c = 6, p = 3, q = 3 41.9% c) a = 3, b = 3, c = 6, p = 3, q = 3 7.0% \leftarrow charge only d) a = 5, b = 1, c = 6, p = 1, q = 5 0.0%

Dr. David C. Stone, Department of Chemistry, University of Toronto

• The geometry of a water molecule is:	2008	2007	2006	2005
a) angular or bent <	88.8%	85.2%	85%	85%
b)linear	4.5%	5.7%		
c) pyramidal	4.6%	5.9%		
d)tetrahedral	2.1%	3.2%		

Friday, February 25, 2011

U. Guelph 1st-year Self-Test: • The geometry of molecule in which the central atom is bonded to 2 H atoms and 2008 2007 2006 2005 has 2 lone pairs is: 15.9% 16.4% a) tetrahedral b)angular or bent 🤜 53.0% 52.8% 54% 54% c) linear 13.9% 12.8% d)pyramidal 17.2% 18.1% Courtesy of Prof. Lori Jones, U. Guelph Dr. David C. Stone, Department of Chemistry, University of Toronto

Alternate Concepts · A metallic wire has the following properties: a) conducts electricity b)brown colour c) density of 8.93 g/cm^3 d)malleable & ductile e) expands on heating Suppose you could isolate one single atom from the metallic wire: which of the above properties would it

Individ gases w flasks a gas to e	eptu lual 0.20 vere plac at 298 K. exert mo	0 g sampl ed in fou: In which ore pressu	blem es of each r separate h flask do re? Expla	h of the 1.00 L s you exp ain your a	following toppered ect the answer.
	Flask:	Α	В	С	D

Flask:	Α	В	С	D
Gas:	CH4	Ne	N_2	CO ₂
M_m (g/mol)	16.0	20.2	28.0	44.0

Dr. David C. Stone, Department of Chemistry, University of Toronto

Conceptual Problems

· Four identical sealed containers are filled with a different gas as indicated below until each contains exactly the same mass. If all four are held at the same temperature, which flask contains gas at the greatest pressure?

Flask:	А	В	C	D
Gas:	CH4	Ne	N_2	CO ₂
M_m (g/mol)	16.0	20.2	28.0	44.0

Dr. David C. Stone, Department of Chemistry, University of Toronto

Problem-Solving Activities

- Groups of \sim 3–4 people
- Appoint an **observer** to record the **process**!
- Solve a problem (10 minutes):
 - The Waterfall Problem
 - The Pizza Problem
 - The Water and Wine Problem
 - The Xenon Fluoride Problem

Dr. David C. Stone, Department of Chemistry, University of Toronto