Instructors: Professor Mitchell Winnik m.winnik@utoronto.ca
 Professor Eugenia Kumacheva ekumache@chem.utoronto.ca

Lectures: Tuesdays 5 - 7 pm, LM158
Tutorial: Fridays 1 – 2 pm, TBA

[There is a tutorial time scheduled for the course, but there will be no regular tutorials. This time will be used for the mid-term test and for possible review sessions.]

Office hours: For M.W.: LM520 4 to 5 pm on the Tuesdays of his lectures. For E.K., to be announced

Recommended text:

(Other useful text books: there are several)
Young, R.L.; Lovell, P.A. Introduction to Polymers, 2nd ed
Sperling, L.H., Physical Polymer Science, 2nd or 3rd ed.

Please note that you are responsible for all material presented in lecture, whether or not this topic is also presented in the recommended text.

Webnotes: For M.W.: PDFs of lecture notes will be posted prior on the “chm 426” website to each lecture. Please print these out and bring them to class.

www.chem.utoronto.ca ⇒ Course notes ⇒ chm 426
 [user name: “chm426” (one word, all lower case); password: (to be given out in lecture)]

Marking Scheme:

<table>
<thead>
<tr>
<th>Assignments and tests:</th>
<th>Quizzes</th>
<th>5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct 18 or 25, 1 – 2pm (1 hr)</td>
<td>Midterm test</td>
<td>25%</td>
</tr>
<tr>
<td></td>
<td>Term paper</td>
<td>30%</td>
</tr>
<tr>
<td></td>
<td>Final exam</td>
<td>40%</td>
</tr>
</tbody>
</table>

Quizzes: There will be a 5 to 10-min quiz during lecture, starting in lecture 2. The lowest quiz mark will be dropped from the average.

Term Paper: Details of the term paper will be discussed in class. The term paper will be due the last day of fall session classes.
CHM426 and CHM1300: Polymer Chemistry & Chemical Properties of Polymers
Lecture/Topic Outline
Fall Term 2013

1. Introduction
 Classification of polymers
 General concepts of molecular weight distribution

2. Polymer synthesis: Step growth polymerization
 Statistics of step-growth polymerization

3. Polymer synthesis: Addition polymerization
 Anionic and cationic (living) polymerization
 Kinetics and mechanism of free radical polymerization
 Controlling Mn: chain transfer
 Copolymerization and reactivity ratios

4. “Living” Radical polymerization
 Nitroxide mediated polymerization (NMP, also called SFRP)
 Reversible addition-fragmentation transfer (RAFT) polymerization
 Atom transfer radical polymerization (ATRP)

4. Polymer synthesis: other topics
 Ziegler-Natta and metallocene polymerization of olefins
 Ring-opening metathesis polymerization
 Gel formation
 Kinetics of step-growth polymerization

5. Experimental determination of the sizes and shapes of macromolecules
 Conformation of macromolecules
 End-group analysis
 Osmometry
 Scattering techniques
 Viscometric techniques

6. Polymer solutions
 Polymer interactions in solutions; concentration regimes, solvent quality
 Solution and melt thermodynamics (Flory-Huggins theory)
 Solubility parameter approach
 Association in polymer solution and melts
 Phase separation

7. Polymers in the bulk state
 Melts and amorphous states
 Glass transition
 Crystalline polymers
 Morphology
 Macroconformation, packing, chain folding
 Kinetics of crystallization

--------- midterm test --- Friday afternoon October 18 or 25, at 1:00 pm -